留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Multiscale understanding of high-energy cathodes in solid-state batteries: from atomic scale to macroscopic scale

Shuo Sun Chenzi Zhao Hong Yuan Yang Lu Jiangkui Hu Jiaqi Huang Qiang Zhang

Shuo Sun, Chenzi Zhao, Hong Yuan, Yang Lu, Jiangkui Hu, Jiaqi Huang, Qiang Zhang. Multiscale understanding of high-energy cathodes in solid-state batteries: from atomic scale to macroscopic scale[J]. Materials Futures, 2022, 1(1): 012101. doi: 10.1088/2752-5724/ac427c
引用本文: Shuo Sun, Chenzi Zhao, Hong Yuan, Yang Lu, Jiangkui Hu, Jiaqi Huang, Qiang Zhang. Multiscale understanding of high-energy cathodes in solid-state batteries: from atomic scale to macroscopic scale[J]. Materials Futures, 2022, 1(1): 012101. doi: 10.1088/2752-5724/ac427c
Shuo Sun, Chenzi Zhao, Hong Yuan, Yang Lu, Jiangkui Hu, Jiaqi Huang, Qiang Zhang. Multiscale understanding of high-energy cathodes in solid-state batteries: from atomic scale to macroscopic scale[J]. Materials Futures, 2022, 1(1): 012101. doi: 10.1088/2752-5724/ac427c
Citation: Shuo Sun, Chenzi Zhao, Hong Yuan, Yang Lu, Jiangkui Hu, Jiaqi Huang, Qiang Zhang. Multiscale understanding of high-energy cathodes in solid-state batteries: from atomic scale to macroscopic scale[J]. Materials Futures, 2022, 1(1): 012101. doi: 10.1088/2752-5724/ac427c
Topical Review •
OPEN ACCESS

Multiscale understanding of high-energy cathodes in solid-state batteries: from atomic scale to macroscopic scale

doi: 10.1088/2752-5724/ac427c
基金项目: 

This work was supported by National Key Research and Development Program (2021YFB2500300),National Natural Science Foundation of China (22108151, 22075029, 21805161, 21808124, 21825501, 22109084, and U1801257), China Postdoctoral Science Foundation (BX2021135, 2021TQ0164, 2021M701827), Beijing Municipal Natural Science Foundation (Z20J00043), and the ‘Shuimu Tsinghua Scholar Program of Tsinghua University’.

详细信息
    通讯作者:

    Chen-Zi Zhao, zcz@mail.tsinghua.edu.cn

    Qiang Zhang, zhang-qiang@mails.tsinghua.edu.cn

Multiscale understanding of high-energy cathodes in solid-state batteries: from atomic scale to macroscopic scale

Funds: 

This work was supported by National Key Research and Development Program (2021YFB2500300),National Natural Science Foundation of China (22108151, 22075029, 21805161, 21808124, 21825501, 22109084, and U1801257), China Postdoctoral Science Foundation (BX2021135, 2021TQ0164, 2021M701827), Beijing Municipal Natural Science Foundation (Z20J00043), and the ‘Shuimu Tsinghua Scholar Program of Tsinghua University’.

  • 摘要:

    In the crucial area of sustainable energy storage, solid-state batteries (SSBs) with nonflammable solid electrolytes stand out due to their potential benefits of enhanced safety, energy density, and cycle life. However, the complexity within the composite cathode determines that fabricating an ideal electrode needs to link chemistry (atomic scale), materials (microscopic/mesoscopic scale), and electrode system (macroscopic scale). Therefore, understanding solid-state composite cathodes covering multiple scales is of vital importance for the development of practical SSBs. In this review, the challenges and basic knowledge of composite cathodes from the atomic scale to the macroscopic scale in SSBs are outlined with a special focus on the interfacial structure, charge transport, and mechanical degradation. Based on these dilemmas, emerging strategies to design a high-performance composite cathode and advanced characterization techniques are summarized. Moreover, future perspectives toward composite cathodes are discussed, aiming to facilitate the develop energy-dense SSBs.

