—Supplementary Information— Strategies for Fitting Accurate Machine Learned Inter-atomic Potentials for Solid Electrolytes

Juefan Wang,[†] Abhishek A. Panchal,[†] and Pieremanuele Canepa^{*,†,‡}

†Department of Materials Science and Engineering, National University of Singapore, 9
 Engineering Drive 1, 117575, Singapore
 ‡Department of Chemical and Biomolecular Engineering, National University of Singapore,

4 Engineering Drive 4, 117585, Singapore

E-mail: pcanepa@nus.edu.sg

Contents

Sec. S1	Inaccuracies of MTP Training and Validation	S2
Sec. S2	Calculated Lattice Parameters	S 4
Sec. S3	Activation Energies	$\mathbf{S5}$
Reference	es	$\mathbf{S19}$

Sec. S1 Inaccuracies of MTP Training and Validation

	Training MAE		Validati	on MAE
	Energy	Force	Energy	Force
	Exchange-c	orrelation func	tional	
PBE	4.70	50.50	2.07	45.63
PBEsol	4.93	64.26	8.66	75.30
SCAN+rvv10	6.35	56.25	6.50	64.68
optB88	6.26	78.63	7.22	85.18
	Te	emperature		
High Temperature	8.61	97.44	11.22	122.48
	Sin	ulation time		
Less snapshots	5.98	75.45	15.00	138.38

Table S1: The training and validation Mean Absolute Errors (MAE) on energies per atom (in meV/atom) and forces (in meV/Å) for the fitted Moment Tensor Potentials (MTPs) of argyrodite Li_6PS_5Cl .

Table S2: The training and validation MAE on energies per atom (in meV/atom) and forces (in meV/Å) for the fitted MTPs of argyrodite Li_6PS_5Cl containing different types of defects. The functional used is PBEsol.

	Trainir	Training MAE		on MAE
	Energy	Force	Energy	Force
Li _i	4.93	64.26	8.66	75.30
Cl_{s}	5.28	61.69	8.62	72.49
S_{Cl}	2.97	52.85	2.38	49.23
$V_{\rm Li}$	5.06	80.15	4.47	79.37

	Training MAE		Validati	Validation MAE	
	Energy	Force	Energy	Force	
Exchange-correlation functional					
PBE	2.35	37.96	2.38	37.67	
PBEsol	4.32	52.15	4.79	53.63	
SCAN+rvv10	2.10	37.47	0.62	20.78	
OptB88	2.24	40.82	0.82	20.43	
	Te	emperature			
High Temperature	6.08	71.54	1.68	44.64	
	Sin	ulation time			
Less snapshots	5.26	65.15	0.95	29.03	

Table S3: The training and validation MAE on energies per atom (in meV/atom) and forces (in meV/Å) for the fitted MTPs of argyrodite $\rm Li_6PS_5I$.

Table S4: Training and validation MAE on energies per atom (in meV/atom) and forces (in meV/Å) of the fitted MTPs of α -Na₃PS₄.

	Training MAE		Validati	on MAE
	Energy	Force	Energy	Force
	Exchange-c	orrelation func	tional	
PBE	1.29	32.71	1.52	34.37
PBEsol	1.20	32.01	1.60	32.00
R2SCAN	1.09	30.43	1.30	31.14
OptB88	0.98	28.09	0.94	28.03
	Te	emperature		
Low Temperea-	0.55	22.71	0.30	19.64
ture				
	Sin	ulation time		
More snapshots	1.52	41.24	2.61	57.68

Sec. S2 Calculated Lattice Parameters

Table S5: DFT calculated lattice parameters (in Å) and volumes (in Å³) of argyrodites Li_6PS_5X (X = Cl, I) and tetragonal α -Na₃PS₄ using different exchange and correlation functionals. The relative error of the predicted volumes concerning the experimental values is shown in percentage.

Functional	Lattice constants	Volume	$\Delta { m V/V}~\%$
	Li_6PS_5Cl		
Exp. ¹	9.898	969.711	
PBE	10.005	1003.884	3.5
PBEsol	9.846	951.370	-1.9
SCAN	10.229	1070.162	10.3
R2SCAN	10.258	1079.566	10.2
SCAN+rvv10	10.193	1058.729	8.4
optB88	9.905	970.084	0.04
	Li_6PS_5I		
Exp. ¹	10.141	1043.007	
PBE	10.199	1064.860	2.1
PBEsol	10.051	1024.023	-1.8
SCAN	10.152	1052.573	0.92
R2SCAN	10.173	1058.733	1.51
SCAN+rvv10	10.105	1039.942	-0.29
optB88	10.118	1044.546	0.15
	α -Na ₃ PS ₄		
$\overline{\text{Exp.}^2}$	6.96, 7.09	343.745	
PBE	6.98, 7.13	347.516	1.09
PBEsol	6.86, 6.99	329.235	-4.22
SCAN	6.85, 7.00	328.016	-4.58
R2SCAN	6.86, 7.01	330.209	-3.94
SCAN+rvv10	6.82, 6.95	323.209	-5.97
optB88	6.89, 7.03	333.324	-3.03

