Volume 2 Issue 2
May  2023
Turn off MathJax
Article Contents
Hao Fei, Ruoqi Liu, Yunze Zhang, Hongsheng Wang, Miao Wang, Siyuan Wang, Meng Ni, Zhuangzhi Wu, Jian Wang. Extending MoS2-based materials into the catalysis of non-acidic hydrogen evolution: challenges, progress, and perspectives[J]. Materials Futures, 2023, 2(2): 022103. doi: 10.1088/2752-5724/acc51d
Citation: Hao Fei, Ruoqi Liu, Yunze Zhang, Hongsheng Wang, Miao Wang, Siyuan Wang, Meng Ni, Zhuangzhi Wu, Jian Wang. Extending MoS2-based materials into the catalysis of non-acidic hydrogen evolution: challenges, progress, and perspectives[J]. Materials Futures, 2023, 2(2): 022103. doi: 10.1088/2752-5724/acc51d
Topical Review •
OPEN ACCESS

Extending MoS2-based materials into the catalysis of non-acidic hydrogen evolution: challenges, progress, and perspectives

© 2023 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory
Materials Futures, Volume 2, Number 2
  • Received Date: 2022-12-18
  • Accepted Date: 2023-03-14
  • Publish Date: 2023-05-15
  • The production of hydrogen through water electrolysis (WE) from renewable electricity is set to revolutionise the energy sector that is at present heavily dependent on fossil fuels. However, there is still a pressing need to develop advanced electrocatalysts able to show high activity and withstand industrially-relevant operating conditions for a prolonged period of time. In this regard, high entropy materials (HEMs), including high entropy alloys and high entropy oxides, comprising five or more homogeneously distributed metal components, have emerged as a new class of electrocatalysts owing to their unique properties such as low atomic diffusion, structural stability, a wide variety of adsorption energies and multi-component synergy, making them promising catalysts for challenging electrochemical reactions, including those involved in WE. This review begins with a brief overview about WE technologies and a short introduction to HEMs including their synthesis and general physicochemical properties, followed by a nearly exhaustive summary of HEMs catalysts reported so far for the hydrogen evolution reaction, the oxygen evolution reaction and the overall water splitting in both alkaline and acidic conditions. The review concludes with a brief summary and an outlook about the future development of HEM-based catalysts and further research to be done to understand the catalytic mechanism and eventually deploy HEMs in practical water electrolysers.
  • loading
  • [1]
    Seh Z W, Kibsgaard J, Dickens C F, Chorkendorff I, Norskov J K and Jaramillo T F 2017 Combining theory and experiment in electrocatalysis: insights into materials design Science 355 eaad4998
    [2]
    Yu Q et al 2021 A Ta-TaS2 monolith catalyst with robust and metallic interface for superior hydrogen evolution Nat. Commun. 12 6051–8
    [3]
    Du X et al 2019 Modulating electronic structures of inorganic nanomaterials for efficient electrocatalytic water splitting Angew. Chem., Int. Ed. 58 4484–502
    [4]
    Mallapaty S 2020 How China could be carbon neutral by mid-century Nature 586 482–3
    [5]
    Liu Y et al 2017 Self-optimizing, highly surface-active layered metal dichalcogenide catalysts for hydrogen evolution Nat. Energy 2 17127–33
    [6]
    Yu L, Xia B Y, Wang X and Lou X W 2016 General formation of M-MoS3 (M = Co, Ni) hollow structures with enhanced electrocatalytic activity for hydrogen evolution Adv. Mater. 28 92–97
    [7]
    Anantharaj S and Aravindan V 2020 Developments and perspectives in 3d transition-metal-based electrocatalysts for neutral and near-neutral water electrolysis Adv. Energy Mater. 10 1902666
    [8]
    Wang Y Z, Yang M, Ding Y M, Li N W and Yu L 2021 Recent advances in complex hollow electrocatalysts for water splitting Adv. Funct. Mater. 32 2108681
    [9]