     

  • [1] Goodenough J B and Park K S 2013 J. Am. Chem. Soc.135 1167–76
    [2] Goodenough J B 2018 Nat. Electron. 1 204
    [3] Jiang L L, Yan C, Yao Y X, Cai W, Huang J Q and Zhang Q2021 Angew. Chem., Int. Ed. 133 3444–8
    [4] Manthiram A, Yu X and Wang S 2017 Nat. Rev. Mater.2 1–16
    [5] Chen Y et al 2020 Nature 578 251–5
    [6] Janek J and Zeier W G 2016 Nat. Energy 1 1–4
    [7] Zhao C-Z, Zhao B-C, Yan C, Zhang X-Q, Huang J-Q, Mo Y,Xu X, Li H and Zhang Q 2020 Energy Storage Mater.24 75–84
    [8] Lu Y, Zhao C Z, Yuan H, Cheng X B, Huang J Q andZhang Q 2021 Adv. Funct. Mater. 31 2009925
    [9] Sun S, Liu B, Zhang H, Guo Q, Xia Q, Zhai T and Xia H2021 Adv. Energy Mater. 11 2003599
    [10] Sun S, Rao D, Zhai T, Liu Q, Huang H, Liu B, Zhang H,Xue L and Xia H 2020 Adv. Mater. 32 2005344
    [11] Cheng X-B, Zhao C-Z, Yao Y-X, Liu H and Zhang Q 2019Chem 5 74–96
    [12] Zhao Q, Stalin S, Zhao C-Z and Archer L A 2020 Nat. Rev.Mater. 5 229–52
    [13] Lu Y, Huang X, Ruan Y, Wang Q, Kun R, Yang J and Wen Z2018 J. Mater. Chem. A 6 18853–8
    [14] Sun S, Zhai T, Liang C, Savilov S V and Xia H 2018 NanoEnergy 45 390–7
    [15] Lu Y, Huang X, Song Z, Rui K, Wang Q, Gu S, Yang J,Xiu T, Badding M E and Wen Z 2018 Energy StorageMater. 15 282–90
    [16] Jin Y, Liu K, Lang J, Zhuo D, Huang Z, Wang C, Wu H andCui Y 2018 Nat. Energy 3 732–8
    [17] Fan X, Ji X, Han F, Yue J, Chen J, Chen L, Deng T, Jiang Jand Wang C 2018 Sci. Adv. 4 eaau9245
    [18] Liu H et al 2020 ACS Energy Lett. 5 833–43
    [19] Xia Q et al 2021 Adv. Mater. 33 2003524
    [20] Sun S, Xia Q, Liu J, Xu J, Zan F, Yue J, Savilov S V,Lunin V V and Xia H 2019 J. Materiomics 5 229–36
    [21] Chen X, Bai Y-K, Shen X, Peng H-J and Zhang Q 2020 J.Energy Chem. 51 1–6
    [22] Hou L P, Zhang X Q, Li B Q and Zhang Q 2020 Angew.Chem., Int. Ed. 132 15221–5
    [23] Yao Y X, Chen X, Yan C, Zhang X Q, Cai W L, Huang J Qand Zhang Q 2021 Angew. Chem., Int. Ed. 133 4136–43
    [24] Chen X, Bai Y K, Zhao C Z, Shen X and Zhang Q 2020 Angew. Chem., Int. Ed. 132 11288–91
    [25] Liang J-Y, Zeng -X-X, Zhang X-D, Wang P-F, Ma J-Y, Yin Y-X, Wu X-W, Guo Y-G and Wan L-J 2018 J. Am. Chem., Soc. 140 6767–70
    [26] He W et al 2021 Adv. Mater. 33 2005937
    [27] Nagao K et al 2020 Sci. Adv. 6 eaax7236
    [28] Huang Q, Turcheniuk K, Ren X, Magasinski A, Song A-Y, Xiao Y, Kim D and Yushin G 2019 Nat. Mater. 18 1343–9
    [29] Walther F, Randau S, Schneider Y, Sann J, Rohnke M, Richter F H, Zeier W G and Janek J 2020 Chem. Mater. 32 6123–36
    [30] Banerjee A, Wang X, Fang C, Wu E A and Meng Y S 2020 Chem. Rev. 120 6878–933
