Volume 2 Issue 2
May  2023
Turn off MathJax
Article Contents
Wenjin Yu, Yu Zou, Shining Zhang, Zishi Liu, Cuncun Wu, Bo Qu, Zhijian Chen, Lixin Xiao. Carbon-based perovskite solar cells with electron and hole-transporting/-blocking layers[J]. Materials Futures, 2023, 2(2): 022101. doi: 10.1088/2752-5724/acbbc2
Citation: Wenjin Yu, Yu Zou, Shining Zhang, Zishi Liu, Cuncun Wu, Bo Qu, Zhijian Chen, Lixin Xiao. Carbon-based perovskite solar cells with electron and hole-transporting/-blocking layers[J]. Materials Futures, 2023, 2(2): 022101. doi: 10.1088/2752-5724/acbbc2
Topical Review •
OPEN ACCESS

Carbon-based perovskite solar cells with electron and hole-transporting/-blocking layers

© 2023 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory
Materials Futures, Volume 2, Number 2
  • Received Date: 2022-12-31
  • Accepted Date: 2023-02-14
  • Publish Date: 2023-03-15
  • Towards commercialization of perovskite solar cells (PSCs), further reducing the cost and increasing the stability of PSCs have been the most important tasks of researchers, as the efficiency of single-junction PSCs has reached a competitive level among all kinds of single-junction solar cells. Carbon-electrode-based PSCs (CPSCs), as one of the most promising constructions for achieving stable economical PSCs, now attract enormous attention for their cost-effectiveness and stability. Here, we briefly review the development of CPSCs and reveal the importance of n-i-p architecture for state-of-the-art CPSCs. However, despite their promising potential, challenges still exist in CPSCs in the n-i-p architecture, which mainly stem from the incompact contact of the hole-transporting layer (HTL)/carbon electrode. Thus, new carbon materials and/or novel manufacturing methods should be proposed. In addition, HTL is yet to be appropriate for state-of-the-art CPSCs because the fabrication of carbon electrode could result in the destruction of the underlayer. To further enhance the performance of CPSCs, both the HTL and electron transport layer as well as their interfaces with perovskite active layer need to be improved. We recommend that the perovskite active layer, with its long carrier lifetime, strong carrier transport capability, and long-term stability, is necessary as well for improved performance of CPSCs. We also highlight current researches on CPSCs and provide a systematic review of various types of regulation tools.

  • loading
  • [1]
    Yoo J J et al 2021 Efficient perovskite solar cells via improved carrier management Nature 590 587–93
    [2]
    Jeong J et al 2021 Pseudo-halide anion engineering for a-FAPbI3 perovskite solar cells Nature 592 381–5
    [3]
    Min H et al 2021 Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes Nature 598 444–50
    [4]
    Kim M et al 2022 Conformal quantum dot-SnO2 layers as electron transporters for efficient perovskite solar cells Science 375 302–6
    [5]
    Liang L, Cai Y, Li X, Nazeeruddin M K and Gao P 2018 All that glitters is not gold: recent progress of alternative counter electrodes for perovskite solar cells Nano Energy 52 211–38
    [6]
    Sirotinskaya S, Schmechel R and Benson N 2020 Influence of the cathode microstructure on the stability of inverted planar perovskite solar cells RSC Adv. 10 23653–61
    [7]
    Kay A and Gratzel M 1996 Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder Sol. Energy Mater. Sol. Cells 44 99–117