    Liu B C, Cheng Y, Cao B, Hu M H, Jing P, Gao R, Du Y P, Zhang J and Liu J H 2021 Hybrid heterojunction of molybdenum disulfide/single cobalt atoms anchored nitrogen, sulfur-doped carbon nanotube/cobalt disulfide with multiple active sites for highly efficient hydrogen evolution Appl. Catal. B 298 120630
    [10]
    Ledezma-Yanez I, Wallace W D Z, Sebastian-Pascual P, Climent V, Feliu J M and Koper M T M 2017 Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes Nat. Energy 2 17031–7
    [11]
    Pei Z X, Gu J X, Wang Y K, Tang Z J, Liu Z X, Huang Y, Huang Y, Zhao J X, Chen Z F and Zhi C Y 2017 Synthesis and characterization of metallic Janus MoSH monolayer ACS Nano 11 6004–14
    [12]
    Wang J, Xu F, Jin H Y, Chen Y Q and Wang Y 2017 Non-noble metal-based carbon composites in hydrogen evolution reaction: fundamentals to applications Adv. Mater. 29 1605838
    [13]
    Shi Y M and Zhang B 2016 Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction Chem. Soc. Rev. 45 1529–41
    [14]
    Tang C, Zhong L, Zhang B, Wang H F and Zhang Q 2018 3D mesoporous van der Waals heterostructures for trifunctional energy electrocatalysis Adv. Mater. 30 1705110
    [15]
    Kumar A et al 2021 Moving beyond bimetallic-alloy to single-atom dimer atomic-interface for all-pH hydrogen evolution Nat. Commun. 12 6766–75
    [16]
    Liu W, Wang X, Wang F, Du K, Zhang Z, Guo Y, Yin H and Wang D 2021 A durable and pH-universal self-standing MoC-Mo2C heterojunction electrode for efficient hydrogen evolution reaction Nat. Commun. 12 6776–85
    [17]
    Chu S and Majumdar A 2012 Opportunities and challenges for a sustainable energy future Nature 488 294–303
    [18]
    Yu W T, Porosoff M D and Chen J G G 2012 Review of Pt-based bimetallic catalysis: from model surfaces to supported catalysts Chem. Rev. 112 5780–817
    [19]
    Qin J Y, Xi C, Zhang R, Liu T, Zou P C, Wu D Y, Guo Q J, Mao J, Xin H L and Yang J 2021 Activating edge-Mo of 2H-MoS2 via coordination with pyridinic N-C for pH-universal hydrogen evolution electrocatalysis ACS Catal. 11 4486–97
    [20]
    Zheng Z et al 2020 Boosting hydrogen evolution on MoS2 via co-confining selenium in surface and cobalt in inner layer Nat. Commun. 11 3315–24
    [21]
    Wang Y, Mao J, Meng X, Yu L, Deng D and Bao X 2019 Catalysis with two-dimensional materials confining single atoms: concept, design, and applications Chem. Rev. 119 1806–54
    [22]
    Gao M R, Liang J X, Zheng Y R, Xu Y F, Jiang J, Gao Q, Li J and Yu S H 2015 An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation Nat. Commun. 6 5982–8
    [23]
    Doan T L L, Nguyen D C, Prabhakaran S, Kim D H, Tran D T, Kim N H and Lee J H 2021 Single-atom Co-decorated MoS2 nanosheets assembled on metal nitride nanorod arrays as an efficient bifunctional electrocatalyst for pH-universal water splitting Adv. Funct. Mater. 31 2100233
    [24]
    Liu X Y, Li B C, Soto F A, Li X F, Unocic R R, Balbuena P B, Harutyunyan A R, Hone J and Esposito D V 2021 Enhancing hydrogen evolution activity of monolayer molybdenum disulfide via a molecular proton mediator ACS Catal. 11 12159–69
    [25]
    Sun C, Wang L L, Zhan W W, Xie L B, Wang J, Li J M, Li B X, Liu S J, Zhuang Z C and Zhao Q 2022 Atomic-level design of active site on two-dimensional MoS2 toward efficient hydrogen evolution: experiment, theory, and artificial intelligence modelling Adv. Funct. Mater. 32 2206163
    [26]
    Fei L F, Lei S J, Zhang W B, Lu W, Lin Z Y, Lam C H, Chai Y and Wang Y 2016 Direct TEM observations of growth mechanisms of two-dimensional MoS2 flakes Nat. Commun. 7 12206–12
    [27]
    Pattengale B et al 2020 Dynamic evolution and reversibility of single-atom Ni(II) active site in 1T-MoS2 electrocatalysts for hydrogen evolution Nat. Commun. 11 4114–22
    [28]
    Fang S, Wen Y, Allen C S, Ophus C, Han G G D, Kirkland A I, Kaxiras E and Warner J H 2019 Atomic electrostatic maps of 1D channels in 2D semiconductors using 4D scanning transmission electron microscopy Nat. Commun. 10 1127
