Volume 1 Issue 3
September  2022
Turn off MathJax
Article Contents
Yaqi Li, Jingwei Zhang, Xun Xu, Weichang Hao, Jincheng Zhuang, Yi Du. Advances in bismuth-based topological quantum materials by scanning tunneling microscopy[J]. Materials Futures, 2022, 1(3): 032202. doi: 10.1088/2752-5724/ac84f5
Citation: Yaqi Li, Jingwei Zhang, Xun Xu, Weichang Hao, Jincheng Zhuang, Yi Du. Advances in bismuth-based topological quantum materials by scanning tunneling microscopy[J]. Materials Futures, 2022, 1(3): 032202. doi: 10.1088/2752-5724/ac84f5
Topical Review •
OPEN ACCESS

Advances in bismuth-based topological quantum materials by scanning tunneling microscopy

© 2022 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory
Materials Futures, Volume 1, Number 3
  • Received Date: 2022-06-16
  • Accepted Date: 2022-07-28
  • Publish Date: 2022-09-15
  • In recent years, topological quantum materials (TQMs) have attracted intensive attention in the area of condensed matter physics due to their novel topologies and their promising applications in quantum computing, spin electronics and next-generation integrated circuits. Scanning tunneling microscopy/spectroscopy (STM/STS) is regarded as a powerful technique to characterize the local density of states with atomic resolution, which is ideally suited to the measurement of the bulk-boundary correspondence of TQMs. In this review, using STM/STS, we focus on recent research on bismuth-based TQMs, including quantum-spin Hall insulators, 3D weak topological insulators (TIs), high-order TIs, topological Dirac semi-metals and dual TIs. Efficient methods for the modulation of the topological properties of the TQMs are introduced, such as interlayer interaction, thickness variation and local electric field perturbation. Finally, the challenges and prospects for this field of study are discussed.

