Volume 2 Issue 2
May  2023
Turn off MathJax
Article Contents
Jinhua Nie, Rui Li, Maopeng Miao, Yingshuang Fu, Wenhao Zhang. Atomically constructing a van der Waals heterostructure of CrTe2/Bi2Te3 by molecular beam epitaxy[J]. Materials Futures, 2023, 2(2): 021001. doi: 10.1088/2752-5724/acbd64
Citation: Jinhua Nie, Rui Li, Maopeng Miao, Yingshuang Fu, Wenhao Zhang. Atomically constructing a van der Waals heterostructure of CrTe2/Bi2Te3 by molecular beam epitaxy[J]. Materials Futures, 2023, 2(2): 021001. doi: 10.1088/2752-5724/acbd64
Letter •
OPEN ACCESS

Atomically constructing a van der Waals heterostructure of CrTe2/Bi2Te3 by molecular beam epitaxy

© 2023 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory
Materials Futures, Volume 2, Number 2
  • Received Date: 2022-12-16
  • Accepted Date: 2023-02-20
  • Publish Date: 2023-03-15
  • A 2D heterostructure with proximity coupling of magnetism and topology can provide enthralling prospects for hosting new quantum states and exotic properties that are relevant to next-generation spintronic devices. Here, we synthesize a delicate van der Waals (vdW) heterostructure of CrTe2/Bi2Te3 at the atomic scale via molecular beam epitaxy. Low-temperature scanning tunneling microscopy/spectroscopy measurements are utilized to characterize the geometric and electronic properties of the CrTe2/Bi2Te3 heterostructure with a compressed vdW gap. Detailed structural analysis reveals complex interfacial structures with diversiform step heights and intriguing moiré patterns. The formation of the interface is ascribed to the embedded characteristics of CrTe2 and Bi2Te3 by sharing Te atomic layer upon interfacing, showing intercoupled features of electronic structure for CrTe2 and Bi2Te3. Our study demonstrates a possible approach to construct artificial heterostructures with different types of ordered states, which may be of use for achieving tunable interfacial Dzyaloshinsky–Moriya interactions and tailoring the functional building blocks in low dimensions.