    [29]
    Oh H M, Kim H, Kim H and Jeong M S 2019 Fabrication of stacked MoS2 bilayer with weak interlayer coupling by reduced graphene oxide spacer Sci. Rep. 9 5900–6
    [30]
    Niu S W, Cai J Y and Wang G M 2021 Two-dimensional MoS2 for hydrogen evolution reaction catalysis: the electronic structure regulation Nano Res. 14 1985–2002
    [31]
    Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Single-layer MoS2 transistors Nat. Nanotechnol. 6 147–50
    [32]
    He Z and Que W 2016 Molybdenum disulfide nanomaterials: structures, properties, synthesis and recent progress on hydrogen evolution reaction Appl. Mater. Today 3 23–56
    [33]
    Benavente E and Santa Ana M Mendizábal F and GonzálezCoord G 2002 Intercalation chemistry of molybdenum disulfide Chem. Rev. 224 87–109
    [34]
    Li H Y, Jia X F, Zhang Q and Wang X 2018 Metallic transition-metal dichalcogenide nanocatalysts for energy conversion Chem 4 1510–37
    [35]
    Yan S, Qiao W, He X, Guo X, Xi L, Zhong W and Du Y 2015 Enhancement of magnetism by structural phase transition in MoS2 Appl. Phys. Lett. 106 012408
    [36]
    Wypych F and Schöllhorn R 1992 1T-MoS2, a new metallic modification of molybdenum disulfide J. Chem. Soc. Chem. Commun. 1386–8
    [37]
    Cao J, Zhang Y C, Zhang C, Cai L J and Li Z L 2021 Construction of defect-rich 1T-MoS2 towards efficient electrocatalytic hydrogen evolution: recent advances and future perspectives Surf. Interfaces 25 101305
    [38]
    Sun X L, Wang Z G, Li Z J and Fu Y Q 2016 Origin of structural transformation in mono- and bi-layered molybdenum disulfide Sci. Rep. 6 26666–74
    [39]
    Chhowalla M, Voiry D, Yang J, Shin H S and Loh K P 2015 Phase-engineered transition-metal dichalcogenides for energy and electronics MRS Bull. 40 585–91
    [40]
    Mahler B, Hoepfner V, Liao K and Ozin G A 2014 Colloidal synthesis of 1T-WS2 and 2H-WS2 nanosheets: applications for photocatalytic hydrogen evolution J. Am. Chem. Soc. 136 14121–7
    [41]
    Duerloo K A N, Li Y and Reed E J 2014 Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers Nat. Commun. 5 4214–22
    [42]
    Johari P and Shenoy V B 2012 Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains ACS Nano 6 5449–56
    [43]
    Toh R J, Sofer Z, Luxa J, Sedmidubsk´y D and Pumera M 2017 3R phase of MoS2 and WS2 outperforms the corresponding 2H phase for hydrogen evolution Chem. Commun. 53 3054
    [44]
    Fang Y et al 2018 Structure re-determination and superconductivity observation of bulk 1T MoS2 Angew. Chem., Int. Ed. 57 1232–5
    [45]
    Coogan A and Gun’ko Y K 2021 Solution-based ´ “bottom-up” synthesis of group VI transition metal dichalcogenides and their applications Mater. Adv. 2 146–64
    [46]
    Li M Y, Chen C, Shi Y M and Li L 2016 Heterostructures based on two-dimensional layered materials and their potential applications Mater. Today 19 322–35
    [47]
    Crane M J, Lim M B, Zhou X and Pauzauskie P J 2017 Rapid synthesis of transition metal dichalcogenide–carbon aerogel composites for supercapacitor electrodes Microsyst. Nanoeng. 3 17032
    [48]
    Mattinen M, Hatanpää T, Sarnet T, Mizohata K, Meinander K, King P J, Khriachtchev L, Räisänen J, Ritala M and Leskelä M 2017 Atomic layer deposition of crystalline MoS2 thin films: new molybdenum precursor for low-temperature film growth Adv. Mater. Interfaces 4 1700123
    [49]
    Samy O, Zeng S W, Birowosuto M D and Moutaouakil A E 2021 A review on MoS2 properties, synthesis, sensing applications and challenges Crystals 11 355
    [50]
    Wang F, Li G, Zheng J F, Ma J, Yang C X and Wang Q Z 2018 Hydrothermal synthesis of flower-like molybdenum disulfide microspheres and their application in electrochemical supercapacitors RSC Adv. 8 38945–54
    [51]
    Rhuy D et al 2022 Ultraefficient electrocatalytic hydrogen evolution from strain-engineered multilayer MoS2 Nano Lett. 22 5742–50
