Volume 1 Issue 3
September  2022
Turn off MathJax
Article Contents
Xue Han, Yanjie Liang, Lanling Zhao, Jun Wang, Qing Xia, Deyuan Li, Yao Liu, Zhaorui Zhou, Yuxin Long, Yebing Li, Yiming Zhang, Shulei Chou. A self-assembled nanoflower-like Ni5P4@NiSe2 heterostructure with hierarchical pores triggering high-efficiency electrocatalysis for Li-O2 batteries[J]. Materials Futures, 2022, 1(3): 035102. doi: 10.1088/2752-5724/ac8170
Citation: Xue Han, Yanjie Liang, Lanling Zhao, Jun Wang, Qing Xia, Deyuan Li, Yao Liu, Zhaorui Zhou, Yuxin Long, Yebing Li, Yiming Zhang, Shulei Chou. A self-assembled nanoflower-like Ni5P4@NiSe2 heterostructure with hierarchical pores triggering high-efficiency electrocatalysis for Li-O2 batteries[J]. Materials Futures, 2022, 1(3): 035102. doi: 10.1088/2752-5724/ac8170
Paper •
OPEN ACCESS

A self-assembled nanoflower-like Ni5P4@NiSe2 heterostructure with hierarchical pores triggering high-efficiency electrocatalysis for Li-O2 batteries

© 2022 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory
Materials Futures, Volume 1, Number 3
  • Received Date: 2022-06-19
  • Accepted Date: 2022-07-15
  • Publish Date: 2022-08-08
  • The remarkably high theoretical energy densities of Li–O2 batteries have triggered tremendous efforts for next-generation conversion devices. Discovering efficient oxygen reduction reaction and oxygen evolution reaction (ORR/OER) bifunctional catalysts and revealing their internal structure-property relationships are crucial in developing high-performance Li–O2 batteries. Herein, we have prepared a nanoflower-like NiP4@NiSe2 heterostructure and employed it as a cathode catalyst for Li–O2 batteries. As expected, the three-dimensional biphasic Ni5P4@NiSe2 nanoflowers facilitated the exposure of adequate active moieties and provide sufficient space to store more discharge products. Moreover, the strong electron redistribution between Ni5P4 and NiSe2 heterojunctions could result in the built-in electric fields, thus greatly facilitating the ORR/OER kinetics. Based on the above merits, the Ni5P4@NiSe2 heterostructure catalyst improved the catalytic performance of Li–O2 batteries and holds great promise in realizing their practical applications as well as inspiration for the design of other catalytic materials.

  • loading
  • [1]
    Asadi M et al 2018 A lithium-oxygen battery with a long cycle life in an air-like atmosphere Nature 555 502–6
    [2]
    Liu Q C, Liu T, Liu D P, Li Z J, Zhang X B and Zhang Y 2016 A flexible and wearable lithium-oxygen battery with record energy density achieved by the interlaced architecture inspired by bamboo slips Adv. Mater. 28 8413–8
    [3]
    Qiao Y, Wang Q F, Mu X W, Deng H, He P, Yu J H and Zhou H S 2019 Advanced hybrid electrolyte Li–O2 battery realized by dual superlyophobic membrane Joule 3 2986–3001
    [4]
    Xia Q et al 2021 MnCo2S4–CoS1.097 heterostructure nanotubes as high efficiency cathode catalysts for stable and long-life lithium-oxygen batteries under high current conditions Adv. Sci. 8 2103302
    [5]
    Ran Z Q, Shu C Z, Hou Z Q, Cao L J, Liang R X, Li J B, Hei P, Yang T S and Long J P 2020 Ni3Se2/NiSe2 heterostructure nanoforests as an efficient bifunctional electrocatalyst for high-capacity and long-life Li–O2 batteries J. Power Sources 468 228308