  • loading
  • [1]
    Sacépé B, Feigelman M and Klapwijket T M 2020 Quantum breakdown of superconductivity in low-dimensional materials Nat. Phys. 16 734–46
    [2]
    Devarakonda A, Inoue H, Fang S, Ozsoy-Keskinbora C, Suzuki T, Kriener M, Fu L, Kaxiras E, Bell D C and Checkelsky J G 2020 Clean 2D superconductivity in a bulk van der Waals superlattice Science 370 231–6
    [3]
    Chang K et al 2016 Discovery of robust in-plane ferroelectricity in atomic-thick SnTe Science 353 274
    [4]
    Burch K S, Mandrus D and Park J-G 2018 Magnetism in two-dimensional van der Waals materials Nature 563 47–52
    [5]
    Gong C and Zhang X 2019 Two-dimensional magnetic crystals and emergent heterostructure devices Science 363 706
    [6]
    Valenzuela S O and Roche S 2019 The phase diagram of 2D antiferromagnets Nat. Nanotechnol. 14 1088–9
    [7]
    Xu J-P et al 2015 Experimental detection of a Majorana mode in the core of a magnetic vortex inside a topological insulator-superconductor Bi2Te3/NbSe2 heterostructure Phys. Rev. Lett. 114 017001
    [8]
    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Unconventional superconductivity in magic-angle graphene superlattices Nature 556 43–50
    [9]
    Chang C-Z et al 2013 Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator Science 340 167
    [10]
    Heinze S, von Bergmann K, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Bihlmayer G and Blügel S 2011 Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions Nat. Phys. 7 713–8
    [11]
    Peng L, Qiao J, Xian J-J, Pan Y, Ji W, Zhang W and Fu Y-S 2019 Unusual electronic states and superconducting proximity effect of Bi films modulated by a NbSe2 substrate ACS Nano 13 1885–92
    [12]
    Kezilebieke S, Huda M N, Vaňo V, Aapro M, Ganguli S C, Silveira O J, Głodzik S, Foster A S, Ojanen T and Liljeroth P 2020 Topological superconductivity in a van der Waals heterostructure Nature 588 424
    [13]
    Watanabe R, Yoshimi R, Kawamura M, Mogi M, Tsukazaki A, Yu X Z, Nakajima K, Takahashi K S, Kawasaki M and Tokura Y 2019 Quantum anomalous Hall effect driven by magnetic proximity coupling in all-telluride based heterostructure Appl. Phys. Lett. 115 102403
    [14]
    Pan L et al 2020 Observation of quantum anomalous Hall effect and exchange interaction in topological insulator/antiferromagnet heterostructure Adv. Mater. 32 2001460
    [15]
    Serlin M, Tschirhart C L, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L and Young A F 2020 Intrinsic quantized anomalous Hall effect in a moiré heterostructure Science 367 900
    [16]
    Vaˇno V, Amini M, Ganguli S C, Chen G, Lado J L, Kezilebieke S and Liljeroth P 2021 Artificial heavy fermions in a van der Waals heterostructure Nature 599 582
    [17]
    Fert A, Reyren N and Cros V 2017 Magnetic skyrmions: advances in physics and potential applications Nat. Rev. Mater. 2 17031
    [18]
    Röβler U K, Bogdanov A N and Pfleiderer C 2006 Spontaneous skyrmion ground states in magnetic metals Nature 442 797–801
    [19]
    Raju M, Yagil A, Soumyanarayanan A, Tan A K C, Almoalem A, Ma F, Auslaender O M and Panagopoulos C 2019 The evolution of skyrmions in Ir/Fe/Co/Pt multilayers and their topological Hall signature Nat. Commun. 10 696
    [20]
    Wu H et al 2020 Ferrimagnetic skyrmions in topological insulator/ferrimagnet heterostructures Adv. Mater. 32 2003380
    [21]
    Li P et al 2021 Topological Hall effect in a topological insulator interfaced with a magnetic insulator Nano Lett. 21 84–90
    [22]
    Ahmed A S et al 2019 Spin-Hall topological Hall effect in highly tunable Pt/ferrimagnetic-insulator bilayers Nano Lett. 19 5683–8
    [23]
    Dijkstra J, Weitering H H, Bruggen C F V, Haas C and Groot R A D 1989 Band-structure calculations, and magnetic and transport properties of ferromagnetic chromium tellurides (CrTe, Cr3Te4, Cr2Te3) J. Phys.: Condens. Matter 1 9141
    [24]
    Tang B et al 2022 Phase engineering of Cr5Te8 with colossal anomalous Hall effect Nat. Electron. 5 224–32
    [25]
    Meng L et al 2021 Anomalous thickness dependence of Curie temperature in air-stable two-dimensional ferromagnetic 1T-CrTe2 grown by chemical vapor deposition Nat. Commun. 12 809
    [26]
    Fragkos S, Pappas P, Symeonidou E, Panayiotatos Y and Dimoulas A 2022 Magnetic skyrmion manipulation in CrTe2/WTe2 2D van der Waals heterostructure Appl. Phys. Lett. 120 182402
    [27]
    Zhang X et al 2021 Giant Topological Hall Effect in van der Waals Heterostructures of CrTe2/Bi2Te3 ACS Nano 15 15710–9
    [28]
    Chen J et al 2019 Evidence for Magnetic Skyrmions at the Interface of Ferromagnet/Topological-Insulator Heterostructures Nano Lett. 19 6144–51
    [29]
    Zhou L et al 2019 Topological Hall effect in bulk ferromagnet Cr2Te3 embedded with black-phosphorus-like bismuth nanosheets (arXiv:1903.06486)
    [30]
    Li B, Zhang R, Zhou L, Wang L, Yan Z, He H and Wang G 2022 The construction of Cr2Te3/Bi2/Bi2Te3 superlattice via reduction method by molecular beam epitaxy Appl. Phys. Lett. 120 093102
    [31]
    Takashiro T et al 2022 Soft-magnetic skyrmions induced by surface-state coupling in an intrinsic ferromagnetic topological insulator sandwich structure Nano Lett. 22 881–7
    [32]
    Xia H, Li Y, Cai M, Qin L, Zou N, Peng L, Duan W, Xu Y, Zhang W and Fu Y-S 2019 Dimensional crossover and topological phase transition in Dirac semimetal Na3Bi films ACS Nano 13 9647–54
    [33]
    Zhang Z, Nie J, Zhang Z, Yuan Y, Fu Y-S and Zhang W 2022 Atomic visualization and switching of ferroelectric order in β-In2Se3 films at the single layer limit Adv. Mater. 34 2106951
    [34]
    Zhang T et al 2009 Experimental demonstration of topological surface states protected by time-reversal symmetry Phys. Rev. Lett. 103 266803
    [35]
    Lv H Y, Lu W J, Shao D F, Liu Y and Sun Y P 2015 Strain-controlled switch between ferromagnetism and antiferromagnetism in 1T-CrX2 (X=Se, Te) monolayers Phys. Rev. B 92 214419
    [36]
    Freitas D C, Weht R, Sulpice A, Remenyi G, Strobel P, Gay F, Marcus J and Núñez-Regueiro M 2015 Ferromagnetism in layered metastable 1T-CrTe2 J. Phys.: Condens. Matter 27 176002
    [37]
    Sun X et al 2020 Room temperature ferromagnetism in ultra-thin van der Waals crystals of 1T-CrTe2 Nano Res. 13 3358–63
    [38]
    Zhang X et al 2021 Room-temperature intrinsic ferromagnetism in epitaxial CrTe2 ultrathin films Nat. Commun. 12 2492
    [39]
    Xian J-J et al 2022 Spin mapping of intralayer antiferromagnetism and field-induced spin reorientation in monolayer CrTe2 Nat. Commun. 13 257
    [40]
    Wang C, Zhou X, Zhou L, Pan Y, Lu Z-Y, Wan X, Wang X and Ji W 2020 Bethe-Slater-curve-like behavior and interlayer spin-exchange coupling mechanisms in two-dimensional magnetic bilayers Phys. Rev. B 102 020402
    [41]
    Park K, Heremans J J, Scarola V W and Minic D 2010 Robustness of topologically protected surface states in layering of Bi2Te3 thin films Phys. Rev. Lett. 105 186801
    [42]
    Li R, Nie J-H, Xian J-J, Zhou J-W, Lu Y, Miao M-P, Zhang W-H and Fu Y-S 2022 Planar heterojunction of ultrathin CrTe3 and CrTe2 van der Waals magnet ACS Nano 16 4348–56
    [43]
    Wang G et al 2011 Topological insulator thin films of Bi2Te3 with controlled electronic structure Adv. Mater. 23 2929–32
  • 加载中

Catalog

    Figures(1)

    Article Metrics

    Article Views(309) PDF downloads(117)
    Article Statistics
    Related articles from

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return