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Abstract
Based on symmetry analysis and lattice model calculations, we demonstrate that Dirac nodal
line (DNL) can stably exist in two-dimensional (2D) nonmagnetic as well as antiferromagnetic
systems. We focus on the situations where the DNLs are enforced by certain symmetries and the
degeneracies on the DNLs are inevitable even if spin–orbit coupling is strong. After thorough
analysis, we find that five space groups, namely 51, 54, 55, 57 and 127, can enforce the DNLs in
2D nonmagnetic semimetals, and four type-III magnetic space groups (51.293, 54.341, 55.355,
57.380) plus eight type-IV magnetic space groups (51.299, 51.300, 51.302, 54.348, 55.360,
55.361, 57.387 and 127.396) can enforce the DNLs in 2D antiferromagnetic semimetals. By
breaking these symmetries, the different 2D topological phases can be obtained. Furthermore,
by the first-principles electronic structure calculations, we predict that monolayer YB4C4 is a
good material platform for studying the exotic properties of 2D symmetry-enforced Dirac
node-line semimetals.

Keywords: symmetry-enforced, Dirac nodal line semimetals, nonsymmorphic space group,
antiferromagnetic systems

Supplementary material for this article is available online

1. Introduction

Topological semimetals with symmetry-protected band cross-
ing around the Fermi level have inspired enormous interest
in condensed matter physics [1–8]. As a typical family of
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topological semimetals, node-line semimetals have high band
degeneracy along certain line in the Brillouin zone (BZ) and
the resultant drumhead surface states at the boundary. Accord-
ing to the degrees of the band degeneracy, node-line semi-
metals can be divided into Dirac- and Weyl-type. Usually, the
Dirac node-line semimetals are protected by mirror or IT (I:
space inversion; T : time reversal) symmetry and are fragile to
spin–orbital coupling (SOC). By breaking the different sym-
metries in the node-line semimetals, the degeneracy can be lif-
ted and a gap may be opened resulting in different topological
phases [1, 9–12]. Recently, symmetry enforced DNLs protec-
ted by nonsymmorphic symmetry which are robust against
strong SOC have been revealed in three-dimensional (3D)
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Future perspectives
Symmetry-enforced 2D Dirac node-line semimetals are rarely
reported. In particular, symmetry-enforced 2D antiferromagnetic
Dirac node-line semimetals are firstly proposed in this work.
Moreover, a complete list of all the space groups which can protect
2D nonmagnetic and antiferromagnetic Dirac nodal lines against
SOC is provided. Future works can focus on predicting symmetry-
enforced 2D antiferromagnetic Dirac node-line semimetal materi-
als based on our symmetry analysis and studying their exotic phys-
ical properties in experiments.

nonmagnetic and antiferromagnetic systems [13–16]. Then
there is an important issue, namely whether or not such Dirac
node-lines against strong SOC can exist in 2D nonmagnetic
and antiferromagnetic systems.

Such symmetry-enforced DNLs indeed exist in 2D sys-
tems. Recent theoretical and experimental studies showed that
the tri-layered bismuth taking nonsymmorphic space group
symmetry Pmma (51) is a nonmagnetic Dirac node-line semi-
metal which is robust against strong SOC [17, 18]. Corres-
pondingly, two interesting questions arise. (a) How many
space groups can protect Dirac node-lines that are robust
against SOC in 2D nonmagnetic systems? (b) Are there stable
DNL against SOC in 2D magnetic systems?

To clarify the above questions, we carry out systematic
studies based on symmetry analysis and lattice model calcu-
lations. We demonstrate that if a nonsymmorphic space group
satisfies the four conditions presented in the following, it will
enforce 2D DNLs even if SOC is present. Here we adopt the
word ‘enforce’ to emphasize having inevitable degeneracy.
Actually, the four conditions are the sufficient and necessary
conditions for 2D DNLs. Specifically, there are five nonsym-
morphic space groups (51, 54, 55, 57, 127) that can enforce
DNLs in 2D nonmagnetic semimetals. More importantly,
there are twelve magnetic space groups that can enforce DNLs
in 2D antiferromagnetic semimetals, including four type-III
magnetic space groups (51.293, 54.341, 55.355, 57.380) and
eight type-IV magnetic space groups (51.299, 51.300, 51.302,
54.348, 55.360, 55.361, 57.387, 127.396). In the end, using
first-principles electronic structure calculations, we predict
that monolayer YB4C4 and IrPb3 are symmetry-enforced 2D
DNL semimetals.

