留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Advantages and challenges of self-assembled monolayer as a hole-selective contact for perovskite solar cells

Songran Wang Huanxin Guo Yongzhen Wu

Songran Wang, Huanxin Guo, Yongzhen Wu. Advantages and challenges of self-assembled monolayer as a hole-selective contact for perovskite solar cells[J]. Materials Futures, 2023, 2(1): 012105. doi: 10.1088/2752-5724/acbb5a
引用本文: Songran Wang, Huanxin Guo, Yongzhen Wu. Advantages and challenges of self-assembled monolayer as a hole-selective contact for perovskite solar cells[J]. Materials Futures, 2023, 2(1): 012105. doi: 10.1088/2752-5724/acbb5a
Songran Wang, Huanxin Guo, Yongzhen Wu. Advantages and challenges of self-assembled monolayer as a hole-selective contact for perovskite solar cells[J]. Materials Futures, 2023, 2(1): 012105. doi: 10.1088/2752-5724/acbb5a
Citation: Songran Wang, Huanxin Guo, Yongzhen Wu. Advantages and challenges of self-assembled monolayer as a hole-selective contact for perovskite solar cells[J]. Materials Futures, 2023, 2(1): 012105. doi: 10.1088/2752-5724/acbb5a
Topical Review •
OPEN ACCESS

Advantages and challenges of self-assembled monolayer as a hole-selective contact for perovskite solar cells

doi: 10.1088/2752-5724/acbb5a
基金项目: 

This work was supported by the National Natural Science Foundation of China (Grant No. 22179037) and the Fundamental Research Funds for the Central Universities. Thanks for the financial support of ‘Zhang Jiangshu’ cultivation program. The authors declare no competing interests.

详细信息
    通讯作者:

    Yongzhen Wu, email: wu.yongzhen@ecust.edu.cn

Advantages and challenges of self-assembled monolayer as a hole-selective contact for perovskite solar cells

Funds: 

This work was supported by the National Natural Science Foundation of China (Grant No. 22179037) and the Fundamental Research Funds for the Central Universities. Thanks for the financial support of ‘Zhang Jiangshu’ cultivation program. The authors declare no competing interests.

  • 摘要: Charge-transporting layers (CTLs) are important in determining the performance and stability of perovskite solar cells (PSCs). Recently, there has been considerable use of self-assembled monolayers (SAMs) as charge-selective contacts, especially for hole-selective SAMs in inverted PSCs as well as perovskite involving tandem solar cells. The SAM-based charge-selective contact shows many advantages over traditional thin-film organic/inorganic CTLs, including reduced cost, low optical and electric loss, conformal coating on a rough substrate, simple deposition on a large-area substrate and easy modulation of energy levels, molecular dipoles and surface properties. The incorporation of various hole-selective SAMs has resulted in high-efficiency single junction and tandem solar cells. This topical review summarizes both the advantages and challenges of SAM-based charge-selective contacts, and discusses the potential direction for future studies.

     