    [52]
    Lukowski M A, Daniel A S, Meng F, Forticaux A, Li L and Jin S 2013 Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets J. Am. Chem. Soc. 135 10274–7
    [53]
    Gao Z W, Liu M J, Zheng W R, Zhang X D and Lee L Y S 2019 Surface engineering of MoS2 via laser-induced exfoliation in protic solvents Small 15 1903791
    [54]
    Zhang X, Zhang Y, Yu B, Yin X L, Jiang W J, Hu J S and Wan L J 2015 Physical vapor deposition of amorphous MoS2 nanosheet arrays on carbon cloth for highly reproducible large-area electrocatalysts for the hydrogen evolution reaction J. Mater. Chem. A 3 19277–81
    [55]
    Zhang J, Wu J J, Guo H, Chen W B, Yuan J T, Martinez U, Gupta G, Mohite A, Ajayan P M and Lou J 2017 Unveiling active sites for the hydrogen evolution reaction on monolayer MoS2 Adv. Mater. 29 1701955
    [56]
    Kappera R et al 2014 Metallic 1T phase source/drain electrodes for field effect transistors from chemical vapor deposited MoS2 APL Mater. 2 092516
    [57]
    Jiao S L, Kong M S, Hu Z P, Zhou S M, Xu X X and Lui L 2022 Pt atom on the wall of atomic layer deposition (ALD)-made MoS2 nanotubes for efficient hydrogen evolution Small 18 2105129
    [58]
    Chen B, Hu P, Yang F, Hua X J, Yang F F, Zhu F, Sun R Y, Hao K, Wang K and Yin Z Y 2023 In situ porousized MoS2 nano islands enhance HER/OER bifunctional electrocatalysis Small 19 2207177
    [59]
    Dong S Z, Li Y S, Zhao Z L, Li R C, He J Q, Yin J P, Yan B and Zhang X 2022 A review of the application of heterostructure catalysts in hydrogen evolution reaction ChemistrySelect 7 e202104041
    [60]
    Wang X S, Zheng Y, Sheng W C, Xu Z C J, Jaroniec M and Qiao S Z 2020 Strategies for design of electrocatalysts for hydrogen evolution under alkaline conditions Mater. Today 36 125–38
    [61]
    Subbaraman R, Tripkovic D, Chang K C, Strmcnik D, Paulikas A P, Hirunsit P, Chan M, Greeley J, Stamenkovic V and Markovic N M 2012 Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts Nat. Mater. 11 550–7
    [62]
    Sheng W C, Zhuang Z B, Gao M R, Zheng J, Chen J G and Yan Y S 2015 Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy Nat. Commun. 6 5848–53
    [63]
    Strmcnik D, Uchimura M, Wang C, Subbaraman R, Danilovic N, Vliet D V D, Paulikas A P, Stamenkovic V R and Markovic N M 2013 Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption Nat. Chem. 5 300–6
    [64]
    Murthy A P, Govindarajan D, Theerthagiri J, Madhavan J and Parasuraman K 2018 Metal-doped molybdenum nitride films for enhanced hydrogen evolution in near-neutral strongly buffered aerobic media Electrochim. Acta 283 1525–33
    [65]
    Son D Y, Bae K H, Kim H S and Park N G 2015 Effects of seed layer on growth of ZnO nanorod and performance of perovskite solar cell J. Phys. Chem. C 119 10321–8
    [66]
    Shinagawa T and Takanabe K 2017 Towards versatile and sustainable hydrogen production through electrocatalytic water splitting: electrolyte engineering ChemSusChem 10 1318–36
    [67]
    Carmo M, Fritz D L, Mergel J and Stolten D 2013 A comprehensive review on PEM water electrolysis Int. J. Hydrog. Energy 38 4901–34
    [68]
    Strmcnik D, Lopes P P, Genorio B, Stamenkovic V R and Markovic N M 2016 Design principles for hydrogen evolution reaction catalyst materials Nano Energy 29 29–36
    [69]
    Wang J, Gao Y, Kong H, Kim J, Choi S, Ciucci F, Hao Y, Yang S H, Shao Z P and Lim J 2020 Non-precious-metal catalysts for alkaline water electrolysis: operando characterizations, theoretical calculations, and recent advances Chem. Soc. Rev. 49 9154–96
    [70]
    Subbaraman R, Tripkovic D, Strmcnik D, Chang K, Uchimura M, Paulikas A P, Stamenkovic V and Markovic N M 2011 Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt Interfaces Sci. 334 1256–60
    [71]
    Tsuji H and Nakamura E 2017 Design and functions of semiconducting fused polycyclic furans for optoelectronic applications Acc. Chem. Res. 50 396–406