2. Symmetry analysis

We take the nonsymmorphic space group P4-mbm (127) as
an example. The P4-mbm space group includes C4z, C2y (1/2,
1/2, 0), and I, which yield the point group D4h. Since there
is no fractional translation along the z-direction, the space
group P4/mbm can support quasi-2D lattice structure, whose
BZ is shown in figure 1(a). Clearly, any k point on the high-
symmetry Xy–M axis has the C2x(1/2, 1/2), My(1/2, 1/2),
and Mz symmetries. Since the T symmetry always exists in
nonmagnetic materials, any k point in the BZ has the IT
symmetry. Certainly, any k point on the high-symmetry Xy–M

Figure 1. (a) The BZ of square lattice. Nonsymmorphic symmetry
protects the Dirac line without (b) and with (c). The red dots
represent high-symmetry points. The NSOC represents no
spin–orbital coupling.

axis has C2x(1/2, 1/2)IT symmetry. Without SOC, the square
of C2x(1/2, 1/2)IT is equal to −1 on the high-symmetry Xy–
M axis, giving rise to a Kramers degeneracy. The Kramers
degenerate band along the Xy–M axis are DNLs, as shown
in figure 1(b). With the inclusion of SOC, the relationship
betweenMy(1/2, 1/2) andMz changes from commuting to anti-
commuting, but the square of C2x(1/2, 1/2)IT still equals to
−1 on the high-symmetry Xy–M axis. Interestingly, the two
conditions will guarantee that any band is fourfold degenerate
along the high-symmetry Xy–M axis.

To prove it, we assume that the Bloch wave function
Ψ(k) is an eigenstate of Mz with eigenvalue i, where k is
any point on the Xy–M axis. Since the square of C2x(1/2,
1/2)IT equals to −1, Ψ(k) and C2x(1/2, 1/2)IT Ψ(k) form
a pair of Kramers degenerate states. Moreover, the C2x(1/2,
1/2)IT Ψ(k) is also an eigenstate of Mz with eigenvalue i.
On the other hand, due to the anticommutation of My(1/2,
1/2) and Mz, the My(1/2, 1/2)Ψ(k) and My(1/2, 1/2)C2x(1/2,
1/2)IT Ψ(k) = MzIT Ψ(k) are both eigenstates of Mz with
eigenvalue −i. Since the Bloch Hamiltonianis commutative
with C2x(1/2, 1/2), My(1/2, 1/2), Mz and IT , the four states
(Ψ(k), My(1/2, 1/2)Ψ(k), MzIT Ψ(k), C2x(1/2, 1/2)IT Ψ(k))
always form fourfold degeneracy on the Xy–M axis. As a res-
ult, a DNLwith SOC is formed along the Xy–M axis, as shown
in figure 1(c). This conclusion is also verified by the symmetry
invariants (−1,−1,−1,−1) of the little groupC2v×ZIT2 (here
ZIT2 = {E,IT }) on the Xy–M axis. In the (−1, −1, −1, −1)
symmetry class, the group C2v×ZIT2 has only one irreducible
projective representation whose dimension is 4 (for details see
the supplemental material [19]), indicating that the fourfold
degeneracy is inevitable and robust against strong SOC, that
is symmetry-enforced DNL.