  • [1] Min H et al 2021 Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes Nature 598 444–50
    [2] Kim M et al 2022 Conformal quantum dot–SnO2 layers as electron transporters for efficient perovskite solar cells Science 375 302–6
    [3] Li X, Zhang W, Guo X, Lu C, Wei J and Fang J 2022 Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells Science 375 434–7
    [4] Jiang Q et al 2022 Surface reaction for efficient and stable inverted perovskite solar cells Nature 611 278–83
    [5] Zhu Y, Hu M, Xu M, Zhang B, Huang F, Cheng Y-B and Lu J 2022 Bilayer metal halide perovskite for efficient and stable solar cells and modules Mater. Futures 1 042102
    [6] Yan W, Ye S, Li Y, Sun W, Rao H, Liu Z, Bian Z and Huang C 2016 Hole-transporting materials in inverted planar perovskite solar cells Adv. Energy Mater. 6 1600474
    [7] Li L, Wu Y, Li E, Shen C, Zhang H, Xu X, Wu G, Cai M and Zhu W-H 2019 Self-assembled naphthalimide derivatives as an efficient and low-cost electron extraction layer for n-i-p perovskite solar cells Chem. Commun. 55 13239–42
    [8] Shen C, Wu Y, Zhang H, Li E, Zhang W, Xu X, Wu W, Tian H and Zhu W 2019 Semi-locked tetrathienylethene as a building block for hole-transporting materials: toward efficient and stable perovskite solar cells Angew. Chem. Int. Ed. 58 3784–9
    [9] Guo H, Zhang H, Shen C, Zhang D, Liu S, Wu Y and Zhu W-H 2021 A coplanar π-extended quinoxaline based hole-transporting material enabling over 21% efficiency for dopant-free perovskite solar cells Angew. Chem. Int. Ed. 60 2674–9
    [10] Ye F, Zhang D, Xu X, Guo H, Liu S, Zhang S, Wu Y and Zhu W-H 2021 Anchorable perylene diimides as chemically inert electron transport layer for efficient and stable perovskite solar cells with high reproducibility Sol. RRL 5 2000736
    [11] Wu S et al 2020 Modulation of defects and interfaces through alkylammonium interlayer for efficient inverted perovskite solar cells Joule 4 1248–62
    [12] Jeng J-Y, Chiang Y-F, Lee M-H, Peng S-R, Guo T-F, Chen P and Wen T-C 2013 CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells Adv. Mater. 25 3727–32
    [13] Nie W et al 2018 Critical role of interface and crystallinity on the performance and photostability of perovskite solar cell on nickel oxide Adv. Mater. 30 1703879
    [14] Stolterfoht M et al 2018 Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells Nat. Energy 3 847–54
    [15] Li Z, Li B, Wu X, Sheppard S A, Zhang S, Gao D, Long N J and Zhu Z 2022 Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells Science 373 416–20
    [16] Wang S et al 2022 Critical role of removing impurities in nickel oxide on high-efficiency and long-term stability of inverted perovskite solar cells Angew. Chem. Int. Ed. 61 e202116534
    [17] Magomedov A, Al-Ashouri A, Kasparavicˇius E, Strazdaite S, Niaura G, Joˇst M, Malinauskas T, Albrecht S and Getautis V 2018 Self-assembled hole transporting monolayer for highly efficient perovskite solar cells Adv. Energy Mater. 8 1801892
    [18] Al-Ashouri A et al 2019 Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells Energy Environ. Sci. 12 3356–69
    [19] Yalcin E, Can M, Rodriguez-Seco C, Aktas E, Pudi R, Cambarau W, Demic S and Palomares E 2019 Semiconductor self-assembled monolayers as selective contacts for efficient PiN perovskite solar cells Energy Environ. Sci. 12 230–7
    [20] Li E, Bi E, Wu Y, Zhang W, Li L, Chen H, Han L, Tian H and Zhu W 2020 Synergistic coassembly of highly wettable and uniform hole-extraction monolayers for scaling-up perovskite solar cells Adv. Funct. Mater. 30 1909509
    [21] Isikgor F H, Zhumagali S, T, Merino L V, De B M, McCulloch I and De Wolf S 2023 Molecular engineering of contact interfaces for high-performance perovskite solar cells Nat. Rev. Mater. 8 89–108
