Citation: | Xiaoling Zang, Yuqian Jiang, Yuqiao Chai, Fengwang Li, Junhui Ji, Mianqi Xue. Tunable metallic-like transport in polypyrrole[J]. Materials Futures, 2022, 1(1): 011001. doi: 10.1088/2752-5724/ac44ab |
Conjugated polymers (CPs), organic macromolecules with a linear backbone of alternating C–C and C=C bonds, possess unique semiconductive properties, providing new opportunities for organic electronics, photonics, information, and energy devices. Seeking the metallic or metallic-like, even superconducting properties beyond semiconductivity in CPs is always one of the ultimate goals in polymer science and condensed matter. Only two metallic and semi-metallic transport cases—aniline-derived polyaniline and thiophene-derived poly(3,4-ethylenedioxythiophene)—have been reported since the development of CPs for four decades. Controllable synthesis is a key challenge in discovering more cases. Here we report the metallic-like transport behavior of another CP, polypyrrole (PPy). We observe that the transport behavior of PPy changes from semiconductor to insulator-metal transition, and gradually realizes metallic-like performance when the crystalline degree increases. Using a generalized Einstein relation model, we rationalized the mechanism behind the observation. The metallic-like transport in PPy demonstrates electron strong correlation and phonon–electron interaction in soft condensation matter, and may find practical applications of CPs in electrics and spintronics.
[1] |
Ibanez J G, Rincón M E, Gutierrez-Granados S, Chahma M, Jaramillo-Quintero O A and Frontana-Uribe B A 2018 Chem. Rev. 118 4731
|
[2] |
Noriega R, Rivnay J, Vandewal K, Koch F P V, Stingelin N, Smith P, Toney M F and Salleo A 2013 Nat. Mater. 12 1038
|
[3] |
Heeger A J, Namdas E B and Sariciftci N S 2010 Semiconducting and Metallic Polymers (Oxford: Oxford University Press)
|
[4] |
Burroughes J H, Bradley D D C, Brown A R, Marks R N, Mackay K, Friend R H, Burns P L and Holmes A B 1990 Nature 347 539
|
[5] |
Friend R H et al 1999 Nature 397 121
|
[6] |
Sirringhaus H, Tessler N and Friend R H 1998 Science 280 1741
|
[7] |
Cheng Y-J, Yang S-H and Hsu C-S 2009 Chem. Rev. 109 5868
|
[8] |
Sirringhaus H et al 1999 Nature 401 685
|
[9] |
Heeger A J 2001 Rev. Mod. Phys. 73 681
|
[10] |
MacDiarmid A G 2001 Rev. Mod. Phys. 73 701
|
[11] |
Wegner G 1981 Angew. Chem., Int. Ed. 20 361
|
[12] |
Feist F A and Basché T 2011 Angew. Chem., Int. Ed. 50 5256
|
[13] |
Barbara P F, Gesquiere A J, Park S-J and Lee Y J 2005 Acc. Chem. Res. 38 602
|
[14] |
Stejskal J, Bogomolova O E, Blinova N V, Trchov´a M, Šedeˇnkov´a I, Prokeš J and Sapurina I 2009 Polym. Int. 58 872
|
[15] |
Hagiwara T, Hirasaka M, Sato K and Yamaura M 1990 Synth. Met. 36 241
|
[16] |
Cho B, Park K S, Baek J, Oh H S, Koo-Lee Y E and Sung M M 2014 Nano Lett. 14 3321
|
[17] |
Yuen J D, Menon R, Coates N E, Namdas E B, Cho S, Hannahs S T, Moses D and Heeger A J 2009 Nat. Mater. 8 572
|
[18] |
Kronemeijer A J, Huisman E H, Katsouras I, Hal P A, Geuns T C T, Blom P W M, Molen S J and Leeuw D M 2010 Phys. Rev. Lett. 105 156604
|
[19] |
Asadi K, Kronemeijer A J, Cramer T, Jan Anton Koster L, Blom P W M and de Leeuw D M 2013 Nat. Commun. 4 1710
|
[20] |
Kang S D and Snyder G J 2016 Nat. Mater. 16 252
|
[21] |
Shi W, Zhao T, Xi J, Wang D and Shuai Z 2015 J. Am. Chem. Soc. 137 12929
|
[22] |
Lee K, Cho S, Heum Park S, Heeger A J, Lee C W and Lee S H 2006 Nature 441 65
|
[23] |
Bubnova O et al 2013 Nat. Mater. 13 190
|
[24] |
Malvankar N S et al 2011 Nat. Nanotechnol. 6 573
|
[25] |
Clough A J, Skelton J M, Downes C A, de La Rosa A A, Yoo J W, Walsh A, Melot B C and Marinescu S C 2017 J. Am. Chem. Soc. 139 10863
|
[26] |
Xue M, Li F, Zhu J, Song H, Zhang M and Cao T 2012 Adv. Funct. Mater. 22 1284
|
[27] |
Xue M, Zhang Y, Yang Y and Cao T 2008 Adv. Mater. 20 2145
|
[28] |
Xue M, Li F, Chen D, Yang Z, Wang X and Ji J 2016 Adv. Mater. 28 8265
|
[29] |
Xue M, Wang Y, Wang X, Huang X and Ji J 2015 Adv. Mater. 27 5923
|
[30] |
Zang X, Wang X, Jiang Y, Wang X, Yang Z, Cong J and Xue M 2017 Adv. Funct. Mater. 27 1702706
|
[31] |
Chai Y, Ma X, Jiang Y, Xiao D and Xue M 2020 Macromol. Chem. Phys. 221 1900534
|
[32] |
Liu C, Huang K, Park W-T, Li M, Yang T, Liu X, Liang L, Minari T and Noh Y-Y 2017 Mater. Horiz. 4 608
|
[33] |
Khim D et al 2016 Adv. Mater. 28 518
|
[34] |
Little W A 1964 Phys. Rev. 134 A1416
|
[35] |
Hamo A, Benyamini A, Shapir I, Khivrich I, Waissman J, Kaasbjerg K, Oreg Y, Von Oppen F and Ilani S 2016 Nature 535 395
|
![]() |
![]() |