Sec. S3 Activation Energies

Table S6: Activation energies E_a (in eV) derived from Arrhenius plots with the estimated standard errors(stderr), and room temperature (300 K) conductivities $\sigma_{\rm RT}$ (in mS/cm), for Li₆PS₅Cl using MTPs trained with different strategies.

MTP type	${ m Ea} \pm { m stderr}$	$\sigma_{ m RT}$	Experimental E_a	Experimental $\sigma_{\rm RT}$		
	Exchange	-correla	tion functional			
PBE	0.392 ± 0.002	0.145	0.45 ± 0.02^{1}	~ 0.01 -4.96 ^{1,3-6}		
PBE-Exp lattice.	0.362 ± 0.006	0.260	—	—		
PBEsol	0.421 ± 0.006	0.070	—	—		
PBEsol-Exp lattice	0.368 ± 0.006	0.240	—	—		
SCAN+rvv10	$0.368\ {\pm}0.005$	0.234	_	—		
OptB88	0.367 ± 0.002	0.227	—	—		
	r	Tempera	ature			
High Temperature	0.349 ± 0.0009	0.365	-	-		
Simulation time						
Less Snapshots	0.386 ± 0.003	0.252	_	-		

Table S7: Activation energies E_a (in eV) derived from Arrhenius plots with the estimated standard errors(stderr), and room temperature (300 K) conductivities $\sigma_{\rm RT}$ (in mS/cm), for Li₆PS₅I using MTPs trained with different strategies.

MTP type	$Ea \pm stderr$	$\sigma_{ m RT}$	Experimental E_a	Experimental σ_{RI}		
	Excha	nge-correlatio	on functional			
PBE	0.630 ± 0.011	$3.029 \ge 10^{-5}$	0.380 ± 0.025^{1}	$\sim 10^{-3}$ - 10^{-41}		
PBEsol	0.536 ± 0.017	0.0006	—	_		
SCAN+rvv10	0.584 ± 0.003	$6.166 \ge 10^{-5}$	—	_		
OptB88	0.613 ± 0.010	$3.008 \ge 10^{-5}$	—	—		
		Temperat	ure			
High Temperature	0.505 ± 0.016	0.001	—	—		
Simulation time						
Less Snapshots	0.572 ± 0.027	0.0002	-	_		

Table S8: Activation energies E_a (in eV) derived from Arrhenius plots with the estimated standard errors(stderr), and room temperature (300 K) conductivities $\sigma_{\rm RT}$ (in mS/cm), for Na₃PS₄ containing Na^+ vacancies (2%) using different types of MTPs.

$Ea \pm stderr$	$\sigma_{ m RT}$	Experimental E_a	Experimental $\sigma_{\rm RT}$				
Exchange-co	rrelation	functional					
0.057 ± 0.003	108.476	0.364 ± 0.015^{7}	0.15 ± 0.01^{7}				
0.054 ± 0.002	106.991	—	—				
0.071 ± 0.002	64.536	—	—				
0.077 ± 0.005	52.686	—	—				
0.134 ± 0.007	26.539	—	—				
0.160 ± 0.000	—	—	—				
Ter	nperatur	·e					
0.054 ± 0.0008	108.978	_	_				
Simulation time							
0.063 ± 0.002	89.701	-	_				
	$\begin{array}{c} {\bf Ea} \pm {\bf stderr} \\ {\bf Exchange-co} \\ 0.057 \pm 0.003 \\ 0.054 \pm 0.002 \\ 0.071 \pm 0.002 \\ 0.077 \pm 0.005 \\ 0.134 \pm 0.007 \\ 0.160 \pm 0.000 \\ \hline {\bf Ter} \\ 0.054 \pm 0.0008 \\ \hline {\bf Simu} \\ 0.063 \pm 0.002 \end{array}$	$\begin{array}{c c} \mathbf{Ea} \pm \mathbf{stderr} & \sigma_{\mathrm{RT}} \\ \hline \mathbf{Exchange-correlation} \\ 0.057 \pm 0.003 & 108.476 \\ 0.054 \pm 0.002 & 106.991 \\ 0.071 \pm 0.002 & 64.536 \\ 0.077 \pm 0.005 & 52.686 \\ 0.134 \pm 0.007 & 26.539 \\ 0.160 \pm 0.000 & - \\ \hline \mathbf{Terretur} \\ 0.054 \pm 0.0008 & 108.978 \\ \hline \mathbf{Simulation\ times} \\ 0.063 \pm 0.002 & 89.701 \\ \hline \end{array}$	Ea \pm stderr $\sigma_{\rm RT}$ Experimental E_a Exchange-correlation functional 0.057 ± 0.003 108.476 0.364 ± 0.015^7 0.054 ± 0.002 106.991 $ 0.071 \pm 0.002$ 64.536 $ 0.077 \pm 0.005$ 52.686 $ 0.134 \pm 0.007$ 26.539 $ 0.160 \pm 0.000$ $ -$ Temperature 0.054 ± 0.0008 108.978 $-$ Simulation time 0.063 ± 0.002 89.701 $-$				