According to the above symmetry analysis, to enforce 2D
DNL in case of SOC, a nonsymmorphic space group needs to
satisfy four conditions: (a) it has no three different directional
fractional translations, which supports two-dimensional lattice
structure; (b) the corresponding little co-group is C2v×ZIT2
at the boundary of two-dimensional BZ; (c) there are a frac-
tional translation perpendicular to the C2 axis and vertical
mirror; (d) the horizontal mirror Mz has no fractional trans-
lation perpendicular to the C2 axis or vertical mirror. These
four conditions ensure that there is only one four-dimensional
irreducible projective representation along the boundary of

2



Mater. Futures 2 (2023) 011001

BZ. Thus, they are the sufficient and necessary conditions to
2D DNLs. According to the four conditions, there are five
nonsymmorphic space groups that can enforce 2D DNLs in
case of SOC, which are further proved by the calculated sym-
metry invariants (see [19] for details). Different from the case
of P-mma (51) space group [17, 18], the two boundaries of
2D BZ for the P-bam(55) and P4-mbm (127) space groups
host the DNLs.

Another interesting question is whether or not symmetry-
enforced 2D DNLs can take place in magnetic systems. The
above symmetry analysis on nonmagnetic system demon-
strates that a certain nonsymmorphic symmetry C2v×ZIT2
can enforce the DNLs in 2D case. As is known, antiferro-
magnetic systems may also own the IT symmetry. If a 2D
antiferromagnetic material has the certain nonsymmorphic
little group C2v×ZIT2 , for example, with symmetry elements
E, Mz, C2x(1/2,1/2), My(1/2,1/2) and IT , the antiferromag-
netic materials must have symmetry-enforced DNL at the
boundary of BZ. Likewise, we demonstrate that there are
twelve magnetic space groups which can enforce DNLs in 2D
antiferromagnetic systems, including four type-III magnetic
space groups (51.293, 54.341, 55.355, 57.380) and eight type-
IV magnetic space groups (51.299, 51.300, 51.302, 54.348,
55.360, 55.361, 57.387 and 127.396), which can be also pro-
tected 2D antiferromagnetic eightfold degenerate fermions
without intrinsic SOC [20]. These are further demonstrated
by the calculation of the symmetry invariants (see [19] for
details). On the other hand, when a DNL crosses the Fermi
level, it has advantage to the exotic physical properties in trans-
port experiments. The best is that the symmetry-enforcedDNL
is formed by the valence and conduction bands. The condition
requires that the number of the valence electrons must equal
to 4n+2, here n is a positive integer.

3. Effective lattice model

We now introduce a spinful model with a square lattice
including four sublattices for the symmetry-forced 2D DNLs
as shown in figure 2(a). The nearest and second nearest
hopping terms t and t2 are labeled with black and blue lines,
respectively. To make the lattice nonsymmorphic symmetry,
the t2 term describes the hopping between sublattices 1 and
3 within the unit cell and the hopping between sublattices 2
and 4 in the neighboring unit cell. Then, we add the SOC
term indicated by the red arrows describe the nearest hopping
in spin-up sector with ±iλ according to the direction, and a
minus sign should be added to the SOC amplitude λ in the
spin-down sector as shown in figure 2(a). Then we derive the
Bloch Hamiltonian

hk = 2t

(
cos

ky
2
τ1σ1 + cos

kx
2
τ0σ1

)
s0

+ 2t2 cos
kx+ ky

2
(τ1σ3 + τ1σ0)s0

+ 2t2 cos
kx− ky

2
(τ1σ3 − τ1σ0)s0

+ 2λ

(
cos

kx
2
τ0σ2 − cos

ky
2
τ1σ2

)
s3, (1)

Figure 2. (a) The square lattice with p4/mbm space group
symmetry. The black and blue lines indicate the nearest hopping t
and second nearest hopping t2. The spin–orbital coupling term iλ,
for one spin flavor, is shown by the red arrows. (b) The band
structure of lattice model with parameter λ= t2 = t along the
high-symmetry directions. Lattice model and band structures:
(c)–(d) breaking T and I with an out-of plane antiferromagnetic
order indicated by the green arrow; (e)–(f) breaking I symmetry
with the chemical potential ±µ according to the green/red sites and
the spin–orbital coupling term iλ2 indicated by the purple arrows.

where both τ and σ are Pauli matrices describing the
sub-lattice indices and s are also Pauli matrices describing
spin degrees of freedom. The λ term describes SOC, which
couples the momentum of the orbital in x/y-direction and the
momentum of the spin in z-direction.