    [31] Xu L, Lu Y, Zhao C Z, Yuan H, Zhu G L, Hou L P, Zhang Q and Huang J Q 2021 Adv. Energy Mater. 11 2002360
    [32] Xiao Y, Wang Y, Bo S-H, Kim J C, Miara L J and Ceder G 2020 Nat. Rev. Mater. 5 105–26
    [33] Jung S H, Kim U H, Kim J H, Jun S, Yoon C S, Jung Y S and Sun Y K 2020 Adv. Energy Mater. 10 1903360
    [34] Xie J, Song Y W, Li B Q, Peng H J, Huang J Q and Zhang Q 2020 Angew. Chem., Int. Ed. 132 22334–9
    [35] Li L, Duan H, Li J, Zhang L, Deng Y and Chen G 2021 Adv. Energy Mater. 11 2003154
    [36] Chen R, Li Q, Yu X, Chen L and Li H 2019 Chem. Rev. 120 6820–77
    [37] He Y, Lu C, Liu S, Zheng W and Luo J 2019 Adv. Energy Mater. 9 1901810
    [38] Ali M, Doh C-H, Lee Y-J, Kim B-G, Park J-W, Park J, Park G, Lee W-J, Lee S-M and Ha Y-C 2021 Energy Technol. 9 2001096
    [39] Strauss F, de Biasi L, Kim A-Y, Hertle J, Schweidler S, Janek J R, Hartmann P and Brezesinski T 2019 ACS Mater. Lett. 2 84–88
    [40] Jie F A, Ysj A, Fdy A, Wang K A, Lfq A, Jgd B and Zbwa C 2021 J. Energy Chem. 53 364–71
    [41] Zhang W, Richter F H, Culver S P, Leichtweiss T, Lozano J G, Dietrich C, Bruce P G, Zeier W G and Janek J 2018 ACS Appl. Mater. Interfaces 10 22226–36
    [42] Wang C et al 2021 Adv. Energy Mater. 11 2100210
    [43] Hikima K, Suzuki K, Taminato S, Hirayama M, Yasuno S and Kanno R 2019 Chem. Lett. 48 192–5
    [44] Liu J, Wang J, Ni Y, Zhang K, Cheng F and Chen J 2020 Mater. Today 43 132–65
    [45] Wang L, Chen B, Ma J, Cui G and Chen L 2018 Chem. Soc. Rev. 47 6505–602
    [46] Kannan A, Rabenberg L and Manthiram A 2002 Electrochem. Solid State Lett. 6 A16
    [47] Qiu J et al 2020 Adv. Funct. Mater. 30 1909392
    [48] Lou S, Liu Q, Zhang F, Liu Q, Yu Z, Mu T, Zhao Y, Borovilas J, Chen Y and Ge M 2020 Nat. Commun. 11 5700
    [49] Hikima K, Hinuma Y, Shimizu K, Suzuki K, Taminato S, Hirayama M, Masuda T, Tamura K and Kanno R 2021 ACS Appl. Mater. Interfaces 13 7650–63
    [50] De Biasi L, Schwarz B, Brezesinski T, Hartmann P, Janek J and Ehrenberg H 2019 Adv. Mater. 31 1900985
    [51] Xiao A W, Lee H J, Capone I, Robertson A, Wi T-U, Fawdon J, Wheeler S, Lee H-W, Grobert N and Pasta M 2020 Nat. Mater. 19 644–54
    [52] Lee W, Muhammad S, Sergey C, Lee H, Yoon J, Kang Y M and Yoon W S 2020 Angew. Chem., Int. Ed. 59 2578–605
    [53] Hua X et al 2021 Nat. Mater. 20 841–50
    [54] Famprikis T, Canepa P, Dawson J A, Islam M S and Masquelier C 2019 Nat. Mater. 18 1278–91
    [55] Chen Q, Sun S, Zhai T, Yang M, Zhao X and Xia H 2018 Adv. Energy Mater. 8 1800054
    [56] Zhai T, Sun S, Liu X, Liang C, Wang G and Xia H 2018 Adv. Mater. 30 1706640