    [6]
    Hu A J et al 2020 Heterostructured NiS2/ZnIn2S4 realizing toroid-like Li2O2 deposition in lithium-oxygen batteries with low-donor-number solvents ACS Nano 14 3490–9
    [7]
    Li D Y et al 2022 CoS2 nanoparticles anchored on MoS2 nanorods as a superior bifunctional electrocatalyst boosting Li2O2 heteroepitaxial growth for rechargeable Li–O2 batteries Small 18 2105752
    [8]
    Liu X M, Zhao L L, Xu H R, Huang Q S, Wang Y Q, Hou C X, Hou Y Y, Wang J, Dang F and Zhang J T 2020 Tunable cationic vacancies of cobalt oxides for efficient electrocatalysis in Li–O2 batteries Adv. Energy Mater. 10 2001415
    [9]
    Gu T H, Agyeman D A, Shin S J, Jin X, Lee J M, Kim H, Kang Y M and Hwang S J 2018 α-MnO2 nanowire-anchored highly oxidized cluster as a catalyst for Li–O2 batteries: superior electrocatalytic activity and high functionality Angew. Chem., Int. Ed. Engl. 57 15984–9
    [10]
    He B, Wang J, Fan Y Q, Jiang Y L, Zhai Y J, Wang Y, Huang Q S, Dang F, Zhang Z D and Wang N 2018 Mesoporous CoO/Co–N–C nanofibers as efficient cathode catalysts for Li–O2 batteries J. Mater. Chem. A 6 19075–84
    [11]
    Hou Y, Wang J, Hou C X, Fan Y, Zhai Y J, Li H Y, Dang F and Chou S L 2019 Oxygen vacancies promoting the electrocatalytic performance of CeO2 nanorods as cathode materials for Li–O2 batteries J. Mater. Chem. A 7 6552–61
    [12]
    Sennu P, Park H S, Park K U, Aravindan V, Nahm K S and Lee Y S 2017 Formation of NiCo2O4 rods over Co3O4 nanosheets as efficient catalyst for Li–O2 batteries and water splitting J. Catal. 349 175–82
    [13]
    Liu X M, Huang Q S, Wang J, Zhao L L, Xu H R, Xia Q, Li D Y, Qian L, Wang H S and Zhang J 2021 In-situ deposition of Pd/Pd4S heterostructure on hollow carbon spheres as efficient electrocatalysts for rechargeable Li–O2 batteries Chin. Chem. Lett 32 2086–90
    [14]
    Zhao W, Wang J, Yin R, Li B, Huang X S, Zhao L and Qian L 2020 Single-atom Pt supported on holey ultrathin g-C3N4 nanosheets as efficient catalyst for Li–O2 batteries J. Colloid Interface Sci. 564 28–36
    [15]
    Wang P, Li C X, Dong S H, Ge X L, Zhang P, Miao X G, Zhang Z W, Wang C X and Yin L W 2019 One-step route synthesized Co2P/Ru/N-doped carbon nanotube hybrids as bifunctional electrocatalysts for high-performance Li–O2 batteries Small 15 1900001
    [16]
    Wang J, Liu L L, Chou S L, Liu H K and Wang J Z 2017 A 3D porous nitrogen-doped carbon-nanofiber-supported palladium composite as an efficient catalytic cathode for lithium–oxygen batteries J. Mater. Chem. A 5 1462–71
    [17]
    Xu H R, Zhao L L, Liu X M, Li D Y, Xia Q, Cao X Y, Wang J, Zhang W B, Wang H S and Zhang J T 2021 CoMoP2 nanoparticles anchored on N, P doped carbon nanosheets for high-performance lithium-oxygen batteries FlatChem 25 100221
    [18]
    Zhai Y J et al 2019 Highly efficient cobalt nanoparticles anchored porous N-doped carbon nanosheets electrocatalysts for Li–O2 batteries J. Catal. 377 534–42
    [19]
    Leng L M, Li J, Zeng X Y, Song H Y, Shu T, Wang H S and Liao S L 2017 Enhancing the cyclability of Li–O2 batteries using PdM alloy nanoparticles anchored on nitrogen-doped reduced graphene as the cathode catalyst J. Power Sources 337 173–9
    [20]
    Li K, Dong H Y, Wang Y W, Yin Y H and Yang S T 2020 Preparation of low-load Au–Pd alloy decorated carbon fibers binder-free cathode for Li–O2 battery J. Colloid Interface Sci. 579 448–54