The band structure of the lattice model described by
equation (1) along the high-symmetry directions is shown
in figure 2(b). As revealed by our above symmetry ana-
lysis, the symmetry-forced DNLs appear in the Xy–M
line as well as the Xx–M line for the C4z. At Xy–M
line, C2x(1/2,1/2)T =−e−ikxτ2σ1s1s2K, My (1/2,1/2) =
ie−ikx/2τ3σ1s2 and Mz =−is3 are consistent with the algeb-
raic relationships in the previous discussion and guarantee the
fourfold degeneracy at the k points.

On the other hand, we consider an out-of-plane collin-
ear antiferromagnetic order, which breaks I and T but pre-
serves the IT symmetry as shown in figure 2(c). The out-
of-plane collinear antiferromagnetic order can be achieved by
adding staggered magnetic field hmk = mτ3σ0sz to the above
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Figure 3. (a) and (b) are the crystal structure of YB4C4 viewed along [001] and [100] directions, respectively. The red, blue and green balls
represent Y, B and C atoms. (c) Phonon spectrum of monolayer YB4C4 along the high-symmetry directions.

lattice model 1, and the antiferromagnetic lattice model has
Mz, C2x(1/2,1/2), My(1/2,1/2), and IT symmetries. Accord-
ing to our symmetry analysis, these symmetries can enforce
the DNLs on the Xx–M axis. Correspondingly, the calcu-
lated band structure with m= 0.5t indicates that there does
exist symmetry-enforced DNLs on the Xx–M axis as shown
in figure 2(d).

Finally, if the I symmetry is broken but the T symmetry
is preserved, what will be the fate of the symmetry-enforced
DNL? Here, we break the inversion symmetry by adding the
onsite chemical potential hchemk = µτ3σ0s0 and the spin–orbital
coupling along y−direction hλ2

k = 2λ2 sinkyτ0σ0s3 as shown in
figure 2(e). Now, our model has symmetry groupC2v⊗ZT2 and
the elements of the group are C2x(1/2,1/2),My(1/2,1/2),Mz,
and T . The corresponding band structure with µ= λ2 = 0.5t
is shown in figure 2(f). The four-fold degeneracy along Xx–M
and Xy–M splits due to the broken I symmetry. However, the
Dirac points at the Xx andM points still remain. The four-fold
degeneracy can be understood by the similar analysis. At the
Xx point, the square of T =−iσ3s2K equals to−1, giving rise
to a Kramers pair formed by ψ and T ψ. And the Kramers
pair have the same eigenvalue of Mz =−is3 for the commut-
ation [Mz,T ] = 0. Moreover, due to the anticommutation of
My(1/2,1/2) =−τ3σ1s2 and Mz, ψ and My(1/2,1/2)ψ have
the opposite eigenvalues of Mz. In other word, we derive two
nonequivalent Kramers pairs:

ψ,T ψ
My(1/2,1/2)ψ,My(1/2,1/2)T ψ. (2)

The square of My(1/2,1/2)T = τ0σ2K equals to −1, mean-
ing that ψ and My(1/2,1/2)T ψ are also degenerate. So, we
finally obtain four bases as shown in equation (2) which con-
stitute a 4D irreducible representation of the little co-group at
the Xx point. The Dirac point at theM point can be understood
similarly. On the contrary, at the Xy point, the square of
My(1/2,1/2)T =−τ0σ1K equals to 1, which can not protect
the Dirac point. Thus the DNL semimetals can be turned into
a Dirac semimetal by breaking the space-inversion symmetry.
In fact, the 2D Dirac semimetals against SOC without I have
been studied recently [21].