    [72]
    Wang J, Gao Y and Ciucci F 2018 Mechanochemical coupling of MoS2 and perovskites for hydrogen generation ACS Appl. Energy Mater. 1 6409–16
    [73]
    Li J K, Ghoshal S, Bates M K, Miller T E, Davies V, Stavitski E, Attenkofer K, Mukerjee S, Ma Z F and Jia Q Y 2017 Experimental proof of the bifunctional mechanism for the hydrogen oxidation in alkaline media Angew. Chem., Int. Ed. 56 15594–8
    [74]
    Huang Y C et al 2019 Atomically engineering activation sites onto metallic 1T-MoS2 catalysts for enhanced electrochemical hydrogen evolution Nat. Commun. 10 982–92
    [75]
    Wang Y, Pan Y, Zhang L G, Yue Y, Zhou J Z, Xu Y F and Qian G R 2015 Can washing-pretreatment eliminate the health risk of municipal solid waste incineration fly ash reuse? Ecotoxicol. Environ. Saf. 111 177–84
    [76]
    Durst J, Siebel A, Simon C, Hasché F, Herranz J and Gasteiger H A 2014 New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism Energy Environ. Sci. 7 2255–60
    [77]
    Intikhab S, Snyder J D and Tang M H 2017 Adsorbed hydroxide does not participate in the volmer step of alkaline hydrogen electrocatalysis ACS Catal. 7 8314–9
    [78]
    Rebollar L, Intikhab S, Snyder J D and Tang M H 2018 Determining the viability of hydroxide-mediated bifunctional HER/HOR mechanisms through single-crystal voltammetry and microkinetic modeling J. Electrochem. Soc. 165 J3209
    [79]
    Liu E S, Li J K, Jiao L, Doan H T T, Liu Z Y, Zhao Z P, Huang Y, Abraham K M, Mukerjee S and Jia Q Y 2019 Unifying the hydrogen evolution and oxidation reactions kinetics in base by identifying the catalytic roles of hydroxyl-water-cation adducts J. Am. Chem. Soc. 141 3232–9
    [80]
    Conway B E and Tilak B V 2002 Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H Electrochim. Acta 47 3571–94
    [81]
    Conway B E and Jerkiewicz G 2000 Relation of energies and coverages of underpotential and overpotential deposited H at Pt and other metals to the ‘volcano curve’ for cathodic H2 evolution kinetics Electrochim. Acta 45 4075–83
    [82]
    Zheng J, Sheng W C, Zhuang Z B, Xu B J and Yan Y S 2016 Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy Sci. Adv. 2 e1501602
    [83]
    Sheng W C, Myint M, Chen J G and Yan Y 2013 Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces Energy Environ. Sci. 6 1509–12
    [84]
    Markovic N, Gasteiger H and Ross P N 1997 Kinetics of oxygen reduction on Pt(hkl) electrodes: implications for the crystallite size effect with supported Pt electrocatalysts J. Electrochem. Soc. 144 1591–7
    [85]
    Gisbert R, Garcia G and Koper M T M 2010 Adsorption of phosphate species on poly-oriented Pt and Pt(1 1 1) electrodes over a wide range of pH Electrochim. Acta 55 7961–8
    [86]
    Li G Q, Zhang D, Yu Y F, Huang S Y, Yang W T and Cao L Y 2017 Activating MoS2 for pH-universal hydrogen evolution catalysis J. Am. Chem. Soc. 139 16194–200
    [87]
    Schmidt T J, Ross P N and Markovic N M 2002 Temperature dependent surface electrochemistry on Pt single crystals in alkaline electrolytes: part 2. The hydrogen evolution/oxidation reaction J. Electroanal. Chem. 524 252–60
    [88]
    Cheng T, Wang L, Merinov B V and Goddard W A 2018 Explanation of dramatic pH-dependence of hydrogen binding on noble metal electrode: greatly weakened water adsorption at high pH J. Am. Chem. Soc. 140 787–7790
    [89]
    Ramaswamy N, Ghoshal S, Bates M K, Jia Q Y, Li J K and Mukerjee S 2017 Hydrogen oxidation reaction in alkaline media: relationship between electrocatalysis and electrochemical double-layer structure Nano Energy 41 765–71
    [90]
    Climent V, Coles B A and Compton R G 2002 Laser-induced potential transients on a Au(111) single-crystal electrode. determination of the potential of maximum entropy of double-layer formation J. Phys. Chem. B 106 5258–65
    [91]
