Volume 1 Issue 2
June  2022
Turn off MathJax
Article Contents
Qiang Luo, Zichao Wei, Hanyi Duan, Lei Jin, Rumasha N T Kankanamage, Seth Shuster, Steven L Suib, James F Rusling, Jie He. Templated synthesis of crystalline mesoporous CeO2 with organosilane-containing polymers: balancing porosity, crystallinity and catalytic activity[J]. Materials Futures, 2022, 1(2): 025302. doi: 10.1088/2752-5724/ac7605
Citation: Qiang Luo, Zichao Wei, Hanyi Duan, Lei Jin, Rumasha N T Kankanamage, Seth Shuster, Steven L Suib, James F Rusling, Jie He. Templated synthesis of crystalline mesoporous CeO2 with organosilane-containing polymers: balancing porosity, crystallinity and catalytic activity[J]. Materials Futures, 2022, 1(2): 025302. doi: 10.1088/2752-5724/ac7605
Paper •
OPEN ACCESS

Templated synthesis of crystalline mesoporous CeO2 with organosilane-containing polymers: balancing porosity, crystallinity and catalytic activity

© 2022 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory
Materials Futures, Volume 1, Number 2
  • Received Date: 2022-04-26
  • Accepted Date: 2022-06-05
  • Publish Date: 2022-06-22
  • We report the synthesis of ordered mesoporous ceria (mCeO2) with highly crystallinity and thermal stability using hybrid polymer templates consisting of organosilanes. Those organosilane-containing polymers can convert into silica-like nanostructures that further serve as thermally stable and mechanically strong templates to prevent the collapse of mesoporous frameworks during thermal-induced crystallization. Using a simple evaporation-induced self-assembly process, control of the interaction between templates and metal precursors allows the co-self-assembly of polymer micelles and Ce3+ ions to form uniform porous structures. The porosity is well-retained after calcination up to 900C. After the thermal engineering at 700 C for 12 h (mCeO2-700-12 h), mCeOstill has a specific surface area of 96 m2 g-1 with a pore size of 14 nm. mCeO2 is demonstrated to be active for electrochemical oxidation of sulfite. mCeO2-700-12 h with a perfect balance of crystallinity and porosity shows the fastest intrinsic activity that is about 84 times more active than bulk CeO2 and 5 times more active than mCeO2 that has a lower crystallinity.