4. Material calculations

In terms of realistic materials, we focus on the nonsymmorphic
P4-mbm (127) space group. The bulk YB2C2 has a layered
structure with space group P4-mbm and its single crystal was
successfully synthesized in experiment [22]. The unit cell of
bulk YB2C2 contains a BC atomic layer and a Y atomic layer.
To preserve the same symmetry as the bulk, the 2D formmight
be constructed experimentally with two BC atomic layers and
one Y atomic layer by the epitaxial growth technique, see
figures 3(a) and (b) illustration of the structure. As can be seen,
the B and C atoms form octagons with small distortion in the
BC atomic layer. In order to confirm the structural stability
in 2D form, we calculated the phonon spectrum of monolayer
YB4C4. According to figure 3(c), there is no imaginary fre-
quency in the phonon spectrum, indicating the dynamical sta-
bility of monolayer YB4C4.

Next, we study the electronic band structure of monolayer
YB4C4. Without SOC, monolayer YB4C4 is a DNL semimetal
protected by the nonsymmorphic C2y(1/2, 1/2)IT symmetry
(figure 4(a)). Since the number of valence electron is 78 (4×
19+ 2), the Dirac node line crosses the Fermi level. Moreover,
there are two Dirac node lines in the vicinity of 0.5 eV above
the Fermi level, which are induced by the band inversion and
protected by the Mz mirror symmetry (figure 4(a)). When the
SOC effect is included, just like the above symmetry analysis,
the DNL along the X–M direction is still robust (figure 4(b)).
To show the DNL more clearly, we calculated the 2D elec-
tronic band structure. From figure 4(c), the Dirac node line
has linear dispersion along the kx direction but shows quad-
ratic dispersion along the line direction, which is consistent
with our previous theoretical analysis [18]. Due to the C4

symmetry, another boundary in the 2D BZ must also host
symmetry-enforced DNLs.

On the other hand, since these bands around the Fermi level
mainly come from the contribution of the p orbitals of B and
C atoms, the energy scale of SOC is less than 1meV which is
too small to show the robustness of the DNL against SOC. To
better show the robustness, we find another material IrPb3 with
strong SOC in the database of two-dimensional materials [23].
The calculated results indicate that IrPb3 is a symmetry-
enforced 2D Dirac node-line semimetal [19]. Interestingly,
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Figure 4. The electronic band structures of monolayer YB4C4

along the high-symmetry direction (a) without and (b) with SOC.
The both ‘+’ and ‘-’ represent eigenvalue of Mz. (c) The
three-dimensional electronic band structure. The NSOC represents
no spin–orbital coupling.

the 2D single Dirac without the I symmetry is obtained
by breaking the I symmetry for IrPb3 [19]. Moreover, the
single Dirac semimetal without I symmetry is firstly pro-
posed and implemented. On the other hand, the single Dirac
semimetals are at the phase boundary of topological insulator
and trivial insulator [24].

5. Summary

Based on symmetry analysis, lattice model calculations, and
first-principles electronic structure calculations, we obtain

four main results: (a) symmetry-enforced 2D Dirac node-
line semimetals can exist not only in nonmagnetic systems
but also in antiferromagnetic systems; (b) there are seven-
teen Shubonikov space groups enforcing the DNL in 2D
systems against SOC, including five grey (namely type-II
magnetic) space groups (51, 54, 55, 57, 127), four type-
III magnetic space groups (51.293, 54.341, 55.355, 57.380)
and eight type-IV magnetic space groups (51.299, 51.300,
51.302, 54.348, 55.360, 55.361, 57.387 and 127.396); (c) the
symmetry-enforced 2D Dirac node-line semimetals can be
turned into a different topological phase by breaking certain
symmetry; (d) we predict that monolayer YB4C4 and IrPb3
are 2D symmetry-enforced Dirac node-line semimetals and
the former may be a good platform for further study of the
exotic transport properties of symmetry-enforced 2D Dirac
node-line semimetals.

Acknowledgments

P-J Guowas financially supported by the National Natural Sci-
ence Foundation of China (No.12204533). K Liu was suppor-
ted by the National Key R&D Program of China (Grant No.
2017YFA0302903), the Fundamental Research Funds for the
Central Universities (CN), and the Research Funds of Renmin
University of China (Grant No. 19XNLG13). ZXLiuwas sup-
ported by the National Natural Science Foundation of China
(Grant Nos. 12134020 and 11974421). Z Y Lu was supported
by the National Natural Science Foundation of China (Grant
No. 11934020).