    [21]
    Yao W T et al 2019 Tuning Li2O2 formation routes by facet engineering of MnO2 cathode catalysts J. Am. Chem. Soc. 141 12832–8
    [22]
    Yang Z D, Chang Z W, Xu J J, Yang X Y and Zhang X B 2017 CeO2@NiCo2O4 nanowire arrays on carbon textiles as high performance cathode for Li–O2 batteries Sci. China Chem. 60 1540–5
    [23]
    Zhao W, Li X M, Yin R, Qian L, Huang X S, Liu H, Zhang J X, Wang J, Ding T and Guo Z H 2018 Urchin-like NiO–NiCo2O4 heterostructure microsphere catalysts for enhanced rechargeable non-aqueous Li–O2 batteries Nanoscale 11 50–59
    [24]
    Guo Z Y, Wang F M, Li Z J, Yang Y, Tamirat A G, Qi H C, Han J S, Li W, Wang L and Feng S H 2018 Lithiophilic Co/Co4N nanoparticles embedded in hollow N-doped carbon nanocubes stabilizing lithium metal anodes for Li-air batteries J. Mater. Chem. A 6 22096–105
    [25]
    Xu S M et al 2016 Toward lower overpotential through improved electron transport property: hierarchically porous CoN nanorods prepared by nitridation for lithium-oxygen batteries Nano Lett. 16 5902–8
    [26]
    Dong S M et al 2011 Molybdenum nitride based hybrid cathode for rechargeable lithium-O2 batteries Chem. Commun. 47 11291–3
    [27]
    Shombe G B, Khan M D, Choi J, Gupta R K, Opallo M and Revaprasadu N 2022 Tuning composition of CuCo2S4–NiCo2S4 solid solutions via solvent-less pyrolysis of molecular precursors for efficient supercapacitance and water splitting RSC Adv. 12 10675–85
    [28]
    Dou Y Y, Lian R Q, Zhang Y T, Zhao Y Y, Chen G, Wei Y J and Peng Z Q 2018 Co9S8@carbon porous nanocages derived from a metal–organic framework: a highly efficient bifunctional catalyst for aprotic Li–O2 batteries J. Mater. Chem. A 6 8595–603
    [29]
    Hou Z Q, Feng S, Hei P, Yang T S, Ran Z Q, Zheng R X, Liao X, Shu C Z and Long J P 2019 Morphology regulation of Li2O2 by flower-like ZnCo2S4 enabling high performance Li–O2 battery J. Power Sources 441 227168
    [30]
    Jiao W C, Su Q M, Ge J J, Dong S J, Wang D, Zhang M, Ding S K, Du G H and Xu B S 2021 Mo2C quantum dots decorated ultrathin carbon nanosheets self-assembled into nanoflowers toward highly catalytic cathodes for Li–O2 batteries Mater. Res. Bull. 133 111020
    [31]
    Lai Y Q, Jiao Y F, Song J X, Zhang K, Li J and Zhang Z A 2018 Fe/Fe3C@graphitic carbon shell embedded in carbon nanotubes derived from Prussian blue as cathodes for Li–O2 batteries Mater. Chem. Front. 2 376–84
    [32]
    Liu C J, Qiu Z, Brant W R, Younesi R, Ma Y, Edström K, Gustafsson T and Zhu J 2018 A free standing Ru-TiC nanowire array/carbon textile cathode with enhanced stability for Li–O2 batteries J. Mater. Chem. A 6 23659–68
    [33]
    Huang H B, Luo S H, Liu C L, Yi T F and Zhai Y C 2018 High-surface-area and porous Co2P nanosheets as cost-effective cathode catalysts for Li–O2 batteries ACS Appl. Mater. Interfaces 10 21281–90
    [34]
    Hou Z Q, Shu C Z, Hei P, Yang T S, Zheng R X, Ran Z Q and Long J P 2020 A 3D free-standing Co doped Ni2P nanowire oxygen electrode for stable and long-life lithium-oxygen batteries Nanoscale 12 6785–94
    [35]
    Ran Z Q, Shu C Z, Hou Z Q, Zhang W B, Yan Y, He M and Long J P 2021 Modulating electronic structure of honeycomb-like Ni2P/Ni12P5 heterostructure with phosphorus vacancies for highly efficient lithium-oxygen batteries Chem. Eng. J. 413 127404