  • loading
  • [1]
    Taguchi A and Schüth F 2005 Microporous Mesoporous Mater. 77 1–45
    [2]
    Rao Y and Antonelli D M 2009 J. Mater. Chem. 19 1937–44
    [3]
    Kuo C-H et al 2015 ACS Catal. 5 1693–9
    [4]
    Lu X, Ng Y H and Zhao C 2014 ChemSusChem 7 82–6
    [5]
    Luo W, Li Y, Dong J, Wei J, Xu J, Deng Y and Zhao D 2013 Angew. Chem., Int. Ed. 52 10505–10
    [6]
    Zu L, Zhang W, Qu L, Liu L, Li W, Yu A and Zhao D 2020 Adv. Energy Mater. 10 2002152
    [7]
    Xiong H, Zhou H, Sun G, Liu Z, Zhang L, Zhang L, Du F, Qiao Z A and Dai S 2020 Angew. Chem., Int. Ed. 59 11053–60
    [8]
    Brezesinski T, Wang J, Tolbert S H and Dunn B 2010 Nat. Mater. 9 146–51
    [9]
    Xu F, Jin S, Zhong H, Wu D, Yang X, Chen X, Wei H, Fu R and Jiang D 2015 Sci. Rep. 5 1–6
    [10]
    Joo J B, Dahl M, Li N, Zaera F and Yin Y 2013 Energy Environ. Sci. 6 2082–92
    [11]
    Tanaka M, Shima H, Yokoi T, Tatsumi T and Kondo J N 2011 Catal. Lett. 141 283–92
    [12]
    Ismail A A and Bahnemann D W 2011 J. Mater. Chem. 21 11686–707
    [13]
    Ismail A A, Bahnemann D W, Robben L, Yarovyi V and Wark M 2010 Chem. Mater. 22 108–16
    [14]
    Onozuka K, Kawakami Y, Imai H, Yokoi T, Tatsumi T and Kondo J 2012 J. Solid State Chem. 192 87–92
    [15]
    Hurum D C, Agrios A G, Gray K A, Rajh T and Thurnauer M C 2003 J. Phys. Chem. B 107 4545–9
    [16]
    Kawahara T, Konishi Y, Tada H, Tohge N, Nishii J and Ito S 2002 Angew. Chem., Int. Ed. 41 2811–3
    [17]
    Zhang L, Jin L, Liu B and He J 2019 Front. Chem. 7 22
    [18]
    Yue W and Zhou W 2008 Prog. Nat. Sci. 18 1329–38
    [19]
    Kondo J N and Domen K 2008 Chem. Mater. 20 835–47
    [20]
    Liu F, Liu C-L, Hu B, Kong W-P and Qi C-Z 2012 Appl. Surf. Sci. 258 7448–54
    [21]
    Zhang Z, Zuo F and Feng P 2010 J. Mater. Chem. 20 2206–12
    [22]
    Cop P, Kitano S, Niinuma K, Smarsly B and Kozuka H 2018 Nanoscale 10 7002–15
    [23]
    Zhang X, Yu X, Zhou B, Luo W, Jiang W, Jiang W, Shen Z and Wang L 2015 J. Am. Ceram. Soc. 98 1056–9
    [24]
    Liang C, Li Z and Dai S 2008 Angew. Chem., Int. Ed. 47 3696–717
    [25]
    Liu B et al 2015 Angew. Chem., Int. Ed. 54 9061–5
    [26]
    Lu A H and Schüth F 2006 Adv. Mater. 18 1793–805
    [27]
    Jiao F and Bruce P G 2007 Adv. Mater. 19 657–60
    [28]
    Deng X, Chen K and Tüysüz H 2017 Chem. Mater. 29 40–52
    [29]
    Cho H S and Ryoo R 2012 Microporous Mesoporous Mater. 151 107–12
    [30]
    Kruk M, Dufour B, Celer E B, Kowalewski T, Jaroniec M and Matyjaszewski K 2005 J. Phys. Chem. B 109 9216–25
    [31]
    Jin L, Liu B, Wu Y, Thanneeru S and He J 2017 ACS Appl. Mater. Interfaces 9 36837–48
    [32]
    Malgras V, Ataee-Esfahani H, Wang H, Jiang B, Li C, Wu K C W, Kim J H and Yamauchi Y 2016 Adv. Mater. 28 993–1010
    [33]
    Wang H, Jeong H Y, Imura M, Wang L, Radhakrishnan L, Fujita N, Castle T, Terasaki O and Yamauchi Y 2011 J. Am. Chem. Soc. 133 14526–9
    [34]
    Li W and Zhao D 2013 Chem. Commun. 49 943–6
    [35]
    Ren Y, Ma Z and Bruce P G 2012 Chem. Soc. Rev. 41 4909–27
    [36]
    Gu D and Schüth F 2014 Chem. Soc. Rev. 43 313–44
    [37]
    Yang P, Zhao D, Margolese D I, Chmelka B F and Stucky G D 1998 Nature 396 152–5
    [38]
    Yun H S, Miyazawa K C, Zhou H, Honma I and Kuwabara M 2001 Adv. Mater. 13 1377–80
    [39]
    Lee J, Christopher Orilall M, Warren S C, Kamperman M, Disalvo F J and Wiesner U 2008 Nat. Mater. 7 222–8
    [40]
    Zhang R, Tu B and Zhao D 2010 Chem. Eur. J. 16 9977–81
    [41]
    Wan Y and Zhao D 2007 Chem. Rev. 107 2821–60
    [42]
    Poyraz A S, Kuo C-H, Biswas S, King’ondu C K and Suib S L 2013 Nat. Commun. 4 2952
    [43]
    Li W et al 2011 Adv. Energy Mater. 1 382–6
    [44]
    Jin L et al 2020 Adv. Funct. Mater. 30 1909491
    [45]
    Jin L, Liu B, Louis M E, Li G and He J 2020 ACS Appl. Mater. Interfaces 12 9617–27