    [22] Wang Y et al 2020 Teaching an old anchoring group new tricks: enabling low-cost, eco-friendly hole-transporting materials for efficient and stable perovskite solar cells J. Am. Chem. Soc. 142 16632–43
    [23] Al-Ashouri A et al 2020 Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction Science 370 1300–9
    [24] Azmi R et al 2022 Damp heat–stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions Science 376 73–77
    [25] Liu J et al 2021 28.2%-efficient, outdoor-stable perovskite/silicon tandem solar cell Joule 5 3169–86
    [26] Datta K, Wang J, Zhang D, Zardetto V, Remmerswaal W H M, Weijtens C H L, Wienk M M and Janssen R A J 2021 Monolithic all-perovskite tandem solar cells with minimized optical and energetic losses Adv. Mater. 34 2110053
    [27] Qin S et al 2022 Constructing monolithic perovskite/organic tandem solar cell with efficiency of 22.0% via reduced open-circuit voltage loss and broadened absorption spectra Adv. Mater. 34 2108829
    [28] Jiang W, Li F, Li M, Qi F, Lin F R and Jen A K-Y 2022 π-expanded carbazoles as hole-selective self-assembled monolayers for high-performance perovskite solar cells Angew. Chem. Int. Ed. 61 e202213560
    [29] Lin X et al 2017 Dipole-field-assisted charge extraction in metal-perovskite-metal back-contact solar cells Nat. Commun. 8 613
    [30] Ullah A et al 2021 Novel phenothiazine-based self-assembled monolayer as a hole selective contact for highly efficient and stable p-i-n perovskite solar cells Adv. Energy Mater. 12 2103175
    [31] Zhang S, Wu R, Mu C, Wang Y, Han L, Wu Y and Zhu W-H 2022 Conjugated self-assembled monolayer as stable hole-selective contact for inverted perovskite solar cells ACS Mater. Lett. 4 1976–83
    [32] Guo H, Liu C, Hu H, Zhang S, Ji X, Cao X, Ning Z, Zhu W-H, Tian H and Wu Y 2022 Neglected acidity pitfall: boric acid-anchoring hole selective contact for perovskite solar cells Natl. Sci. Rev. (https://doi.org/10.1093/nsr/nwad057)
    [33] Zhang H, Wu Y, Zhang W, Li E, Shen C, Jiang H, Tian H and Zhu W-H 2018 Low cost and stable quinoxaline-based hole-transporting materials with a D–A–D molecular configuration for efficient perovskite solar cells Chem. Sci. 9 5919–28
    [34] Li E et al 2019 Efficient p-i-n structured perovskite solar cells employing low-cost and highly reproducible oligomers as hole transporting materials Sci. China Chem. 62 767–74
    [35] Xu X, Ji X, Chen R, Ye F, Liu S, Zhang S, Chen W, Wu Y and Zhu W-H 2022 Improving contact and passivation of buried interface for high-efficiency and large-area inverted perovskite solar cells Adv. Funct. Mater. 32 2109968
    [36] Chen R et al 2022 Robust hole transport material with interface anchors enhances the efficiency and stability of inverted formamidinium–cesium perovskite solar cells with a certified efficiency of 22.3% Energy Environ. Sci. 15 2567–80
    [37] Zhang M, Guo X, Ma W, Ade H and Hou J 2014 A polythiophene derivative with superior properties for practical application in polymer solar cells Adv. Mater. 26 5880–5
    [38] Stolterfoht M, Wolff C M, Amir Y, Paulke A, Perdigón-Toro L, Caprioglio P and Neher D 2017 Approaching the fill factor Shockley–Queisser limit in stable, dopant-free triple cation perovskite solar cells Energy Environ. Sci. 10 1530–9
    [39] Gharibzadeh S et al 2021 Two birds with one stone: dual grain-boundary and interface passivation enables >22% efficient inverted methylammonium-free perovskite solar cells Energy Environ. Sci. 14 5875–93
    [40] Li E, Liu C, Lin H, Xu X, Liu S, Zhang S, Yu M, Cao X, Wu Y and Zhu W 2021 Bonding strength regulates anchoring-based self-assembly monolayers for efficient and stable perovskite solar cells Adv. Funct. Mater. 31 2103847