    Zhou Z, Pei Z X, Wei L, Zhao S L, Jian X and Chen Y 2020 Electrocatalytic hydrogen evolution under neutral pH conditions: current understandings, recent advances, and future prospects Energy Environ. Sci. 13 3185–206
    [92]
    Shinagawa T and Takanabe K 2015 Identification of intrinsic catalytic activity for electrochemical reduction of water molecules to generate hydrogen Phys. Chem. Chem. Phys. 17 15111–4
    [93]
    Shinagawa T and Takanabe K 2015 Electrocatalytic hydrogen evolution under densely buffered neutral pH conditions J. Phys. Chem. C 119 20453–8
    [94]
    Shinagawa T and Takanabe K 2016 Electrolyte engineering toward efficient hydrogen production electrocatalysis with oxygen-crossover regulation under densely buffered near-neutral pH conditions J. Phys. Chem. C 120 1785–94
    [95]
    Shinagawa T, Garcia-Esparza A T and Takanabe K 2014 Mechanistic switching by hydronium ion activity for hydrogen evolution and oxidation over polycrystalline platinum disk and platinum/carbon electrodes ChemElectroChem 1 1497–507
    [96]
    Katsounaros I, Meier J C, Klemm S O, Topalov A A, Biedermann P U, Auinger M and Mayrhofer K J J 2011 The effective surface pH during reactions at the solid–liquid interface Electrochem. Commun. 13 634–7
    [97]
    Auinger M, Katsounaros I, Meier J C, Klemm S O, Biedermann P U, Topalov A A, Rohwerder M and Mayrhofer K J J 2011 Near-surface ion distribution and buffer effects during electrochemical reactions Phys. Chem. Chem. Phys. 13 16384–94
    [98]
    Huang Z F, Song J J, Li K, Tahir M, Wang Y T, Pan L, Wang L, Zhang X W and Zou J J 2016 Hollow cobalt-based bimetallic sulfide polyhedra for efficient all-pH-value electrochemical and photocatalytic hydrogen evolution J. Am. Chem. Soc. 138 1359–65
    [99]
    You B, Liu X, Hu G, Gul S, Yano J, Jiang D E and Sun Y 2017 Universal surface engineering of transition metals for superior electrocatalytic hydrogen evolution in neutral water J. Am. Chem. Soc. 139 12283–90
    [100]
    Zhang R, Wang X X, Yu S J, Wen T, Zhu X W, Yang F X, Sun X N, Wang X K and Hu W P 2017 Electrocatalysts: ternary NiCo2Px nanowires as pH-universal electrocatalysts for highly efficient hydrogen evolution reaction Adv. Mater. 29 1605502
    [101]
    Lauritsen J V, Kibsgaard J, Helveg S, Topsøe H, Clausen B S, Lægsgaard E and Besenbacher F 2007 Size-dependent structure of MoS2 nanocrystals Nat. Nanotechnol. 2 53–58
    [102]
    Dolui K, Pemmaraju C D and Sanvito S 2012 Electric field effects on armchair MoS2 nanoribbons ACS Nano 6 4823–34
    [103]
    Hu G, Wu Z and Jiang D-E 2018 Stronger-than-Pt hydrogen adsorption in a Au22 nanocluster for the hydrogen evolution reaction J. Mater. Chem. A 6 7532–7
    [104]
    Kibsgaard J, Chen Z, Reinecke B N and Jaramillo T F 2012 Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis Nat. Mater. 11 963–9
    [105]
    Xie J, Zhang H, Li S, Wang R, Sun X, Zhou M, Zhou J, Lou X W and Xie Y 2013 Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution Adv. Mater. 25 5807–13
    [106]
    Voiry D, Salehi M, Silva R, Fujita T, Chen M, Asefa T, Shenoy V B, Eda G and Chhowalla M 2013 Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction Nano Lett. 13 6222–7
    [107]
    Yin Y et al 2016 Contributions of phase, sulfur vacancies, and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets J. Am. Chem. Soc. 138 7965–72
    [108]
    Shi Y, Zhou Y, Yang D R, Xu W X, Wang C, Wang F B, Xu J J, Xia X H and Chen H Y 2017 Energy level engineering of MoS2 by transition-metal doping for accelerating hydrogen evolution reaction J. Am. Chem. Soc. 139 15479–85
    [109]
    Dai X, Du K, Li Z, Liu M, Ma Y, Sun H, Zhang X and Yang Y 2015 Co-doped MoS2 nanosheets with the dominant CoMoS phase coated on carbon as an excellent electrocatalyst for hydrogen evolution ACS Appl. Mater. Interfaces 7 27242–53
    [110]