    [8]
    Han H, Bach U, Cheng Y-B, Caruso R A and MacRae C 2009 A design for monolithic all-solid-state dye-sensitized solar cells with a platinized carbon counterelectrode Appl. Phys. Lett. 94 103102
    [9]
    Mei A Y et al 2014 A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability Science 345 295–8
    [10]
    Zhang F G, Yang X C, Cheng M, Wang W H and Sun L C 2016 Boosting the efficiency and the stability of low cost perovskite solar cells by using CuPc nanorods as hole transport material and carbon as counter electrode Nano Energy 20 108–16
    [11]
    Jeon I, Seo S, Sato Y, Delacou C, Anisimov A, Suenaga K, Kauppinen E I, Maruyama S and Matsuo Y 2017 Perovskite solar cells using carbon nanotubes both as cathode and as anode J. Phys. Chem. C 121 25743–9
    [12]
    Wang Y et al 2022 Defective MWCNT enabled dual interface coupling for carbon-based perovskite solar cells with efficiency exceeding 22% Adv. Funct. Mater. 32 2204831
    [13]
    Zhang H, Xiao J, Shi J, Su H, Luo Y, Li D, Wu H, Cheng Y-B and Meng Q 2018 Self-adhesive macroporous carbon electrodes for efficient and stable perovskite solar cells Adv. Funct. Mater. 28 1802985
    [14]
    Zou Y et al 2021 Improving interfacial charge transfer by multi-functional additive for high-performance carbon-based perovskite solar cells Appl. Phys. Lett. 119 151104
    [15]
    Zhang C et al 2021 Ti1-graphene single-atom material for improved energy level alignment in perovskite solar cells Nature Energy 6 1154–63
    [16]
    Lin S Y et al 2018 Efficient and stable planar hole-transport-material-free perovskite solar cells using low temperature processed SnO2 as electron transport material Org. Electron. 53 235–41
    [17]
    Wu Z, Song T and Sun B 2017 Carbon-based materials used for perovskite solar cells Chemnanomat 3 75–88
    [18]
    Xu L et al 2017 Stable monolithic hole-conductor-free perovskite solar cells using TiO2 nanoparticle binding carbon films Org. Electron. 45 131–8
    [19]
    Zhang H, Wang H, Williams S T, Xiong D, Zhang W, Chueh -C-C, Chen W and Jen A K Y 2017 SrCl2 derived perovskite facilitating a high efficiency of 16% in hole-conductor-free fully printable mesoscopic perovskite solar cells Adv. Mater. 29 1606608
    [20]
    Liu X Y, Liu Z Y, Sun B, Tan X H, Ye H B, Tu Y X, Shi T L, Tang Z R and Liao G L 2018 17.46% efficient and highly stable carbon-based planar perovskite solar cells employing Ni-doped rutile TiO2 as electron transport layer Nano Energy 50 201–11
    [21]
    Liu X, Liu Z, Sun B, Tan X, Ye H, Tu Y, Shi T, Tang Z and Liao G 2018 All low-temperature processed carbon-based planar heterojunction perovskite solar cells employing Mg-doped rutile TiO2 as electron transport layer Electrochim. Acta 283 1115–24
    [22]
    Abulikemu M, Neophytou M, Barbe J M, Tietze M L, El Labban A, Anjum D H, Amassian A, McCulloch I and Del Gobbo S 2017 Microwave-synthesized tin oxide nanocrystals for low-temperature solution-processed planar junction organo-halide perovskite solar cells J. Mater. Chem. A 5 7759–63
    [23]
    Baena J P C et al 2015 Highly efficient planar perovskite solar cells through band alignment engineering Energy Environ. Sci. 8 2928–34
    [24]
    Ke W J et al 2015 Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells J. Am. Chem. Soc. 137 6730–3
