Volume 2 Issue 2
May  2023
Turn off MathJax
Article Contents
Eng Liang Lim, Zhanhua Wei. Can two-dimensional graphdiyne-based materials be novel materials for perovskite solar cell applications?[J]. Materials Futures, 2023, 2(2): 027501. doi: 10.1088/2752-5724/acc3b3
Citation: Eng Liang Lim, Zhanhua Wei. Can two-dimensional graphdiyne-based materials be novel materials for perovskite solar cell applications?[J]. Materials Futures, 2023, 2(2): 027501. doi: 10.1088/2752-5724/acc3b3
Commentary •
OPEN ACCESS

Can two-dimensional graphdiyne-based materials be novel materials for perovskite solar cell applications?

© 2023 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory
Materials Futures, Volume 2, Number 2
  • Received Date: 2023-02-15
  • Accepted Date: 2023-03-12
  • Publish Date: 2023-03-24
  • Two-dimensional (2D) graphdiyne (GDY)-based materials have attracted attention in the solar cell research community owing to their unique physicochemical properties and hydrophobic nature which can serve as moisture resistance from the surrounding medium. Benefiting from these, the performance and stability ofperovskite solar cells (PSCs) can be greatly improved via the addition of 2D GDY-based materials. This mini-review summarizes the recent development of 2D GDY-based materials for PSC application. The roles of 2D GDY-based materials, such as hole transporting material, electron transporting material, dopant material in perovskite film and interfacial layer, are discussed in detail. Moreover, we provide future perspectives in this field, aiming to help further progress efficient and stable 2D GDY-based materials in PSCs.
  • loading
  • [1]
    Duan Z, Na G, Wang S, Ning J, Xing B, Huang F, Portniagin A S, Kershaw S V, Zhang L and Rogach A L 2022 Proton transfer-driven modification of 3D hybrid perovskites to form oriented 2D Ruddlesden–Popper phases Small Sci. 2 2100114
    [2]
    Jiang X, Wang K, Wang H, Duan L, Du M, Wang L, Cao Y, Liu L, Pang S and Liu S 2021 Nanoconfined crystallization for high-efficiency inorganic perovskite solar cells Small Sci. 1 2000054
    [3]
    Green M A, Dunlop E D, Siefer G, Yoshita M, Kopidakis N, Bothe K and Hao X 2023 Solar cell efficiency tables (version 61) Prog. Photovolt., Res. Appl. 31 3–16
    [4]
    Liu X K, Xu W, Bai S, Jin Y, Wang J, Friend R H and Gao F 2021 Metal halide perovskites for light-emitting diodes Nat. Mater. 20 10–21
    [5]
    Dong H, Zhang C, Liu X, Yao J and Zhao Y S 2020 Materials chemistry and engineering in metal halide perovskite lasers Chem. Soc. Rev. 49 951–82
    [6]
    García De Arquer F P, Armin A, Meredith P and Sargent E H 2017 Solution-processed semiconductors for next-generation photodetectors Nat. Rev. Mater. 2 16100
    [7]
    Varadan V K, Xie J, Vinoy K J and Yoon H 2004 Nano-and micro-devices for performance improvement of space solar power system URSI Radio Sci. Bull. 2004 36–46
    [8]
    Pasquier A D, Unalan H E, Kanwal A, Miller S and Chhowalla M 2005 Conducting and transparent single-wall carbon nanotube electrodes for polymer-fullerene solar cells Appl. Phys. Lett. 87 203511
    [9]
    Raffaelle R P, Landi B J, Harris J D, Bailey S G and Hepp A F 2005 Carbon nanotubes for power applications Mater. Sci. Eng. B 116 233–43
    [10]
    Li G, Li Y, Liu H, Guo Y, Li Y and Zhu D 2010 Architecture of graphdiyne nanoscale films Chem. Commun. 46 3256–8
    [11]
    Gao X, Liu H, Wang D and Zhang J 2019 Graphdiyne: synthesis, properties, and applications Chem. Soc. Rev. 48 908–36
    [12]
    Liu J, Chen C and Zhao Y 2019 Progress and prospects of graphdiyne-based materials in biomedical applications Adv. Mater. 31 1804386
    [13]
    Hu Y et al 2022 Recent advances in two-dimensional graphdiyne for nanophotonic applications Chem. Eng. J. 450 138228
    [14]
    Lim E L, Yap C C, Jumali M H H, Teridi M A M and Teh C H 2018 A mini review: can graphene be a novel material for perovskite solar cell applications? Nano-Micro Lett. 10 27
    [15]
    Long M, Tang L, Wang D, Li Y and Shuai Z 2011 Electronic structure and carrier mobility in graphdiyne sheet and nanoribbons: theoretical predictions ACS Nano 5 2593–600
    [16]
    Kojima A, Teshima K, Shirai Y and Miyasaka T 2009 Organometal halide perovskites as visible-light sensitizers for photovoltaic cells J. Am. Chem. Soc. 131 6050–1
    [17]
    Kim H-S et al 2012 Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9% Sci. Rep. 2 591
    [18]