  • loading
  • [1]
    Hasan M Z and Kane C L 2010 Colloquium: Topological insulators Rev. Mod. Phys. 82 3045–67
    [2]
    Qi X-L and Zhang S-C 2011 Topological insulators and superconductors Rev. Mod. Phys. 83 1057–110
    [3]
    A Yu K 2003 Fault-tolerant quantum computation by anyons Ann. Phys. 303 2–30
    [4]
    Fu L and Kane C L 2008 Superconducting proximity effect and majorana fermions at the surface of a topological insulator Phys. Rev. Lett. 100 096407
    [5]
    Bernevig B A, Hughes T L and Zhang S-C 2006 Quantum spin Hall effect and topological phase transition in HgTe quantum wells Science 314 1757–61
    [6]
    Yang F et al 2012 Spatial and energy distribution of topological edge states in single Bi(111) bilayer Phys. Rev. Lett. 109 016801
    [7]
    Drozdov I K, Alexandradinata A, Jeon S, Nadj-Perge S, Ji H, Cava R J, Bernevig B A and Yazdani A 2014 One-dimensional topological edge states of bismuth bilayers Nat. Phys. 10 664–9
    [8]
    Schindler F et al 2018 Higher-order topology in bismuth Nat. Phys. 14 918–24
    [9]
    Liu Z K, Zhou B and Chen Y L 2014 Discovery of a three-dimensional topological Dirac semimetal, Na3Bi Science 343 864–7
    [10]
    Hsieh D et al 2009 Observation of unconventional quantum spin textures in topological insulators Science 323 919–22
    [11]
    Kim S H, Jin K-H, Park J, Kim J S, Jhi S-H, Kim T-H and Yeom H W 2014 Edge and interfacial states in a two-dimensional topological insulator: bi(111) bilayer on Bi2Te2Se Phys. Rev. B 89 155436
    [12]
    Kawakami N, Lin C-L, Kawai M, Arafune R and Takagi N 2015 One-dimensional edge state of Bi thin film grown on Si(111) Appl. Phys. Lett. 107 031602
    [13]
    Lu Y et al 2015 Topological properties determined by atomic buckling in self-assembled ultrathin Bi(110) Nano Lett. 15 80–87
    [14]
    Reis F, Li G, Dudy L, Bauernfeind M, Glass S, Hanke W, Thomale R, Schäfer J and Claessen R 2017 Bismuthene on a SiC substrate: a candidate for a high-temperature quantum spin Hall material Science 357 287–90
    [15]
    Hofmann P 2006 The surfaces of bismuth: structural and electronic properties Prog. Surf. Sci. 81 191–245
    [16]
    Kane C L and Mele E J 2005 Z2 topological order and the quantum spin Hall effect Phys. Rev. Lett. 95 146802
    [17]
    Scott S A, Kral M V and Brown S A 2005 A crystallographic orientation transition and early stage growth characteristics of thin Bi films on HOPG Surf. Sci. 587 175–84
    [18]
    Nagao T, Sadowski J T, Saito M, Yaginuma S, Fujikawa Y, Kogure T, Ohno T, Hasegawa Y, Hasegawa S and Sakurai T 2004 Nanofilm allotrope and phase transformation of ultrathin Bi film on Si(111)-7×7 Phys. Rev. Lett. 93 105501
    [19]
    Sun J-T, Huang H, Wong S L, Gao H-J, Feng Y P and Wee A T S 2012 Energy-gap opening in a Bi(110) nanoribbon induced by edge reconstruction Phys. Rev. Lett. 109 246804
    [20]
    Stühler R, Reis F, Müller T, Helbig T, Schwemmer T, Thomale R, Schäfer J and Claessen R 2020 Tomonaga–Luttinger liquid in the edge channels of a quantum spin Hall insulator Nat. Phys. 16 47–51
    [21]
    Zhang H, Zou Q and Li L 2021 Tomonaga–luttinger liquid in the topological edge channel of multilayer FeSe Nano Lett. 21 6253–60
    [22]
    Zhou J-J, Feng W, Liu C-C, Guan S and Yao Y 2014 Large-gap quantum spin Hall insulator in single layer bismuth monobromide Bi4Br4 Nano Lett. 14 4767–71
    [23]
    Zhuang J, Li J, Liu Y, Mu D, Yang M, Liu Y, Zhou W, Hao W, Zhong J and Du Y 2021 Epitaxial growth of quasi-one-dimensional bismuth-halide chains with atomically sharp topological non-trivial edge states ACS Nano 15 14850–7
    [24]
    Tang S et al 2017 Quantum spin Hall state in monolayer 1T’-WTe2 Nat. Phys. 13 683–7
    [25]
    Wu R et al 2016 Evidence for topological edge states in a large energy gap near the step edges on the surface of ZrTe5 Phys. Rev. X 6 021017
    [26]
    Kandrai K et al 2020 Signature of large-gap quantum spin Hall state in the layered mineral jacutingaite Nano Lett. 20 5207–13
    [27]
    Yang M et al 2022 Large-gap quantum spin Hall state and temperature-induced lifshitz transition in Bi4Br4 ACS Nano 16 3036–44
    [28]
    Shumiya N et al 2022 Evidence of a room-temperature quantum spin Hall edge state in a higher-order topological insulator Nat. Mater. (https://doi.org/10.1038/s41563- 022-01304-3)
    [29]
    Fu L, Kane C L and Mele E J 2007 Topological insulators in three dimensions Phys. Rev. Lett. 98 106803
    [30]
    Noguchi R et al 2019 A weak topological insulator state in quasi-one-dimensional bismuth iodide Nature 566 518–22
    [31]
    Pauly C et al 2015 Subnanometre-wide electron channels protected by topology Nat. Phys. 11 338–43
    [32]
    Zhang Y et al 2010 Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit Nat. Phys. 6 584–8
    [33]
    Cheng P et al 2010 Landau quantization of topological surface states in Bi2Se3 Phys. Rev. Lett. 105 076801
    [34]
    Jiang Y, Wang Y, Chen M, Li Z, Song C, He K, Wang L, Chen X, Ma X and Xue Q-K 2012 Landau quantization and the thickness limit of topological insulator thin films of Sb2Te3 Phys. Rev. Lett. 108 016401
    [35]
    Zhang H, Liu C-X, Qi X-L, Dai X, Fang Z and Zhang S-C 2009 Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface Nat. Phys. 5 438–42