    [25]
    Ye H B, Liu Z Y, Liu X Y, Sun B, Tan X H, Tu Y X, Shi T L, Tang Z R and Liao G L 2019 17.78% efficient low-temperature carbon-based planar perovskite solar cells using Zn-doped SnO2 electron transport layer Appl. Surf. Sci. 478 417–25
    [26]
    Khambunkoed N, Homnan S, Gardchareon A, Chattrapiban N, Songsiriritthigul P, Wongratanaphisan D and Ruankham P 2021 Fully-covered slot-die-coated ZnO thin films for reproducible carbon-based perovskite solar cells Mater. Sci. Semicond. Process. 136 106151
    [27]
    Liu X, Tan X, Liu Z, Ye H, Sun B, Shi T, Tang Z and Liao G 2019 Boosting the efficiency of carbon-based planar CsPbBr3 perovskite solar cells by a modified multistep spin-coating technique and interface engineering Nano Energy 56 184–95
    [28]
    Liu Z Y, Sun B, Liu X, Han J, Ye H, Tu Y, Chen C, Shi T, Tang Z and Liao G 2018 15% efficient carbon based planar-heterojunction perovskite solar cells using a TiO2/SnO2 bilayer as the electron transport layer J. Mater. Chem. A 6 7409–19
    [29]
    Liu Z Y, Liu X Y, Sun B, Tan X H, Ye H B, Tu Y X, Shi T L, Tang Z R and Liao G L 2019 Fully low-temperature processed carbon-based perovskite solar cells using thermally evaporated cadmium sulfide as efficient electron transport layer Org. Electron. 74 152–60
    [30]
    Wu X, Xie L Q, Lin K B, Lu J X, Wang K X, Feng W J, Fan B B, Yin P G and Wei Z H 2019 Efficient and stable carbon-based perovskite solar cells enabled by the inorganic interface of CuSCN and carbon nanotubes J. Mater. Chem. A 7 12236–43
    [31]
    Jin J J, Yang M, Deng W, Xin J, Tai Q, Qian J, Dong B, Li W, Wang J and Li J 2021 Highly efficient and stable carbon-based perovskite solar cells with the polymer hole transport layer Sol. Energy 220 491–7
    [32]
    Zhao F, Zhou J, Tao J H, Guo Y X, Jiang J C and Chu J H 2022 Enhancing photovoltaic performance of carbon-based planar Cs3Sb2I9-xClx solar cells by using P3HT as hole transport material J. Alloys Compd. 897 162741
    [33]
    Liu Z Y, Sun B, Liu X Y, Han J H, Ye H B, Shi T L, Tang Z R and Liao G L 2018 Efficient carbon-based CsPbBr3 inorganic perovskite solar cells by using Cu-phthalocyanine as hole transport material Nano Micro Lett. 10 34
    [34]
    Yang J L and Yan D H 2009 Weak epitaxy growth of organic semiconductor thin films Chem. Soc. Rev. 38 2634–45
    [35]
    Duan J L, Wang Y D, Yang X Y and Tang Q W 2020 Alkyl-chain-regulated charge transfer in fluorescent inorganic CsPbBr3 perovskite solar cells Angew. Chem., Int. Ed. 59 4391–5
    [36]
    Duan J L, Zhao Y Y, Wang Y D, Yang X Y and Tang Q W 2019 Hole-boosted Cu(Cr,M)O2 nanocrystals for all-inorganic CsPbBr3 perovskite solar cells Angew. Chem., Int. Ed. 58 16147–51
    [37]
    Yang F, Dong L R, Jang D, Saparov B, Tam K C, Zhang K C, Li N, Brabec C J and Egelhaaf H J 2021 Low temperature processed fully printed efficient planar structure carbon electrode perovskite solar cells and modules Adv. Energy Mater. 11 2101219
    [38]
    Chu Q-Q et al 2019 Highly stable carbon-based perovskite solar cell with a record efficiency of over 18% via hole transport engineering J. Mater. Sci. Technol. 35 987–93
    [39]
    Liu Y, He B L, Duan J L, Zhao Y Y, Ding Y, Tang M X, Chen H Y and Tang Q W 2019 Poly(3-hexylthiophene)/zinc phthalocyanine composites for advanced interface engineering of 10.03%-efficiency CsPbBr3 perovskite solar cells J. Mater. Chem. A 7 12635–44