    [57] Walther F, Strauss F, Wu X, Mogwitz B, Hertle J, Sann J, Rohnke M, Brezesinski T and Janek J R 2021 Chem. Mater. 33 2110–25
    [58] Zhang Q, Cao D, Ma Y, Natan A, Aurora P and Zhu H 2019 Adv. Mater. 31 1901131
    [59] Culver S P, Koerver R, Zeier W G and Janek J 2019 Adv. Energy Mater. 9 1900626
    [60] Liu X et al 2021 Adv. Energy Mater. 11 2003583
    [61] Wang L et al 2021 Adv. Energy Mater. 11 2100881
    [62] Guo H-J et al 2020 J. Am. Chem. Soc. 142 20752–62
    [63] Lu Y, Gu S, Hong X, Rui K, Huang X, Jin J, Chen C, Yang J and Wen Z 2018 Energy Storage Mater. 11 16–23
    [64] Gong Y, Chen Y, Zhang Q, Meng F, Shi J-A, Liu X, Liu X, Zhang J, Wang H and Wang J 2018 Nat. Commun. 9 1–8
    [65] Hu Y-S 2016 Nat. Energy 1 1–2
    [66] Tian Y, Shi T, Richards W D, Li J, Kim J C, Bo S-H and Ceder G 2017 Energy Environ. Sci. 10 1150–66
    [67] Yan P, Zheng J, Liu J, Wang B, Cheng X, Zhang Y, Sun X, Wang C and Zhang J-G 2018 Nat. Energy 3 600–5
    [68] Kim D H, Lee Y-H, Song Y B, Kwak H, Lee S-Y and Jung Y S 2020 ACS Energy Lett. 5 718–27
    [69] Xiao Y, Miara L J, Wang Y and Ceder G 2019 Joule 3 1252–75
    [70] Zhu G-L et al 2020 Energy Storage Mater. 31 267–73
    [71] Han F, Zhu Y, He X, Mo Y and Wang C 2016 Adv. Energy Mater. 6 1501590
    [72] Gao B, Jalem R, Ma Y and Tateyama Y 2019 Chem. Mater. 32 85–96
    [73] Haruyama J, Sodeyama K, Han L, Takada K and Tateyama Y 2014 Chem. Mater. 26 4248–55
    [74] Zhang X, Ju Z, Zhu Y, Takeuchi K J, Takeuchi E S, Marschilok A C and Yu G 2021 Adv. Energy Mater. 11 2000808
    [75] Liu J et al 2020 Joule 4 101–8
    [76] Hlushkou D, Reising A E, Kaiser N, Spannenberger S, Schlabach S, Kato Y, Roling B and Tallarek U 2018 J. Power Sources 396 363–70
    [77] Minnmann P, Quillman L, Burkhardt S, Richter F H and Janek J 2021 J. Electrochem. Soc. 168 040537
    [78] Trask J, Anapolsky A, Cardozo B, Januar E, Kumar K, Miller M, Brown R and Bhardwaj R 2017 J. Power Sources 350 56–64
    [79] Xu Z, Jiang Z, Kuai C, Xu R, Qin C, Zhang Y, Rahman M M, Wei C, Nordlund D and Sun C-J 2020 Nat. Commun. 11 1–9
    [80] Niu C, Luo W, Dai C, Yu C and Xu Y 2021 Angew. Chem., Int. Ed. 133 19750–5
    [81] Zahiri B, Patra A, Kiggins C, Yong A X B, Ertekin E, Cook J B and Braun P V 2021 Nat. Mater. 20 1–9
    [82] Hirayama M et al 2007 J. Power Sources 168 493–500
    [83] Hirayama M, Ido H, Kim K, Cho W, Tamura K, Mizuki J I and Kanno R 2010 J. Am. Chem. Soc. 132 15268–76
    [84] Nishio K, Nakamura N, Horiba K, Kitamura M, Kumigashira H, Shimizu R and Hitosugi T 2020 ACS Appl. Energy Mater. 3 6416–21
    [85] Wang M J, Kazyak E, Dasgupta N P and Sakamoto J 2021 Joule 5 1371–90