    [41] Peng J et al 2021 Nanoscale localized contacts for high fill factors in polymer-passivated perovskite solar cells Science 371 390–5
    [42] Niu T et al 2021 D-A-π-A-D-type dopant-free hole transport material for low-cost, efficient, and stable perovskite solar cells Joule 5 249–69
    [43] Jeong J et al 2021 Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells Nature 592 381–5
    [44] Peng J et al 2022 Centimetre-scale perovskite solar cells with fill factors of more than 86% Nature 601 573–8
    [45] Deng X, Qi F, Li F, Wu S, Lin F R, Zhang Z, Guan Z, Yang Z, Lee C and Jen A K - Y 2022 Hole-selective contact for high-performance inverted perovskite solar cells with optimized recombination loss and long-term stability Angew. Chem. Int. Ed. 61 e202203088
    [46] Levine I et al 2021 Charge transfer rates and electron trapping at buried interfaces of perovskite solar cells Joule 5 2915–33
    [47] Stolterfoht M et al 2019 The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells Energy Environ. Sci. 12 2778–88
    [48] Canil L et al 2021 Tuning halide perovskite energy levels Energy Environ. Sci. 14 1429–38
    [49] Xiang Y, Guo H, Cai Z, Jiang C, Zhu C, Wu Y, Zhu W-H and Chen T 2022 Dopant-free hole-transporting materials for stable Sb2 (S,Se) 3 solar cells Chem. Commun. 58 4787–90
    [50] Guo H, Zhang H, Liu S, Zhang D, Wu Y and Zhu W-H 2022 Efficient and stable methylammonium-free tin-lead perovskite solar cells with hexaazatrinaphthylene-based hole-transporting materials ACS Appl. Mater. Interfaces 14 6852–8
    [51] Lange I et al 2014 Tuning the work function of polar zinc oxide surfaces using modified phosphonic acid self-assembled monolayers Adv. Funct. Mater. 24 7014–24
    [52] Ou Q-D, Li C, Wang Q-K, Li Y-Q and Tang J-X 2017 Recent advances in energetics of metal halide perovskite interfaces Adv. Mater. Interfaces 4 1600694
    [53] Lin X, Raga S R, Chesman A S R, Ou Q, Jiang L, Bao Q, Lu J, Cheng Y-B and Bach U 2020 Honeycomb-shaped charge collecting electrodes for dipole-assisted back-contact perovskite solar cells Nano Energy 67 104223
    [54] Roß M et al 2021 Co-evaporated formamidinium lead iodide based perovskites with 1000 h constant stability for fully textured monolithic perovskite/silicon tandem solar cells Adv. Energy Mater. 11 2101460
    [55] Zhang D, Zhang H, Guo H, Ye F, Liu S and Wu Y 2022 Stable α-FAPbI3 in inverted perovskite solar cells with efficiency exceeding 22% via a self-passivation strategy Adv. Funct. Mater. 32 2200174
    [56] Dai Z, Yadavalli S K, Chen M, Abbaspourtamijani A, Qi Y and Padture N P 2021 Interfacial toughening with self-assembled monolayers enhances perovskite solar cell reliability Science 372 618–22
    [57] Liu J et al 2022 Efficient and stable perovskite-silicon tandem solar cells through contact displacement by MgFx Science 377 302–6
    [58] Abdollahi Nejand B et al 2022 Scalable two-terminal all-perovskite tandem solar modules with a 19.1% efficiency Nat. Energy 7 620–30
    [59] Li L et al 2022 Flexible all-perovskite tandem solar cells approaching 25% efficiency with molecule-bridged hole-selective contact Nat. Energy 7 708–17
    [60] Farag A et al 2023 Evaporated self-assembled monolayer hole transport layers: lossless interfaces in p-i-n perovskite solar cells Adv. Energy Mater. 13 2203982
    [61] Aktas E et al 2021 Understanding the perovskite/self-assembled selective contact interface for ultra-stable and highly efficient p–i–n perovskite solar cells Energy Environ. Sci. 14 3976–85
  • 加载中
图(1)
计量
  • 文章访问数:  1067
  • HTML全文浏览量:  504
  • PDF下载量:  386
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-30
  • 录用日期:  2023-02-13
  • 刊出日期:  2023-03-08

目录

    /

    返回文章
    返回