    [36]
    Liu G X, Zhang L, Wang S Q, Ding L X and Wang H H 2017 Hierarchical NiCo2O4 nanosheets on carbon nanofiber films for high energy density and long-life Li–O2 batteries J. Mater. Chem. A 5 14530–6
    [37]
    Li J B, Shu C Z, Liu C H, Chen X F, Hu A J and Long J P 2020 Rationalizing the effect of oxygen vacancy on oxygen electrocatalysis in Li–O2 battery Small 16 2001812
    [38]
    Wang L J et al 2016 Facile synthesis of flower-like hierarchical NiCo2O4 microspheres as high-performance cathode materials for Li–O2 batteries RSC Adv. 6 98867–73
    [39]
    Li B, Zheng M B, Xue H G and Pang H 2016 High performance electrochemical capacitor materials focusing on nickel based materials Inorg. Chem. Front. 3 175–202
    [40]
    Zhang L Y, Shi D W, Liu T, Jaroniec M and Yu J G 2019 Nickel-based materials for supercapacitors Mater. Today 25 35–65
    [41]
    Zhao C L, Lu Y X, Chen L Q and Hu Y S 2019 Ni-based cathode materials for Na-ion batteries Nano Res. 12 2018–30
    [42]
    Wen X J, Ran Z Q, Zheng R X, Du D Y, Zhao C, Li R J, Xu H Y, Zeng T and Shu C Z 2022 NiSe2@NiO heterostructure with optimized electronic structure as efficient electrocatalyst for lithium-oxygen batteries J. Alloys Compd. 901 163703
    [43]
    Yu J, Tian Y M, Lin Z W, Liu Q, Liu J Y, Chen R R, Zhang H S and Wang J 2021 NiSe2/Ni5P4 nanosheets on nitrogen-doped carbon nano-fibred skeleton for efficient overall water splitting Colloids Surf. A 614 126189
    [44]
    Yoo H, Lee G H and Kim D W 2021 FeSe hollow spheroids as electrocatalysts for high-rate Li–O2 battery cathodes J. Alloys Compd. 856 158269
    [45]
    Yan Y T, Lin J H, Bao K, Xu T X, Qi J L, Cao J, Zhong Z X, Fei W D and Feng J C 2019 FeSe hollow spheroids as electrocatalysts for high-rate Li–O2 battery cathodes J. Colloid Interface Sci. 552 332–6
    [46]
    Du D Y, Wang L, Zheng R X, Li M L, Ran Z Q, Ren L F, He M, Yan Y and Shu C Z 2021 Surface atomic modulation of CoP bifunctional catalyst for high performance Li–O2 battery enabled by high-index (2 1 1) facets J. Colloid Interface Sci. 601 114–23
    [47]
    Yan Y, Ran Z Q, Zeng T, Wen X J, Xu H Y, Li R J, Zhao C and Shu C Z 2022 Interfacial electron redistribution of hydrangea-like NiO@Ni2P heterogeneous microspheres with dual-phase synergy for high-performance lithium-oxygen battery Small 18 2106707
    [48]
    Veeramani V, Chen Y H, Wang H C, Hung T F, Chang W S, Wei D H, Hu S F and Liu R S 2018 CdSe/ZnS QD@CNT nanocomposite photocathode for improvement on charge overpotential in photoelectrochemical Li–O2 batteries Chem. Eng. J. 349 235–40
    [49]
    Zhu G J, Guo R, Luo W, Liu H K, Jiang W, Dou S X and Yang J 2021 Boron doping-induced interconnected assembly approach for mesoporous silicon oxycarbide architecture Natl Sci. Rev. 8 152
    [50]
    Wang T Z, Cao X J and Jiao L F 2021 Ni2P/NiMoP heterostructure as a bifunctional electrocatalyst for energy-saving hydrogen production eScience 1 69–74
    [51]
    Xu J J, Wang Z L, Xu D, Zhang L L and Zhang X B 2013 Tailoring deposition and morphology of discharge products towards high-rate and long-life lithium-oxygen batteries Nat. Commun. 4 2438
    [52]