    [86] Bielefeld A, Weber D A and Janek J R 2018 J. Phys. Chem. C 123 1626–34
    [87] Froboese L, van der Sichel J F, Loellhoeffel T, Helmers L and Kwade A 2019 J. Electrochem. Soc. 166 A318
    [88] Graebe H, Netz A, Baesch S, Haerdtner V and Kwade A 2017 ECS Trans. 77 393
    [89] Seki S, Kobayashi Y, Miyashiro H, Mita Y and Iwahori T 2005 Chem. Mater. 17 2041–5
    [90] Thomas-Alyea K E, Jung C, Smith R B and Bazant M Z 2017 J. Electrochem. Soc. 164 E3063
    [91] Shi T, Tu Q, Tian Y, Xiao Y, Miara L J, Kononova O and Ceder G 2020 Adv. Energy Mater. 10 1902881
    [92] Huang C, Leung C L A, Leung P and Grant P S 2021 Adv. Energy Mater. 11 2002387
    [93] Yamakawa S, Ohta S and Kobayashi T 2020 Solid State Ion. 344 115079
    [94] Lewis J A, Tippens J, Cortes F J Q and McDowell M T 2019 Trends Chem. 1 845–57
    [95] Wang P, Qu W, Song W L, Chen H, Chen R and Fang D 2019 Adv. Funct. Mater. 29 1900950
    [96] Koerver R, Zhang W, de Biasi L, Schweidler S, Kondrakov A O, Kolling S, Brezesinski T, Hartmann P, Zeier W G and Janek J 2018 Energy Environ. Sci. 11 2142–58
    [97] Fu Z-H, Chen X, Zhao C-Z, Yuan H, Zhang R, Shen X, Ma -X-X, Lu Y, Liu Q-B and Fan L-Z 2021 Energy Fuel 35 10210–8
    [98] Zhang W, Schröder D, Arlt T, Manke I, Koerver R, Pinedo R, Weber D A, Sann J, Zeier W G and Janek J 2017 J. Mater. Chem. A 5 9929–36
    [99] Kondrakov A O, Schmidt A, Xu J, Geßwein H, Mönig R, Hartmann P, Sommer H, Brezesinski T and Janek J R 2017 J. Phys. Chem. C 121 3286–94
    [100] Xu X, Huo H, Jian J, Wang L, Zhu H, Xu S, He X, Yin G, Du C and Sun X 2019 Adv. Energy Mater. 9 1803963
    [101] Yoon M, Dong Y, Hwang J, Sung J, Cha H, Ahn K, Huang Y, Kang S J, Li J and Cho J 2021 Nat. Energy 6 362–71
    [102] Han Y, Jung S H, Kwak H, Jun S, Kwak H H, Lee J H, Hong S T and Jung Y S 2021 Adv. Energy Mater. 11 2100126
    [103] Yang Y, Xu R, Zhang K, Lee S J, Mu L, Liu P, Waters C K, Spence S, Xu Z and Wei C 2019 Adv. Energy Mater. 9 1900674
    [104] Mao Y et al 2019 Adv. Funct. Mater. 29 1900247
    [105] Hao F et al 2019 Joule 3 1349–59
    [106] Ding J-F, Xu R, Yan C, Li B-Q, Yuan H and Huang J-Q 2020 J. Energy Chem. 59 306–19
    [107] Shi T, Zhang Y-Q, Tu Q, Wang Y, Scott M and Ceder G 2020 J. Mater. Chem. A 8 17399–404
    [108] Lewis J A et al 2021 Nat. Mater. 20 503–10
    [109] Koerver R, Aygün I, Leichtweiß T, Dietrich C, Zhang W, Binder J O, Hartmann P, Zeier W G and Janek J R 2017 Chem. Mater. 29 5574–82
    [110] Zhao Y, Stein P, Bai Y, Al–Siraj M, Yang Y and Xu B-X 2019 J. Power Sources 413 259–83
    [111] Wang C-W et al 2021 Energy Environ. Sci. 14 437–50