    Xiao J, Shi J, Liu H, Xu Y, Lv S, Luo Y, Li D, Meng Q and Li Y 2015 Efficient CH3NH3PbI3 perovskite solar cells based on graphdiyne (GD)-modified P3HT hole-transporting material Adv. Energy Mater. 5 1401943
    [19]
    Li Y, Xu L, Liu H and Li Y 2014 Graphdiyne and graphyne: from theoretical predictions to practical construction Chem. Soc. Rev. 43 2572–86
    [20]
    Li J, Zhao M, Zhao C, Jian H, Wang N, Yao L, Huang C, Zhao Y and Jiu T 2019 Graphdiyne-doped P3CT-K as an efficient hole-transport layer for MAPbI3 perovskite solar cells ACS Appl. Mater. Interfaces 11 2626–31
    [21]
    Cai X, Tang J, Zhao M, Liu L, Yu Z, Du J, Bai L, Lu F, Jiu T and Li Y 2022 Graphdiyne oxide doping for aggregation control of hole-transport nanolayer in inverted perovskite solar cells Nano Res. 15 9734–40
    [22]
    Tang J, Zhao M, Cai X, Liu L, Li X and Jiu T 2021 Graphdiyne oxide modified NiOx for enhanced charge extraction in inverted planar MAPbI3 perovskite solar cells Chem. Res. Chin. Univ. 37 1309–16
    [23]
    Kuang C et al 2015 Highly efficient electron transport obtained by doping PCBM with graphdiyne in planar-heterojunction perovskite solar cells Nano Lett. 15 2756–62
    [24]
    Li J, Jiu T, Duan C, Wang Y, Zhang H, Jian H, Zhao Y, Wang N, Huang C and Li Y 2018 Improved electron transport in MAPbI3 perovskite solar cells based on dual doping graphdiyne Nano Energy 46 331–7
    [25]
    Chen Y, Li J, Wang F, Guo J, Jiu T, Liu H and Li Y 2019 Chemical modification: toward solubility and processability of graphdiyne Nano Energy 64 103932
    [26]
    Yao L, Zhao M, Liu L, Chen S, Wang J, Zhao C, Jia Z, Pang S, Guo X and Jiu T 2021 Graphdiyne oxide doped SnO2 electron transport layer for high performance perovskite solar cells Mater. Chem. Front. 5 6913–22
    [27]
    Zhang S et al 2020 Graphdiyne: bridging SnO2 and perovskite in planar solar cells Angew. Chem. 132 11670–9
    [28]
    Li H et al 2018 Graphdiyne-based bulk heterojunction for efficient and moisture-stable planar perovskite solar cells Adv. Energy Mater. 8 1802012
    [29]
    Li J et al 2018 Graphdiyne as a host active material for perovskite solar cell application Nano Lett. 18 6941–7
    [30]
    Fan W et al 2021 Grain boundary perfection enabled by pyridinic nitrogen doped graphdiyne in hybrid perovskite Adv. Funct. Mater. 31 2104633
    [31]
    Cao X, Guo J, Luan Y, Zhuang J, Niu G, Liu H and Wang J 2021 Defect reduction by anthraquinone-modified graphdiyne quantum dots for efficient perovskite solar cells 2D Mater. 8 044010
    [32]
    Huang H et al 2022 Different mechanisms of improving CH3NH3PbI3 perovskite solar cells brought by fluorinated or nitrogen doped graphdiyne Nano Res. 15 573–80
    [33]
    Li M, Wang Z-K, Kang T, Yang Y, Gao X, Hsu C-S, Li Y and Liao L-S 2018 Graphdiyne-modified cross-linkable fullerene as an efficient electron-transporting layer in organometal halide perovskite solar cells Nano Energy 43 47–54
    [34]
    Li J et al 2019 Inverted MAPbI3 perovskite solar cells with graphdiyne derivative-incorporated electron transport layers exceeding 20% efficiency Sol. RRL 3 1900241
    [35]
    Zhang J, Tian J, Fan J, Yu J and Ho W 2020 Graphdiyne: a brilliant hole accumulator for stable and efficient planar perovskite solar cells Small 16 1907290
    [36]
    Yu H, Xue Y and Li Y 2019 Graphdiyne and its assembly architectures: synthesis, functionalization, and applications Adv. Mater. 31 1803101
    [37]
    Kong Y, Li J, Zeng S, Yin C, Tong L and Zhang J 2020 Bridging the gap between reality and ideality of graphdiyne: the advances of synthetic methodology Chem 6 1933–51
    [38]
    Baikie T, Fang Y, Kadro J M, Schreyer M, Wei F, Mhaisalkar S G, Graetzel M and White T J 2013 Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications J. Mater. Chem. A 1 5628–41
    [39]
    Castro E, Murillo J, Fernandez-Delgado O and Echegoyen L 2018 Progress in fullerene-based hybrid perovskite solar cells J. Mater. Chem. C 6 2635–51
    [40]
    Zhou K, Xian K and Ye L 2022 Morphology control in high-efficiency all-polymer solar cells InfoMat 4 e12270
    [41]
    He Y et al 2022 Industrial viability of single-component organic solar cells Joule 6 1160–71
    [42]
    Chen H-W, Huang T-Y, Chang T-H, Sanehira Y, Kung C-W, Chu C-W, Ikegami M, Miyasaka T and Ho K-C 2016 Efficiency enhancement of hybrid perovskite solar cells with MEH-PPV hole-transporting layers Sci. Rep. 6 34319
  • 加载中

Catalog

    Figures(1)

    Article Metrics

    Article Views(160) PDF downloads(47)
    Article Statistics
    Related articles from

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return