    Xu S M, Liang X, Liu X, Bai W L, Liu Y S, Cai Z P, Zhang Q, Zhao C, Wang K X and Chen J S 2020 Surface engineering donor and acceptor sites with enhanced charge transport for low-overpotential lithium–oxygen batteries Energy Storage Mater. 25 52–61
    [53]
    Cheng H, Xie J, Cao G S, Lu Y H, Zheng D, Jin Y, Wang K Y and Zhao X B 2019 Realizing discrete growth of thin Li2O2 sheets on black phosphorus quantum dots-decorated δ-MnO2 catalyst for long-life lithium-oxygen cells Energy Storage Mater. 23 684–92
    [54]
    Liu C C, Gong T, Zhang J, Zheng X R, Mao J, Liu H, Li Y and Hao Q Y 2020 Engineering Ni2P-NiSe2 heterostructure interface for highly efficient alkaline hydrogen evolution Appl. Catal. B 262 118245
    [55]
    Yang J, Yang N, Xu Q, Pearlie L S, Zhang Y Z, Hong Y, Wang Q, Wang W J, Yan Q Y and Dong X C 2019 Bioinspired controlled synthesis of NiSe/Ni2P nanoparticles decorated 3D porous carbon for Li/Na ion batteries ACS Sustain. Chem. Eng. 7 13217–25
    [56]
    Cui X H, Luo Y N, Zhou Y, Dong W H and Chen W 2021 Application of functionalized graphene in Li–O2 batteries Nanotechnology 32 132003
    [57]
    Yang Y, Zhang T, Wang X C, Chen L F, Wu N, Liu W, Lu H L, Xiao L, Fu L and Zhuang L 2016 Tuning the morphology and crystal structure of Li2O2: a graphene model electrode study for Li–O2 battery ACS Appl. Mater. Interfaces 8 21350–7
    [58]
    Ye S F, Wang L F, Liu F F, Shi P C and Yu Y 2021 Integration of homogeneous and heterogeneous nucleation growth via 3D alloy framework for stable Na/K metal anode eScience 1 75–82
    [59]
    Ni S, Qu H N, Xu Z H, Zhu X Y, Xing H F, Wang L, Yu J M, Liu H Z, Chen C M and Yang L R 2021 Interfacial engineering of the NiSe2/FeSe2 p-p heterojunction for promoting oxygen evolution reaction and electrocatalytic urea oxidation Appl. Catal. B 299 120638
    [60]
    Feng C J, Wang Y N, Lu Z W, Liang Q, Zhang Y Z, Li Z Y and Xu S 2022 Nanoflower Ni5P4 coupled with GCNQDs as Schottky junction photocatalyst for the efficient degradation of norfloxacin Sep. Purif. Technol. 282 120107
    [61]
    Liu X, Zhao Y X, Yang X F, Liu Q Q, Yu X H, Li Y Y, Tang H and Zhang T R 2020 Porous Ni5P4 as a promising cocatalyst for boosting the photocatalytic hydrogen evolution reaction performance Appl. Catal. B 275 119144
    [62]
    Zhang X, Cheng Z W, Deng P H, Zhang L P and Hou Y 2021 NiSe2/Cd0.5Zn0.5S as a type-II heterojunction photocatalyst for enhanced photocatalytic hydrogen evolution Int. J. Hydrog. Energy 46 15389–97
    [63]
    Li S Z, Zang W J, Liu X M, Pennycook S J, Kou Z K, Yang C H, Guan C and Wang J 2019 Heterojunction engineering of MoSe2/MoS2 with electronic modulation towards synergetic hydrogen evolution reaction and supercapacitance performance Chem. Eng. J. 359 1419–26
    [64]
    He B et al 2020 Superassembly of porous Fetet(NiFe)octO frameworks with stable octahedron and multistage structure for superior lithium-oxygen batteries Adv. Energy Mater. 10 1904262
    [65]
    Li G Y, Li N, Peng S T, He B, Wang J, Du Y, Zhang W B, Han K and Dang F 2020 Highly efficient Nb2C MXene cathode catalyst with uniform O-terminated surface for lithium-oxygen batteries Adv. Energy Mater. 11 20022721
    [66]
    Zhang G L, Li G Y, Wang J, Tong H, Wang J C, Du Y, Sun S H and Dang F 2022 2D SnSe cathode catalyst featuring an efficient facet-dependent selective Li2O2 growth/decomposition for Li–oxygen batteries Adv. Energy Mater. 12 2103910