Table S9: Activation energies E_a (in eV) derived from Arrhenius plots with the estimated standard errors(stderr), and room temperature (300 K) conductivities $\sigma_{\rm RT}$ (in mS/cm) for Li₆PS₅Cl containing different types of defects, i.e., Li interstitials Li_i , antisites Cl_s and S_{Cl} , and Li^+ vacancies V_{Li^+} . Li_i are the intrinsic defect types. The exchange-correlation functional used is PBEsol. The MTPs used are trained specifically for each defect type. The defect concentrations for each type during MTP-MD simulations are taken from Gorai et al⁹

Defect	${ m Ea}\pm{ m stderr}$	$\sigma_{ m RT}$	Experimental E_a	Experimental $\sigma_{\rm RT}$
Lii	0.421 ± 0.006	0.070	0.45 ± 0.02^{1}	~ 0.01 -4.96 ^{1,3-6}
Cl_s	0.462 ± 0.008	0.041	—	_
S_{Cl}	0.259 ± 0.011	0.492	—	_
V_{Li}	0.411 ± 0.009	0.094	-	_

Table S10: Activation energies E_a (in eV) derived from Arrhenius plots with the estimated standard errors(stderr), and room temperature (300 K) conductivities σ_{RT} (in mS/cm) for Li₆PS₅Cl containing antisite Cl_s and V_{Li^+} at different concentrations (in cm^{-3}). The exchange-correlation functional used is PBEsol. The MTPs used are trained specifically for each defect type.

Defect Concentration	1	E_a	$\sigma_{ m R'}$	Г
Delect Concentration	Cl_s	V_{Li^+}	Cl_s	V_{Li^+}
$2.10 \ge 10^{21}$	0.219 ± 0.012	0.277 ± 0.008	25.626	1.123
$1.31 \ge 10^{20}$	0.323 ± 0.018	0.419 ± 0.016	0.586	0.078
$1.64 \ge 10^{19}$	0.462 ± 0.008	0.411 ± 0.010	0.041	0.09
$4.86 \ge 10^{18}$	0.443 ± 0.005	0.419 ± 0.007	0.056	0.077
$2.05 \ge 10^{18}$	0.438 ± 0.011	0.443 ± 0.006	0.062	0.055
$1.05 \ge 10^{18}$	0.445 ± 0.002	0.441 ± 0.006	0.053	0.057

Table S11: Activation energies E_a (in eV) derived from Arrhenius plots with the estimated standard errors(stderr), and room temperature (300 K) conductivities $\sigma_{\rm RT}$ (in mS/cm) for Li₆PS₅Cl containing antisite Cl_s and V_{Li^+} at different concentrations (in cm^{-3}). The exchange-correlation functional used is PBEsol. The MTPs used are trained for Li_i .

Defect Concentration	I	$\sigma_{ m R'}$	$\sigma_{ m RT}$	
Delect Concentration	Cl_s	V_{Li^+}	Cl_s	V_{Li^+}
$5.24 \ge 10^{20}$	0.258 ± 0.004	0.279 ± 0.011	10.228	1.055
$1.31 \ge 10^{20}$	0.366 ± 0.019	0.387 ± 0.014	0.230	0.118
$1.64 \ge 10^{19}$	0.390 ± 0.036	0.399 ± 0.013	0.116	0.101
$4.86 \ge 10^{18}$	0.386 ± 0.003	0.354 ± 0.018	0.142	0.266
$2.05 \ge 10^{18}$	0.400 ± 0.003	0.406 ± 0.008	0.111	0.100
$1.05 \ge 10^{18}$	0.398 ± 0.004	0.398 ± 0.002	0.115	0.114

Figure S1: Crystal structures of (a) argyrodites Li_6PS_5X (X = Cl, I) and (b) tetragonal α -Na₃PS₄

Figure S2: Comparison of the predicted volumes of argyrodites Li_6PS_5X (X = Cl, I) and Na_3PS_4 using different functionals. The relative error of the predicted volumes concerning experimental values is shown in percentage.