    [112] Nomura Y, Yamamoto K, Hirayama T, Ouchi S, Igaki E and Saitoh K 2019 Angew. Chem., Int. Ed. 131 5346–50
    [113] Fingerle M, Buchheit R, Sicolo S, Albe K and Hausbrand R 2017 Chem. Mater. 29 7675–85
    [114] Wang L, Xie R, Chen B, Yu X, Ma J, Li C, Hu Z, Sun X, Xu C and Dong S 2020 Nat. Commun. 11 1–9
    [115] Yada C, Ohmori A, Ide K, Yamasaki H, Kato T, Saito T, Sagane F and Iriyama Y 2014 Adv. Energy Mater. 4 1301416
    [116] Li F, Li J, Zhu F, Liu T, Xu B, Kim T-H, Kramer M J, Ma C, Zhou L and Nan C-W 2019 Matter 1 1001–16
    [117] Xia Q, Sun S, Xu J, Zan F, Yue J, Zhang Q, Gu L and Xia H 2018 Small 14 1804149
    [118] Yi E, Shen H, Heywood S, Alvarado J, Parkinson D Y, Chen G, Sofie S W and Doeff M M 2020 ACS Appl. Energy Mater. 3 170–5
    [119] Trevisanello E, Ruess R, Conforto G, Richter F H and Janek J 2021 Adv. Energy Mater. 11 2003400
    [120] Philipp M, Gadermaier B, Posch P, Hanzu I, Ganschow S, Meven M, Rettenwander D, Redhammer G J and Wilkening H M R 2020 Adv. Mater. Interfaces 7 2000450
    [121] Wang C et al 2020 Energy Storage Mater. 30 98–103
    [122] Kan W H, Chen D, Papp J K, Shukla A K, Huq A, Brown C M, McCloskey B D and Chen G 2018 Chem. Mater. 30 1655–66
    [123] Sun Y, Ren D, Liu G, Mu D, Wang L, Wu B, Liu J, Wu N and He X 2021 Int. J. Energy Res. 45 20867–77
    [124] Park J, Kim K T, Oh D Y, Jin D, Kim D, Jung Y S and Lee Y M 2020 Adv. Energy Mater. 10 2001563
    [125] Strauss F, Bartsch T, de Biasi L, Kim A-Y, Janek J R, Hartmann P and Brezesinski T 2018 ACS Energy Lett. 3 992–6
    [126] Calpa M, Rosero-navarro N C, Miura A and Tadanaga K 2019 Electrochim. Acta 296 473–80
    [127] Wang C et al 2020 Nano Energy 76 105015
    [128] Park K H, Bai Q, Kim D H, Oh D Y, Zhu Y, Mo Y and Jung Y S 2018 Adv. Energy Mater. 8 1800035
    [129] Miura A, Rosero-navarro N C, Sakuda A, Tadanaga K, Phuc N H H, Matsuda A, Machida N, Hayashi A and Tatsumisago M 2019 Nat. Rev. Chem. 3 189–98
    [130] Xiao Y, Turcheniuk K, Narla A, Song A-Y, Ren X, Magasinski A, Jain A, Huang S, Lee H and Yushin G 2021 Nat. Mater. 20 984–90
    [131] Zhang J, Chen Z, Ai Q, Terlier T, Hao F, Liang Y, Guo H, Lou J and Yao Y 2021 Joule 5 1845–59
    [132] Song Y B, Kim D H, Kwak H, Han D, Kang S, Lee J H, Bak S-M, Nam K-W, Lee H-W and Jung Y S 2020 Nano Lett. 20 4337–45
    [133] Xu R, Yue J, Liu S, Tu J, Han F, Liu P and Wang C 2019 ACS Energy Lett. 4 1073–9
    [134] Lee Y-G et al 2020 Nat. Energy 5 299–308
    [135] Li M, Liu T, Shi Z, Xue W, Hu Y S, Li H, Huang X, Li J, Suo L and Chen L 2021 Adv. Mater. 33 2008723
    [136] Zhang Z, Shao Y, Lotsch B, Hu Y and Li H 2018 Energy Environ. Sci. 11 1945–76