    [46]
    Hu M, Jin L, Su X, Bamonte S, Lu X, Gao P, Suib S L, Liu B and He J 2020 ChemCatChem 12 1476–82
    [47]
    Hu M, Jin L, Dang Y, Suib S L, He J and Liu B 2020 Front. Chem. 8 581512
    [48]
    Liu B, Jin L, Zheng H, Yao H, Wu Y, Lopes A and He J 2017 ACS Appl. Mater. Interfaces 9 1746–58
    [49]
    Liu B, Yao H, Daniels R A, Song W, Zheng H, Jin L, Suib S L and He J 2016 Nanoscale 8 5441–5
    [50]
    Liu B, Luo Z, Federico A, Song W, Suib S L and He J 2015 Chem. Mater. 27 6173–6
    [51]
    Li W, Kuo C-H, Kanyo I, Thanneeru S and He J 2014 Macromolecules 47 5932–41
    [52]
    Du J and Chen Y 2005 Macromol. Rapid Commun. 26 491–4
    [53]
    Montini T, Melchionna M, Monai M and Fornasiero P 2016 Chem. Rev. 116 5987–6041
    [54]
    Davó-Quiñonero A, Navlani-García M, Lozano-Castello D, Bueno-López A and Anderson J A 2016 ACS Catal. 6 1723–31
    [55]
    Vinodkumar T, Rao B G and Reddy B M 2015 Catal. Today 253 57–64
    [56]
    Mullins D and Zhang K 2002 Surf. Sci. 513 163–73
    [57]
    Durgasri D N, Vinodkumar T, Lin F, Alxneit I and Reddy B M 2014 Appl. Surf. Sci. 314 592–8
    [58]
    Li S et al 2017 Angew. Chem., Int. Ed. 56 10761–5
    [59]
    Ji P, Zhang J, Chen F and Anpo M 2008 J. Phys. Chem. C 112 17809–13
    [60]
    Roggenbuck J, Schäfer H, Tsoncheva T, Minchev C, Hanss J and Tiemann M 2007 Microporous Mesoporous Mater. 101 335–41
    [61]
    Laha S and Ryoo R 2003 Chem. Commun. 17 2138–9
    [62]
    Vickers S M, Gholami R, Smith K J and MacLachlan M J 2015 ACS Appl. Mater. Interfaces 7 11460–6
    [63]
    Kresge A C, Leonowicz M, Roth W J, Vartuli J and Beck J 1992 Nature 359 710–2
    [64]
    Pan J H, Zhao X and Lee W I 2011 Chem. Eng. J. 170 363–80
    [65]
    Bass J D, Grosso D, Boissiere C and Sanchez C 2008 J. Am. Chem. Soc. 130 7882–97
    [66]
    Crepaldi E L, Soler-Illia G J D A, Grosso D, Cagnol F, Ribot F and Sanchez C 2003 J. Am. Chem. Soc. 125 9770–86
    [67]
    Ansari S A, Khan M M, Ansari M O, Kalathil S, Lee J and Cho M H 2014 RSC Adv. 4 16782–91
    [68]
    Zhang J et al 2011 Adv. Energy Mater. 1 241–8
    [69]
    Mahoney L and Koodali R T 2014 Materials 7 2697–746
    [70]
    Amri F, Septiani N L W, Rezki M, Iqbal M, Yamauchi Y, Golberg D, Kaneti Y V and Yuliarto B 2021 J. Mater. Chem. B 9 1189–207
    [71]
    Dahal N, Ibarra I A and Humphrey S M 2012 J. Mater. Chem. 22 12675–81
    [72]
    Wang J, Li H, Li H, Zou C, Wang H and Li D 2014 ACS Appl. Mater. Interfaces 6 1623–31
    [73]
    Fan X, Wang T, Guo Y, Gong H, Xue H, Guo H, Gao B and He J 2017 Microporous Mesoporous Mater. 240 1–8
    [74]
    Hao C, Lv H, Mi C, Song Y and Ma J 2016 ACS Sustain. Chem. Eng. 4 746–56
    [75]
    Jin L, Liu C-H, Cintron D, Luo Q, Nieh M-P and He J 2021 Langmuir 37 9865–72
    [76]
    Kraffert K, Karg M, Schmack R, Clavel G, Boissiere C, Wirth T, Pinna N and Kraehnert R 2018 Adv. Mater. Interfaces 5 1800360
    [77]
    Schilling C, Hofmann A, Hess C and Ganduglia-Pirovano M V 2017 J. Phys. Chem. C 121 20834–49
    [78]
    Silva I D C, Sigoli F A and Mazali I O 2017 J. Phys. Chem. C 121 12928–35
    [79]
    Guhel Y, Ta M, Bernard J, Boudart B and Pesant J 2009 J. Raman Spectrosc. 40 401–4
    [80]
    O’brien J, Hinkley J, Donne S and Lindquist S-E 2010 Electrochim. Acta 55 573–91
    [81]
    Zelinsky A and Pirogov B Y 2017 Electrochim. Acta 231 371–8
    [82]
    Kim T W and Choi K-S 2014 Science 343 990–4
    [83]
    Randviir E P 2018 Electrochim. Acta 286 179–86
    [84]
    Sharma A, Bhattarai J K, Nigudkar S S, Pistorio S G, Demchenko A V and Stine K J 2016 J. Electroanal. Chem. 782 174–81
  • 加载中

Catalog

    Figures(1)

    Article Metrics

    Article Views(376) PDF downloads(67)
    Article Statistics
    Related articles from

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return