    [36]
    Zhang T et al 2009 Experimental demonstration of topological surface states protected by time-reversal symmetry Phys. Rev. Lett. 103 266803
    [37]
    Schindler F, Cook A M, Vergniory M G, Wang Z, Parkin S S P, Bernevig B A and Neupert T 2018 Higher-order topological insulators Sci. Adv. 4 6
    [38]
    Noguchi R et al 2021 Evidence for a higher-order topological insulator in a three-dimensional material built from van der Waals stacking of bismuth-halide chains Nat. Mater. 20 473–9
    [39]
    Peng L, Xian J-J, Tang P, Rubio A, Zhang S-C, Zhang W and Fu Y-S 2018 Visualizing topological edge states of single and double bilayer Bi supported on multibilayer Bi(111) films Phys. Rev. B 98 245108
    [40]
    Eschbach M et al 2017 Bi1Te1 is a dual topological insulator Nat. Commun. 8 14976
    [41]
    Facio J I, Das S K, Zhang Y, Koepernik K, van den Brink J and Fulga I C 2019 Dual topology in jacutingaite Pt2HgSe3 Phys. Rev. Mater. 3 074202
    [42]
    Cucchi I et al 2020 Bulk and surface electronic structure of the dual-topology semimetal Pt2HgSe3 Phys. Rev. Lett. 124 106402
    [43]
    Avraham N et al 2020 Visualizing coexisting surface states in the weak and crystalline topological insulator Bi2TeI Nat. Mater. 19 610–6
    [44]
    Young S M, Zaheer S, Teo J C Y, Kane C L, Mele E J and Rappe A M 2012 Dirac semimetal in three dimensions Phys. Rev. Lett. 108 140405
    [45]
    Goswami P and Chakravarty S 2011 Quantum criticality between topological and band insulators in 3+1 dimensions Phys. Rev. Lett. 107 196803
    [46]
    Wang Z, Sun Y, Chen X-Q, Franchini C, Xu G, Weng H, Dai X and Fang Z 2012 Dirac semimetal and topological phase transitions in A3Bi (A = Na, K, Rb) Phys. Rev. B 85 195320
    [47]
    Wan X, Turner A M, Vishwanath A and Savrasov S Y 2011 Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates Phys. Rev. B 83 205101
    [48]
    Kushwaha S K et al 2015 Bulk crystal growth and electronic characterization of the 3D Dirac semimetal Na3Bi APL Mater. 3 041504
    [49]
    Xia H, Li Y, Cai M, Qin L, Zou N, Peng L, Duan W, Xu Y, Zhang W and Fu Y-S 2019 Dimensional crossover and topological phase transition in Dirac semimetal Na3Bi films ACS Nano 13 9647–54
    [50]
    Collins J L et al 2018 Electric-field-tuned topological phase transition in ultrathin Na3Bi Nature 564 390–4
    [51]
    Otrokov M M et al 2019 Prediction and observation of an antiferromagnetic topological insulator Nature 576 416–22
    [52]
    Bernevig B A, Felser C and Beidenkopf H 2022 Progress and prospects in magnetic topological materials Nature 603 41–51
    [53]
    Lee S H et al 2019 Spin scattering and noncollinear spin structure-induced intrinsic anomalous Hall effect in antiferromagnetic topological insulator MnBi2Te4 Phys. Rev. Res. 1 012011
    [54]
    Li H et al 2019 Dirac surface states in intrinsic magnetic topological insulators EuSn2As2 and MnBi2nTe3n+1 Phys. Rev. X 9 041039
    [55]
    Ko W, Kolmer M, Yan J, Pham A D, Fu M, Lüpke F, Okamoto S, Gai Z, Ganesh P and Li A-P 2020 Realizing gapped surface states in the magnetic topological insulator MnBi2−xSbxTe4 Phys. Rev. B 102 115402
    [56]
    Isaeva A and Ruck M 2020 Crystal chemistry and bonding patterns of bismuth-based topological insulators Inorg. Chem. 59 3437–51
    [57]
    Majhi K, Pal K, Lohani H, Banerjee A, Mishra P, Yadav A K, Ganesan R, Sekhar B R, Waghmare U V and Anil Kumar P S 2017 Emergence of a weak topological insulator from the BixSey family Appl. Phys. Lett. 110 162102
    [58]
    Weber A P, Gibson Q D, Ji H, Caruso A N, Fedorov A V, Cava R J and Valla T 2015 Gapped surface states in a strong-topological-insulator material Phys. Rev. Lett. 114 256401
    [59]
    Zeugner A, Teichert J, Kaiser M, Menshchikova T V, Rusinov I P, Markelov A V, Chulkov E V, Doert T, Ruck M and Isaeva A 2018 Synthesis, crystal and topological electronic structures of new bismuth tellurohalides Bi2TeBr and Bi3TeBr Chem. Mater. 30 5272–84
    [60]
    Zeugner A et al 2017 Modular design with 2D topological-insulator building blocks: optimized synthesis and crystal growth and crystal and electronic structures of BixTeI (x = 2, 3) Chem. Mater. 29 1321–37
    [61]
    Nabok D, Tas M, Kusaka S, Durgun E, Friedrich C, Bihlmayer G, Blügel S, Hirahara T and Aguilera I 2022 Bulk and surface electronic structure of Bi4Te3 from GW calculations and photoemission experiments Phys. Rev. Mater. 6 034204
    [62]
    Eremeev S V et al 2012 Atom-specific spin mapping and buried topological states in a homologous series of topological insulators Nat. Commun. 3 635
    [63]
    Okamoto K et al 2012 Observation of a highly spin-polarized topological surface state in GeBi2Te4 Phys. Rev. B 86 195304
    [64]
    Li Y, Huang C, Wang G, Hu J, Duan S, Xu C, Lu Q, Jing Q, Zhang W and Qian D 2021 Topological Dirac surface states in ternary compounds GeBi2Te4, SnBi2Te4 and Sn0.571Bi2.286Se4 Chin. Phys. B 30 127901
    [65]
    Gong Y et al 2019 Experimental realization of an intrinsic magnetic topological insulator Chin. Phys. Lett. 36 076801
  • 加载中

Catalog

    Figures(1)

    Article Metrics

    Article Views(453) PDF downloads(82)
    Article Statistics
    Related articles from

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return