    [40]
    Zong Z H, He B L, Zhu J W, Ding Y, Zhang W Y, Duan J L, Zhao Y Y, Chen H Y and Tang Q W 2020 Boosted hole extraction in all-inorganic CsPbBr3 perovskite solar cells by interface engineering using MoO2/N-doped carbon nanospheres composite Sol. Energy Mater. Sol. Cells 209 110460
    [41]
    Mashhoun S, Hou Y, Chen H W, Tajabadi F, Taghavinia N, Egelhaaf H J and Brabec C J 2018 Resolving a critical instability in perovskite solar cells by designing a scalable and printable carbon based electrode-interface architecture Adv. Energy Mater. 8 1802085
    [42]
    Zhong H et al 2022 All-inorganic perovskite solar cells with tetrabutylammonium acetate as the buffer layer between the SnO2 electron transport film and CsPbI3 ACS Appl. Mater. Interfaces 14 5183–93
    [43]
    Cai W, Lv Y, Chen K, Zhang Z, Jin Y and Zhou X 2020 Carbon-based all-inorganic CsPbI2Br perovskite solar cells using TiO2 nanorod arrays: interface modification and the enhanced photovoltaic performance Energy Fuels 34 11670–8
    [44]
    Ti J et al 2022 A “double-sided tape” modifier bridging the TiO2/perovskite buried interface for efficient and stable all-inorganic perovskite solar cells J. Mater. Chem. A 10 6649–61
    [45]
    Zhou Q, Duan J, Yang X, Duan Y and Tang Q 2020 Interfacial strain release from the WS2/CsPbBr3 van der Waals heterostructure for 1.7 V voltage all-inorganic perovskite solar cells Angew. Chem., Int. Ed. 59 21997–2001
    [46]
    Deng F, Li X, Lv X, Zhou J, Chen Y, Sun X, Zheng Y-Z, Tao X and Chen J-F 2020 Low-temperature processing all-inorganic carbon-based perovskite solar cells up to 11.78% efficiency via alkali hydroxides interfacial engineering ACS Appl. Energy Mater. 3 401–10
    [47]
    Zhu J, Tang M, He B, Zhang W, Li X, Gong Z, Chen H, Duan Y and Tang Q 2020 Improved charge extraction through interface engineering for 10.12% efficiency and stable CsPbBr3 perovskite solar cells J. Mater. Chem. A 8 20987–97
    [48]
    Yang Y et al 2019 An ultrathin ferroelectric perovskite oxide layer for high-performance hole transport material free carbon based halide perovskite solar cells Adv. Funct. Mater. 29 1806506
    [49]
    Shi L et al 2021 MAAc ionic liquid-assisted defect passivation for efficient and stable CsPbIBr2 perovskite solar cells ACS Appl. Energy Mater. 4 10584–92
    [50]
    Zhang Z et al 2022 Accelerated sequential deposition reaction via crystal orientation engineering for low-temperature, high-efficiency carbon-electrode CsPbBr3 solar cells Energy Environ. Mater. e12524
    [51]
    Liu L, Mei A, Liu T, Jiang P, Sheng Y, Zhang L and Han H 2015 Fully printable mesoscopic perovskite solar cells with organic silane self-assembled monolayer J. Am. Chem. Soc. 137 1790–3
    [52]
    Chai W, Ma J, Zhu W, Chen D, Xi H, Zhang J, Zhang C and Hao Y 2021 Suppressing halide phase segregation in CsPbIBr2 films by polymer modification for hysteresis-less all-inorganic perovskite solar cells ACS Appl. Mater. Interfaces 13 2868–78
    [53]
    Yuan H, Zhao Y, Duan J, He B, Jiao Z and Tang Q 2018 Enhanced charge extraction by setting intermediate energy levels in all-inorganic CsPbBr3 perovskite solar cells Electrochim. Acta 279 84–90
    [54]
    Yang Y, Chen H, Hu C and Yang S 2019 Polyethyleneimine-functionalized carbon nanotubes as an interlayer to bridge perovskite/carbon for all inorganic carbon-based perovskite solar cells J. Mater. Chem. A 7 22005–11