    Ge X, Chen L, Zhang L, Wen Y, Hirata A and Chen M 2014 Nanoporous metal enhanced catalytic activities of amorphous molybdenum sulfide for high-efficiency hydrogen production Adv. Mater. 26 3100–4
    [111]
    Deng J et al 2017 Multiscale structural and electronic control of molybdenum disulfide foam for highly efficient hydrogen production Nat. Commun. 8 14430–7
    [112]
    Wang X, Zhang Y, Si H, Zhang Q, Wu J, Gao L, Wei X, Sun Y, Liao Q and Zhang Z 2020 Single-atom vacancy defect to trigger high-efficiency hydrogen evolution of MoS2 J. Am. Chem. Soc. 142 429–4308
    [113]
    Luo Z Y et al 2018 Chemically activating MoS2 via spontaneous atomic palladium interfacial doping towards efficient hydrogen evolution Nat. Commun. 9 2120–7
    [114]
    Tsai C, Li H, Park S, Park J, Han H S, Nørskov J K, Zheng X L and Abild-Pedersen F 2017 Electrochemical generation of sulfur vacancies in the basal plane of MoS2 for hydrogen evolution Nat. Commun. 8 15113–20
    [115]
    Li H et al 2016 Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies Nat. Mater. 15 48–53
    [116]
    Feng Y Y, Zhang T, Zhang J H, Fan H, He C and Song J X 2020 3D 1T-MoS2/CoS2 heterostructure via interface engineering for ultrafast hydrogen evolution reaction Small 16 e2002850
    [117]
    Vikraman D, Hussain S, Akbar K, Truong L, Kathalingam A, Chun S H, Jung J, Park H J and Kim H S 2018 Improved hydrogen evolution reaction performance using MoS2-WS2 heterostructures by physicochemical process ACS Sustain. Chem. Eng. 6 8400–9
    [118]
    Li Y J, Wang W Y, Huang B J, Mao Z F, Wang R, He B B, Gong Y S and Wang H W 2021 Abundant heterointerfaces in MOF-derived hollow CoS2-MoS2 nanosheet array electrocatalysts for overall water splitting J. Energy Chem. 57 99–108
    [119]
    Liu P T, Zhu J Y, Zhang J Y, Xi P X, Tao K, Gao D Q and Xue D S 2017 P dopants triggered new basal plane active sites and enlarged interlayer spacing in MoS2 nanosheets toward electrocatalytic hydrogen evolution ACS Energy Lett. 2 745–52
    [120]
    Wang Z, Zhang Y, Neyts E C, Cao X X, Zhang X S, Zhang B W-L and Liu C J 2018 Catalyst preparation with plasmas: how does it work? ACS Catal. 8 2093–110
    [121]
    Sun H, Yan Z, Liu F, Xu W, Cheng F and Chen J 2020 Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution Adv. Mater. 32 1806326
    [122]
    Gong F et al 2021 All-pH stable sandwich-structured MoO2/MoS2/C hollow nanoreactors for enhanced electrochemical hydrogen evolution Adv. Funct. Mater. 31 2101715
    [123]
    Laursen A B, Kegnæs S, Dahla S and Chorkendorffa I 2012 Molybdenum sulfides-efficient and viable materials for electro-and photoelectrocatalytic hydrogen evolution Energy Environ. Sci. 5 5577–91
    [124]
    Li Y, Wang H, Xie L, Liang Y, Hong G and Dai H 2011 MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction J. Am. Chem. Soc. 133 7296–9
    [125]
    Fu W et al 2016 Strong interfacial coupling of MoS2/g-C3N4 van de Waals solids for highly active water reduction Nano Energy 27 44–50
    [126]
    Qi F et al 2015 Effect of hydrogen on the growth of MoS2 thin layers by thermal decomposition method Vacuum 119 204–8
    [127]
    Tributsch H and Bennett J C 1977 Electrochemistry and photochemistry of MoS2 layer crystals. I J. Electroanal. Chem. Interfacial Electrochem. 81 97–111
    [128]
    Hinnemann B, Moses P G, Bonde J, Jørgensen K P, Nielsen J H, Horch S, Chorkendorff I and Nørskov J K 2005 Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution J. Am. Chem. Soc. 127 5308–9
    [129]
    Jaramillo T F, Jørgensen K P, Bonde J, Nielsen J H, Horch S and Chorkendorff I 2007 Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts Science 317 100–2
    [130]
    Siegbahn P E M 2004 Proton and electron transfers in [NiFe] hydrogenase Adv. Inorg. Chem. 56 101–25
    [131]
    Zhu J T, Tu Y D, Cai L J, Ma H B, Chai Y, Zhang L F and Zhang W J 2022 Defect-assisted anchoring of Pt single atoms on MoS2 nanosheets produces high-performance catalyst for industrial hydrogen evolution reaction Small 18 2104824