Figure S3: Activation energies E_a (in eV) derived from Arrhenius plots with the estimated standard errors(stderr) for Li₆PS₅I using MTPs trained with different strategies. (a) The computational variable considered is exchange-correlation functional. The experimental value is labeled in green, and (b) the computational variables considered are simulation temperature and time. The exchange-correlation functional is fixed to PBEsol. 'Reference' refers to the value of 'PBEsol' in (a).

Figure S4: Activation energies (E_a) derived from Arrhenius plots with the estimated standard errors(stderr) for Na₃PS₄ using MTPs trained with different strategies. E_a calculated by using different functionals are shown in the zoom-in plot. E_a calculated by using the strategy 'Temperature' and 'Simulation time' are included in the error bar of the result for 'PBEsol'. E_a calculated by 40 ps-long AIMD simulations are labeled in red. E_a taken from de Klerk et al⁸ is labelled in blue, where the error in E_a is not reported. The experimental value is labeled in green.¹

Figure S5: Activation energies (E_a) derived from Arrhenius plots with the estimated standard errors(stderr) for Li₆PS₅Cl containing (a) V_{Li} and (b) antisite Cl_s with different concentrations (in cm^{-3}). The exchange-correlation functional used is PBEsol. E_a of Li_i with error bars calculated from MTP@PBEsol are labeled in green, and the regions where E_a of either V_{Li} or Cl_s are close to the green region are labeled in yellow and considered as the dilute regimes. The MTPs used are either trained for Li interstitials (labeled as Li_i) or specifically for each defect type (labelled as V_{Li} and Cl_s, respectively).

Figure S6: The calculated Li^+ transport properties of argyrodite $\text{Li}_6\text{PS}_5\text{Cl}$ containing different types of defects, i.e., Li interstitials Li_i , antisites Cl_8 and S_{Cl} , and Li^+ vacancies V_{Li} . Li_i are the intrinsic defect types. (a) Li^+ diffusivity (in cm²/s) and (b) conductivity (in mS/cm). The exchange-correlation functional used is PBEsol. The MTPs used are trained specifically for each defect type. The defect concentrations for each type during MTP-MD simulations are taken from Gorai P et al.⁹

Figure S7: The calculated Li^+ transport properties of argyrodite $\text{Li}_6\text{PS}_5\text{Cl}$ containing antisites Cl_8 with different concentrations (in cm⁻³). (a) Li^+ diffusivity (in cm²/s) and (b) conductivity (in mS/cm). The exchange-correlation functional used is PBEsol. The MTPs used are trained for Cl_8

Figure S8: The calculated Li^+ transport properties of argyrodite $\text{Li}_6\text{PS}_5\text{Cl}$ containing antisites Cl_8 with different concentrations (in cm⁻³). (a) Li^+ diffusivity (in cm²/s) and (b) conductivity (in mS/cm). The exchange-correlation functional used is PBEsol. The MTP used is trained for Li_i

Figure S9: The calculated Li⁺ transport properties of argyrodite Li₆PS₅Cl containing V_{Li} with different concentrations (in cm⁻³). (a) Li⁺ diffusivity (in cm²/s) and (b) conductivity (in mS/cm). The exchange-correlation functional used is PBEsol. The MTP used is trained for V_{Li}

Figure S10: The calculated Li^+ transport properties of argyrodite Li_6PS_5Cl containing V_{Li} with different concentrations (in cm⁻³). (a) Li^+ diffusivity (in cm²/s) and (b) conductivity (in mS/cm). The exchange-correlation functional used is PBEsol. The MTP used is trained for Li_i

Figure S11: The calculated Li^+ transport properties of argyrodite Li_6PS_5I using different types of MTPs. (a) Li^+ diffusivity (in cm²/s) and (b) conductivity (in mS/cm).

Figure S12: The calculated Na^+ transport properties of Na_3PS_4 by using MTPs trained with different strategies. (a) Na^+ diffusivity (in cm^2/s) and (b) conductivity (in mS/cm).