    [55]
    Li J, Yan F, Yang P, Duan Y, Duan J and Tang Q 2022 Suppressing interfacial shunt loss via functional polymer for performance improvement of lead-free Cs2AgBiBr6 double perovskite solar cells Solar RRL 6 2100791
    [56]
    Ding Y, He B, Zhu J, Zhang W, Su G, Duan J, Zhao Y, Chen H and Tang Q 2019 Advanced modification of perovskite surfaces for defect passivation and efficient charge extraction in air-stable CsPbBr3 perovskite solar cells ACS Sustain. Chem. Eng. 7 19286–94
    [57]
    Wu Z, Liu Z, Hu Z, Hawash Z, Qiu L, Jiang Y, Ono L K and Qi Y 2019 Highly efficient and stable perovskite solar cells via modification of energy levels at the perovskite/carbon electrode interface Adv. Mater. 31 1804284
    [58]
    Fu X, Zhou K, Zhou X, Ji H, Min Y and Qian Y 2022 Surface passivation for enhancing photovoltaic performance of carbon-based CsPbI3 perovskite solar cells J. Solid State Chem. 308 122891
    [59]
    Zhu W, Chai W, Chen D, Ma J, Chen D, Xi H, Zhang J, Zhang C and Hao Y 2021 High-efficiency (>14%) and air-stable carbon-based, all-inorganic CsPbI2Br perovskite solar cells through a top-seeded growth strategy ACS Energy Lett. 6 1500–10
    [60]
    Liu J, Zhou Q, Thein N K, Tian L, Jia D, Johansson E M J and Zhang X 2019 In situ growth of perovskite stacking layers for high-efficiency carbon-based hole conductor free perovskite solar cells J. Mater. Chem. A 7 13777–86
    [61]
    Wu Y, Zhang Q, Fan L, Liu C, Wu M, Wang D and Zhang T 2021 Surface reconstruction-induced efficient CsPbI2Br perovskite solar cell using phenylethylammonium iodide ACS Appl. Energy Mater. 4 5583–9
    [62]
    Lee K, Kim J, Yu H, Lee J W, Yoon C-M, Kim S K and Jang J 2018 A highly stable and efficient carbon electrode-based perovskite solar cell achieved via interfacial growth of 2D PEA2PbI4 perovskite J. Mater. Chem. A 6 24560–8
    [63]
    Zouhair S et al 2022 Employing 2D-perovskite as an electron blocking layer in highly efficient (18.5%) perovskite solar cells with printable low temperature carbon electrode Adv. Energy Mater. 12 2200837
    [64]
    Wang K, Yin R, Sun W, Huo X, Liu J, Gao Y, You T and Yin P 2022 In situ constructing intermediate energy-level perovskite transition layer for 15.03% efficiency HTL-free carbon-based perovskite solar cells with a high fill factor of 0.81 Solar RRL 6 2100647
    [65]
    Yu Z, Chen B, Liu P, Wang C, Bu C, Cheng N, Bai S, Yan Y and Zhao X 2016 Stable organic–inorganic perovskite solar cells without hole-conductor layer achieved via cell structure design and contact engineering Adv. Funct. Mater. 26 4866–73
    [66]
    Mali S S, Kim H, Kim H H, Park G R, Shim S E and Hong C K 2017 Large area, waterproof, air stable and cost effective efficient perovskite solar cells through modified carbon hole extraction layer Mater. Today Chem. 4 53–63
    [67]
    Wang H, Liu H, Dong Z, Song T, Li W, Zhu L, Bai Y and Chen H 2021 Size mismatch induces cation segregation in CsPbI3: forming energy level gradient and 3D/2D heterojunction promotes the efficiency of carbon-based perovskite solar cells to over 15% Nano Energy 89 106411
    [68]
    Han Q, Yang S, Wang L, Yu F, Cai X and Ma T 2022 A double perovskite participation for promoting stability and performance of carbon-based CsPbI2Br perovskite solar cells J. Colloid Interface Sci. 606 800–7