    [137] Cui S, Wei Y, Liu T, Deng W, Hu Z, Su Y, Li H, Li M, Guo H and Duan Y 2016 Adv. Energy Mater. 6 1501309
    [138] Li W, Wang K, Cheng S and Jiang K 2019 Adv. Energy Mater. 9 1900993
    [139] Kim D H, Oh D Y, Park K H, Choi Y E, Nam Y J, Lee H A, Lee S-M and Jung Y S 2017 Nano Lett. 17 3013–20
    [140] Hakari T, Deguchi M, Mitsuhara K, Ohta T, Saito K, Orikasa Y, Uchimoto Y, Kowada Y, Hayashi A and Tatsumisago M 2017 Chem. Mater. 29 4768–74
    [141] Xiang Y, Li X, Cheng Y, Sun X and Yang Y 2020 Mater. Today 36 139–57
    [142] Hope M A, Rinkel B L, Gunnarsdóttir A B, Märker K, Menkin S, Paul S, Sergeyev I V and Grey C P 2020 Nat. Commun. 11 1–8
    [143] Li X et al 2019 ACS Energy Lett. 4 2480–8
    [144] Zhu X et al 2021 Nat. Sustain. 4 392–401
    [145] Fu Z, Wang N, Legut D, Si C, Zhang Q, Du S, Germann T C, Francisco J S and Zhang R 2019 Chem. Rev. 119 11980–2031
    [146] Wang Z, Santhanagopalan D, Zhang W, Wang F, Xin H L, He K, Li J, Dudney N and Meng Y S 2016 Nano Lett. 16 3760–7
    [147] Tang M, Sarou–Kanian V, Melin P, Leriche J-B, Ménétrier M, Tarascon J-M, Deschamps M and Salager E 2016 Nat. Commun. 7 13284
    [148] Chien P-H, Feng X, Tang M, Rosenberg J T, O’Neill S, Zheng J, Grant S C and Hu -Y-Y 2018 J. Phys. Chem. Lett. 9 1990–8
    [149] Liu X, Liang Z, Xiang Y, Lin M, Li Q, Liu Z, Zhong G, Fu R and Yang Y 2021 Adv. Mater. 33 2005878
    [150] Yu C, Ganapathy S, Van Eck E R, Wang H, Basak S, Li Z and Wagemaker M 2017 Nat. Commun. 8 1086
    [151] Fang R, Xu H, Xu B, Li X, Li Y and Goodenough J B 2021 Adv. Funct. Mater. 31 2001812
    [152] Huo H, Chen Y, Li R, Zhao N, Luo J, Da Silva J G P, Mücke R, Kaghazchi P, Guo X and Sun X 2020 Energy Environ. Sci. 13 127–34
    [153] Walther F, Koerver R, Fuchs T, Ohno S, Sann J, Rohnke M, Zeier W G and Janek J R 2019 Chem. Mater. 31 3745–55
    [154] Lin C-H et al 2020 Sci. Adv. 6 eaay7129
    [155] Zhao C, Wada T, De Andrade V, Gürsoy D, Kato H and Chen–Wiegart Y-C K 2018 Nano Energy 52 381–90
    [156] Lu X, Bertei A, Finegan D P, Tan C, Daemi S R, Weaving J S, O’Regan K B, Heenan T M, Hinds G and Kendrick E 2020 Nat. Commun. 11 1–13
    [157] Sun N et al 2019 Angew. Chem., Int. Ed. 131 18820–6
    [158] Hao S, Daemi S R, Heenan T M, Du W, Tan C, Storm M, Rau C, Brett D J and Shearing P R 2021 Nano Energy 82 105744
    [159] Zhang Z, Chen S, Yao X, Cui P, Duan J, Luo W, Huang Y and Xu X 2020 Energy Storage Mater. 24 714–8
  • 加载中
图(1)
计量
  • 文章访问数:  1521
  • HTML全文浏览量:  639
  • PDF下载量:  280
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-30
  • 录用日期:  2021-12-13
  • 刊出日期:  2022-01-18

目录

    /

    返回文章
    返回