Figure S13: Zoom-in plots of generalized phonon density of states (GDOS) of Li atoms in argyrodites Li_6PS_5Cl calculated from MTP-MD simulations at (a) 300 K and (b) 500 K.

Figure S14: Generalized phonon density of states (GDOS) of Li atoms in argy-rodites Li_6PS_5I calculated from MTP-MD simulations at (a) 300 K and (b) 500 K.

Figure S15: Zoom-in plots of generalized phonon density of states (GDOS) of Li atoms in argyrodites Li_6PS_5I calculated from MTP-MD simulations at (a) 300 K and (b) 500 K.

Figure S16: Generalized phonon density of states (GDOS) of Na atoms in Na_3PS_4 calculated from MTP-MD simulations at (a) 300 K and (b) 500 K.

Figure S17: The distinct part of van Hove correlation function G_d calculated from MTP-MD simulations for (a) Li_6PS_5Cl and (b) Li_6PS_5I at 500K, at the initial 10 ps. The exchange-correlation functional used is PBEsol.

Figure S18: Distinct part of van Hove correlation function G_d calculated from MTP-MD simulations for Na_3PS_4 . The exchange-correlation functional used is PBEsol.

References

- Kraft, M. A.; Culver, S. P.; Calderon, M.; Böcher, F.; Krauskopf, T.; Senyshyn, A.; Dietrich, C.; Zevalkink, A.; Janek, J.; Zeier, W. G. Influence of Lattice Polarizability on the Ionic Conductivity in the Lithium Superionic Argyrodites Li ₆ PS ₅ X (X = Cl, Br, I). Journal of the American Chemical Society **2017**, 139, 10909–10918.
- (2) Famprikis, T.; Bouyanfif, H.; Canepa, P.; Zbiri, M.; Dawson, J. A.; Suard, E.; Fauth, F.; Playford, H. Y.; Dambournet, D.; Borkiewicz, O. J.; Courty, M.; Clemens, O.; Chotard, J.-N.; Islam, M. S.; Masquelier, C. Insights into the Rich Polymorphism of the Na⁺ Ion Conductor Na ₃ PS ₄ from the Perspective of Variable-Temperature Diffraction and Spectroscopy. *Chemistry of Materials* **2021**, *33*, 5652–5667.
- (3) Rayavarapu, P. R.; Sharma, N.; Peterson, V. K.; Adams, S. Variation in Structure and Li+-Ion Migration in Argyrodite-Type Li6PS5X (X = Cl, Br, I) Solid Electrolytes. Journal of Solid State Electrochemistry 2012, 16, 1807–1813.
- (4) Yu, C.; Ganapathy, S.; Hageman, J.; van Eijck, L.; van Eck, E. R. H.; Zhang, L.; Schwietert, T.; Basak, S.; Kelder, E. M.; Wagemaker, M. Facile Synthesis toward the Optimal Structure-Conductivity Characteristics of the Argyrodite Li ₆ PS ₅ Cl Solid-State Electrolyte. ACS Applied Materials & Interfaces **2018**, 10, 33296–33306.
- (5) Boulineau, S.; Courty, M.; Tarascon, J.-M.; Viallet, V. Mechanochemical Synthesis of Li-argyrodite Li6PS5X (X=Cl, Br, I) as Sulfur-Based Solid Electrolytes for All Solid State Batteries Application. *Solid State Ionics* **2012**, *221*, 1–5.
- (6) Deiseroth, H.-J.; Kong, S.-T.; Eckert, H.; Vannahme, J.; Reiner, C.; Zaiß, T.; Schlosser, M. Li6PS5X: A Class of Crystalline Li-Rich Solids With an Unusually High Li+ Mobility. Angewandte Chemie International Edition 2008, 47, 755–758.
- (7) Krauskopf, T.; Culver, S. P.; Zeier, W. G. Local Tetragonal Structure of the Cubic Superionic Conductor Na ₃ PS ₄. *Inorganic Chemistry* **2018**, *57*, 4739–4744.

- (8) de Klerk, N. J. J.; Wagemaker, M. Diffusion Mechanism of the Sodium-Ion Solid Electrolyte Na ₃ PS ₄ and Potential Improvements of Halogen Doping. *Chemistry of Materials* 2016, 28, 3122–3130.
- (9) Gorai, P.; Famprikis, T.; Singh, B.; Stevanović, V.; Canepa, P. Devil Is in the Defects: Electronic Conductivity in Solid Electrolytes. *Chemistry of Materials* 2021, 33, 7484–7498.