    [69]
    Ryu J, Lee K, Yun J, Yu H, Lee J and Jang J 2017 Paintable carbon-based perovskite solar cells with engineered perovskite/carbon interface using carbon nanotubes dripping method Small 13 1701225
    [70]
    Wang Y, Zhao H, Mei Y, Liu H, Wang S and Li X 2019 Carbon nanotube bridging method for hole transport layer-free paintable carbon-based perovskite solar cells ACS Appl. Mater. Interfaces 11 916–23
    [71]
    Wei H, Xiao J, Yang Y, Lv S, Shi J, Xu X, Dong J, Luo Y, Li D and Meng Q 2015 Free-standing flexible carbon electrode for highly efficient hole-conductor-free perovskite solar cells Carbon 93 861–8
    [72]
    Guo Y, Zhao F, Tao J, Jiang J, Zhang J, Yang J, Hu Z and Chu J 2019 Efficient and hole-transporting-layer-free CsPbI2Br planar heterojunction perovskite solar cells through rubidium passivation ChemSusChem 12 983–9
    [73]
    Bai S, Cheng N, Yu Z, Liu P, Wang C and Zhao X-Z 2016 Cubic: column composite structure (NH2CH=NH2)x(CH3NH3) 1-xPbI3 for efficient hole-transport material-free and insulation layer free perovskite solar cells with high stability Electrochim. Acta 190 775–9
    [74]
    Liang J, Liu Z, Qiu L, Hawash Z, Meng L, Wu Z, Jiang Y, Ono L K and Qi Y 2018 Enhancing optical, electronic, crystalline, and morphological properties of cesium lead halide by Mn substitution for high-stability all-inorganic perovskite solar cells with carbon electrodes Adv. Energy Mater. 8 1800504
    [75]
    Chen H, Wei Z, He H, Zheng X, Wong K S and Yang S 2016 Solvent engineering boosts the efficiency of paintable carbon-based perovskite solar cells to beyond 14% Adv. Energy Mater. 6 1502087
    [76]
    Chen H, Zheng X, Li Q, Yang Y, Xiao S, Hu C, Bai Y, Zhang T, Wong K S and Yang S 2016 An amorphous precursor route to the conformable oriented crystallization of CH3NH3PbBr3 in mesoporous scaffolds: toward efficient and thermally stable carbon-based perovskite solar cells J. Mater. Chem. A 4 12897–912
    [77]
    Zhang C, Luo Y, Chen X, Chen Y, Sun Z and Huang S 2016 Effective improvement of the photovoltaic performance of carbon-based perovskite solar cells by additional solvents Nano Micro Lett. 8 347–57
    [78]
    Chang X et al 2016 Colloidal precursor-induced growth of ultra-even CH3NH3PbI3 for high-performance paintable carbon-based perovskite solar cells ACS Appl. Mater. Interfaces 8 30184–92
    [79]
    Liu C, He J, Wu M, Wu Y, Du P, Fan L, Zhang Q, Wang D and Zhang T 2020 All-inorganic CsPbI2Br perovskite solar cell with open-circuit voltage over 1.3 V by balancing electron and hole transport Solar RRL 4 2000016
    [80]
    Zhang C, Luo Q, Deng X, Zheng J, Ou-Yang W, Chen X and Huang S 2017 Enhanced efficiency and stability of carbon based perovskite solar cells using terephthalic acid additive Electrochim. Acta 258 1262–72
    [81]
    Li L, Zhang R, Wu Z, Wang Y, Hong J, Rao H, Pan Z and Zhong X 2022 Crystallization control of air-processed wide-bandgap perovskite for carbon-based perovskite solar cells with 17.69% efficiency Chem. Eng. J. n/a 140566
    [82]
    Ullah S, Yang P, Wang J, Liu L, Yang S-E, Xia T and Chen Y 2022 Low-temperature processing of polyvinylpyrrolidone modified CsPbI2Br perovskite films for high-performance solar cells J. Solid State Chem. 305 122656
    [83]