ORCID iD

Peng-Jie Guo https://orcid.org/0000-0003-2705-612X

References

[1] Weng H, Dai X and Fang Z 2016 Topological semimetals
predicted from first-principles calculations J. Phys.:
Condens. Matter 28 303001

[2] Soluyanov A A, Gresch D, Wang Z, Wu Q, Troyer M, Dai X
and Bernevig B A 2015 Type-II Weyl semimetals Nature
527 495

[3] Huang H, Zhou S and Duan W 2016 Type-II Dirac fermions in
the PtSe2 class of transition metal dichalcogenides Phys.
Rev. B 94 121117

[4] Guo P-J, Yang H-C, Liu K and Lu Z-Y 2017 Type-II Dirac
semimetals in the YPd2Sn class Phys. Rev. B 95 155112

[5] Wieder B J, Kim Y, Rappe A M and Kane C L 2016 Double
Dirac semimetals in three dimensions Phys. Rev. Lett.
116 186402

[6] Bradlyn B, Cano J, Wang Z, Vergniory M G, Felser C,
Cava R J and Bernevig B A 2016 Beyond Dirac and Weyl
fermions: unconventional quasiparticles in conventional
crystals Science 353 aaf5037

[7] Weng H, Fang C, Fang Z and Dai X 2016 Topological
semimetals with triply degenerate nodal points in θ-phase
tantalum nitride Phys. Rev. B 93 241202

5

https://orcid.org/0000-0003-2705-612X
https://orcid.org/0000-0003-2705-612X
https://doi.org/10.1088/0953-8984/28/30/303001
https://doi.org/10.1088/0953-8984/28/30/303001
https://doi.org/10.1038/nature15768
https://doi.org/10.1038/nature15768
https://doi.org/10.1103/PhysRevB.94.121117
https://doi.org/10.1103/PhysRevB.94.121117
https://doi.org/10.1103/PhysRevB.95.155112
https://doi.org/10.1103/PhysRevB.95.155112
https://doi.org/10.1103/PhysRevLett.116.186402
https://doi.org/10.1103/PhysRevLett.116.186402
https://doi.org/10.1126/science.aaf5037
https://doi.org/10.1126/science.aaf5037
https://doi.org/10.1103/PhysRevB.93.241202
https://doi.org/10.1103/PhysRevB.93.241202


Mater. Futures 2 (2023) 011001

[8] Guo P-J, Yang H-C, Liu K and Lu Z-Y 2018 Triply degenerate
nodal points in RRh6Ge4 (R =Y, La, Lu) Phys. Rev. B
98 045134

[9] Fang C, Chen Y, Kee H-Y and Fu L 2015 Topological nodal
line semimetals with and without spin-orbital coupling
Phys. Rev. B 92 081201

[10] Weng H, Liang Y, Xu Q, Yu R, Fang Z, Dai X and Kawazoe Y
2015 Topological node-line semimetal in three-dimensional
graphene networks Phys. Rev. B 92 045108

[11] Zhang X, Yu Z-M, Sheng X-L, Yang H Y and Yang S A 2017
Coexistence of four-band nodal rings and triply degenerate
nodal points in centrosymmetric metal diborides Phys. Rev.
B 95 235116

[12] Yu R, Weng H, Fang Z, Dai X and Hu X 2015 Topological
node-line semimetal and Dirac semimetal state in
antiperovskite Cu3PdN Phys. Rev. Lett. 115 036807

[13] Li S, Liu Y, Wang S-S, Yu Z-M, Guan S, Sheng X-L, Yao Y
and Yang S A 2018 Nonsymmorphic-symmetry-protected
hourglass Dirac loop, nodal line and Dirac point in bulk
and monolayer X3SiTe6 (X = Ta, Nb) Phys. Rev. B
97 045131

[14] Gao Y, Guo P-J, Liu K and Lu Z-Y 2020 RRuB2 (R= Y,Lu),
topological superconductor candidates with hourglass-type
Dirac ring Phys. Rev. B 102 115137