    [67]
    Zhao X J et al 2021 Favorable anion adsorption/desorption of high rate NiSe2 nanosheets/hollow mesoporous carbon for battery-supercapacitor hybrid devices Nano Res. 14 2574–83
    [68]
    Xie H, Chen M and Wu L 2019 Hierarchical nanostructured NiS/MoS2/C composite hollow spheres for high performance sodium-ion storage performance ACS Appl. Mater. Interfaces 11 41222–8
    [69]
    Yang Y, Kang Y K, Zhao H H, Dai X P, Cui M, Luan X B, Zhang X, Nie F, Ren Z T and Song W Y 2019 An interfacial electron transfer on tetrahedral NiS2/NiSe2 heterocages with dual-phase synergy for efficiently triggering the oxygen evolution reaction Small 16 1905083
    [70]
    Xia Q et al 2022 Recent advances in heterostructured cathodic electrocatalysts for non-aqueous Li–O2 batteries Chem. Sci. 13 2841–56
    [71]
    Zhou Q et al 2022 Engineering in-plane nickel phosphide heterointerfaces with interfacial sp H-P hybridization for highly efficient and durable hydrogen evolution at 2 A cm−2 Small 18 2105642
    [72]
    Huang H C, Cheng C J, Zhang G L, Guo L, Li G Y, Pan M, Dang F and Mai X M 2022 Surface phosphatization for a sawdust-derived carbon catalyst as kinetics promoter and corrosion preventer in lithium-oxygen batteries Adv. Funct. Mater. 32 2111546
    [73]
    Wang Y, Li N, Hou C X, He B, Li J J, Dang F, Wang J and Fan Y Q 2020 Nanowires embedded porous TiO2@C nanocomposite anodes for enhanced stable lithium and sodium ion battery performance Ceram. Int. 46 9119–28
    [74]
    Dang C C, Wang Y, He B, Zhang W B, Dang F, Wang H C and Du Y 2020 Novel MoSi2 catalysts featuring surface activation as highly efficient cathode materials for long-life Li–O2 batteries J. Mater. Chem. A 8 259–67
    [75]
    Liang R X, Shu C Z, Hu A J, Li M L, Ran Z Q, Zheng R X and Long J P 2020 Interface engineering induced selenide lattice distortion boosting catalytic activity of heterogeneous CoSe2@NiSe2 for lithium-oxygen battery Chem. Eng. J. 393 124592
    [76]
    Jin Y C, Liu Y, Song L, Yu J H, Li K R, Zhang M D and Wang J L 2022 Interfacial engineering in hollow NiS2/FeS2-NSGA heterostructures with efficient catalytic activity for advanced Li–CO2 battery Chem. Eng. J. 430 133029
    [77]
    Wang W X, Xiong F Y, Zhu S H, Chen J H, Xie J and An Q Y 2022 Defect engineering in molybdenum-based electrode materials for energy storage eScience 2 278–94
    [78]
    Zhang F Z, Ma Y Y, Jiang M M, Luo W and Yang J P 2022 Boron heteroatom-doped silicon–carbon peanut-like composites enables long life lithium-ion batteries Rare Met. 41 1276–83
    [79]
    Zhang F Z, Sherrell P C, Luo W, Chen J, Li W, Yang J P and Zhu M F 2021 Organic/inorganic hybrid fibers: controllable architectures for electrochemical energy applications Adv. Sci. 8 2102859
    [80]
    Li D Y, Zhao L L, Xia Q, Wang J, Liu X M, Xu H R and Chou S L 2021 Activating MoS2 nanoflakes via sulfur defect engineering wrapped on CNTs for stable and efficient Li–O2 batteries Adv. Funct. Mater. 32 2108153
  • mfac8170supp1.docx
  • 加载中

Catalog

    Figures(1)

    Article Metrics

    Article Views(638) PDF downloads(185)
    Article Statistics
    Related articles from

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return