    Liu J, Zhu L, Xiang S, Wei Y, Xie M, Liu H, Li W and Chen H 2019 Growing high-quality CsPbBr3 by using porous CsPb2Br5 as an intermediate: a promising light absorber in carbon-based perovskite solar cells Sustain. Energy Fuels 3 184–94
    [84]
    Li X, Zhang Y, Liu G, Zhang Z, Xiao L, Chen Z and Qu B 2021 Ionic liquid as an additive for two-step sequential deposition for air-processed efficient and stable carbon-based CsPbI2Br all-inorganic perovskite solar cells ACS Appl. Energy Mater. 4 13444–9
    [85]
    Yan J, Lin S, Qiu X, Chen H, Li K, Yuan Y, Long M, Yang B, Gao Y and Zhou C 2019 Accelerated hole-extraction in carbon-electrode based planar perovskite solar cells by moisture-assisted post-annealing Appl. Phys. Lett. 114 103503
    [86]
    Zhang Q et al 2023 Suppressing “Coffee ring effect” to deposit high-quality CsPbI3 perovskite films by drop casting Chem. Eng. J. 454 140147
    [87]
    Zhang G, Zhang J, Yang Z, Pan Z, Rao H and Zhong X 2022 Role of moisture and oxygen in defect management and orderly oxidation boosting carbon-based CsPbI2Br solar cells to a new record efficiency Adv. Mater. 34 2206222
    [88]
    Liu L, Zuo C and Ding L 2021 Self-spreading produces highly efficient perovskite solar cells Nano Energy 90 106509
    [89]
    Guo Y, Zhou J, Zhao F, Wu Y, Tao J, Zuo S, Jiang J, Hu Z and Chu J 2021 Carbon-based 2D-layered Rb0.15Cs2.85Sb2ClxI9-x solar cells with superior open-voltage up to 0.88 V Nano Energy 88 106281
    [90]
    Tan X, Liu X, Liu Z, Sun B, Li J, Xi S, Shi T, Tang Z and Liao G 2020 Enhancing the optical, morphological and electronic properties of the solution-processed CsPbIBr2 films by Li doping for efficient carbon-based perovskite solar cells Appl. Surf. Sci. 499 143990
    [91]
    Liu X, Li J, Liu Z, Tan X, Sun B, Xi S, Shi T, Tang Z and Liao G 2020 Vapor-assisted deposition of CsPbIBr2 films for highly efficient and stable carbon-based planar perovskite solar cells with superior Voc Electrochim. Acta 330 135266
    [92]
    Kroto H W, Heath J R, Obrien S C, Curl R F and Smalley R E 1985 C60: buckminsterfullerene Nature 318 162–3
    [93]
    Zhang H Y, Li Y, Tan S, Chen Z, Song K, Huang S, Shi J, Luo Y, Li D and Meng Q 2022 High-efficiency (>20%) planar carbon-based perovskite solar cells through device configuration engineering J. Colloid Interface Sci. 608 3151–8
    [94]
    Behrouznejad F et al 2020 Effective carbon composite electrode for low-cost perovskite solar cell with inorganic CuIn0.75Ga0.25S2 hole transport material Solar RRL 4 1900564
    [95]
    Zhou Y et al 2018 Efficiently improving the stability of inverted perovskite solar cells by employing polyethylenimine-modified carbon nanotubes as electrodes ACS Appl. Mater. Interfaces 10 31384–93
    [96]
    Seo J, Park S, Kim Y C, Jeon N J, Noh J H, Yoon S C and Seok S I 2014 Benefits of very thin PCBM and LiF layers for solution-processed p-i-n perovskite solar cells Energy Environ. Sci. 7 2642–6
    [97]
    Babu V, Pineda R F, Ahmad T, Alvarez A O, Castriotta L A, Di Carlo A, Fabregat-Santiago F and Wojciechowski K 2020 Improved stability of inverted and flexible perovskite solar cells with carbon electrode ACS Appl. Energy Mater. 3 5126–34
  • 加载中

Catalog

    Figures(1)

    Article Metrics

    Article Views(453) PDF downloads(133)
    Article Statistics
    Related articles from

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return