[15] Shao D and Fang C 2020 Filling-enforced Dirac nodal loops in
nonmagnetic systems and their evolutions under various
perturbations Phys. Rev. B 102 165135

[16] Yang J, Fang C and Liu Z-X 2021 Symmetry-protected nodal
points and nodal lines in magnetic materials Phys. Rev. B
103 245141

[17] Cui X, Li Y, Guo D, Guo P, Lou C, Mei G, Lin C, Tan S,
Zhengxin L, Liu K, Lu Z, Petek H, Cao L, Ji W and Feng M
2020 Two-dimensional Dirac nodal-line semimetal against
strong spin-orbit coupling in real materials 2012 15220
(arXiv:2012.15220)

[18] Guo D, Guo P, Tan S, Feng M, Cao L, Liu Z-X, Liu K, Lu Z
and Ji W 2022 Two-dimensional Dirac-line semimetals
resistant to strong spin–orbit coupling Sci. Bull.
67 1954

[19] For details see the supplemental material
[20] Guo P-J, Wei Y-W, Liu K, Liu Z-X and Lu Z-Y 2021

Eightfold degenerate fermions in two dimensions Phys. Rev.
Lett. 127 176401

[21] Jin Y J, Zheng B B, Xiao X L, Chen Z J, Xu Y and Xu H 2020
Two-dimensional Dirac semimetals without inversion
symmetry Phys. Rev. Lett. 125 116402

[22] Reckeweg O and DiSalvo F J 2014 Different structural models
of YB2C2 and GdB2C2 on the basis of single-crystal x-ray
data Z. Nat.forsch. B 69 289

[23] Zhou J et al 2019 2dmatpedia, an open computational database
of two-dimensional materials from top-down and bottom-up
approaches Sci. Data 6 86

[24] Young S M and Kane C L 2015 Dirac semimetals in two
dimensions Phys. Rev. Lett. 115 126803

6

https://doi.org/10.1103/PhysRevB.98.045134
https://doi.org/10.1103/PhysRevB.98.045134
https://doi.org/10.1103/PhysRevB.92.081201
https://doi.org/10.1103/PhysRevB.92.081201
https://doi.org/10.1103/PhysRevB.92.045108
https://doi.org/10.1103/PhysRevB.92.045108
https://doi.org/10.1103/PhysRevB.95.235116
https://doi.org/10.1103/PhysRevB.95.235116
https://doi.org/10.1103/PhysRevLett.115.036807
https://doi.org/10.1103/PhysRevLett.115.036807
https://doi.org/10.1103/PhysRevB.97.045131
https://doi.org/10.1103/PhysRevB.97.045131
https://doi.org/10.1103/PhysRevB.102.115137
https://doi.org/10.1103/PhysRevB.102.115137
https://doi.org/10.1103/PhysRevB.102.165135
https://doi.org/10.1103/PhysRevB.102.165135
https://doi.org/10.1103/PhysRevB.103.245141
https://doi.org/10.1103/PhysRevB.103.245141
https://arxiv.org/abs/2012.15220
https://doi.org/10.1016/j.scib.2022.09.008
https://doi.org/10.1016/j.scib.2022.09.008
https://doi.org/10.1103/PhysRevLett.127.176401
https://doi.org/10.1103/PhysRevLett.127.176401
https://doi.org/10.1103/PhysRevLett.125.116402
https://doi.org/10.1103/PhysRevLett.125.116402
https://doi.org/10.5560/znb.2014-3333
https://doi.org/10.5560/znb.2014-3333
https://doi.org/10.1038/s41597-019-0097-3
https://doi.org/10.1038/s41597-019-0097-3
https://doi.org/10.1103/PhysRevLett.115.126803
https://doi.org/10.1103/PhysRevLett.115.126803

	Symmetry-enforced two-dimensional Dirac node-line semimetals
	1. Introduction
	2. Symmetry analysis
	3. Effective lattice model
	4. Material calculations
	5. Summary
	References