    [132]
    Zhang B, Liu J, Wang J S, Ruan Y J, Ji X, Xu K, Chen C, Wan H Z, Miao L and Jiang J J 2017 Interface engineering: the Ni(OH)2/MoS2 heterostructure for highly efficient alkaline hydrogen evolution Nano Energy 37 74–80
    [133]
    Hu J, Zhang C X, Jiang L, Lin H, An Y M, Zhou D, Leung M K H and Yang S H 2017 Nanohybridization of MoS2 with layered double hydroxides efficiently synergizes the hydrogen evolution in alkaline media Joule 1 383–93
    [134]
    Li J X, Du X H, Luo Y H, Han B L, Liu G H and Li J D 2023 MoS2/NiVFe crystalline/amorphous heterostructure induced electronic modulation for efficient neutral-alkaline hydrogen evolution Electrochim. Acta 437 141478
    [135]
    Liu X L, Lv X S, Wang P, Zhang Q Q, Huang B B, Wang Z Y, Liu Y Y, Zheng Z K and Dai Y 2019 The synergistic effect of light irradiation and interface engineering of the Co(OH)2/MoS2 heterostructure to realize the efficient alkaline hydrogen evolution reaction Electrochim. Acta 299 618–25
    [136]
    Luo J B, Zhou Y, Tuo Y X, Gu Y F, Wang X Z, Guo Q Y, Chen C, Wang D, Wang S T and Zhang J 2022 Interfacial polarization in ultra-small Co3S4−MoS2 heterostructure for efficient electrocatalytic hydrogen evolution reaction Appl. Mater. Today 26 101311
    [137]
    Stamenkovic V R, Strmcnik D, Lopes P P and Markovic N M 2017 Energy and fuels from electrochemical interfaces Nat. Mater. 16 57–69
    [138]
    Nørskov J K, Bligaard T, Rossmeisl J and Christensen C H 2009 Towards the computational design of solid catalysts Nat. Chem. 1 37–46
    [139]
    Zheng Y, Jiao Y and Qiao S Z 2015 Engineering of carbon-based electrocatalysts for emerging energy conversion: from fundamentality to functionality Adv. Mater. 27 5372–8
    [140]
    Qiao W, Xu W, Xu X Y, Wu L Q, Yan S M and Wang D H 2020 Construction of active orbital via single-atom cobalt anchoring on the surface of 1T-MoS2 basal plane toward efficient hydrogen evolution ACS Appl. Energy Mater. 3 2315–22
    [141]
    Zang Y P et al 2019 Tuning orbital orientation endows molybdenum disulfide with exceptional alkaline hydrogen evolution capability Nat. Commun. 10 1217–24
    [142]
    Wiensch J D, John J, Velazquez J M, Torelli D A, Pieterick A P, McDowell M T, Sun K, Zhao X H, Brunschwig B S and Lewis N S 2017 Comparative study in acidic and alkaline media of the effects of pH and crystallinity on the hydrogen-evolution reaction on MoS2 and MoSe2 ACS Energy Lett. 2 2234–8
    [143]
    Hu J, Zhang C X, Yang P, Xiao J Y, Deng T, Liu Z Y, Huang B, Leung M K H and Yang S H 2020 Kinetic-oriented construction of MoS2 synergistic interface to boost pH-universal hydrogen evolution Adv. Funct. Mater. 30 1908520
    [144]
    Li H M, Qian X, Xu C, Huang S W, Zhu C L, Jiang X C, Shao L and Hou L X 2017 Hierarchical porous Co9S8/nitrogen-doped carbon@MoS2 polyhedrons as pH universal electrocatalysts for highly efficient hydrogen evolution reaction ACS Appl. Mater. Interfaces 9 28394–405
    [145]
    Gao X, Chen Y, Sun T, Huang J, Zhang W, Wang Q and Cao R 2020 Karst landform-featured monolithic electrode for water electrolysis in neutral media Energy Environ. Sci. 13 174–82
    [146]
    Li Y, Zuo S W, Li Q H, Huang H W, Wu X, Zhang J, Zhang H B and Zhang J 2022 Hierarchical C-MoCSx @MoS2 nanoreactor as a chainmail catalyst for seawater splitting Appl. Catal. B 318 121832
    [147]
    Huang W, Zhou D J, Qi G C and Liu X J 2021 Fe-doped MoS2 nanosheets array for high-current-density seawater electrolysis Nanotechnology 32 415403
    [148]
    Cheng Z H, Xiao Y K, Wu W P, Zhang X Q, Fu Q, Zhao Y and Qu L T 2021 All-pH-tolerant in-plane heterostructures for efficient hydrogen evolution reaction ACS Nano 15 11417–27
    [149]
    Chen I P, Hsiao C, Huang J, Peng Y H and Chang C 2019 Highly efficient hydrogen evolution from seawater by biofunctionalized exfoliated MoS2 quantum dot aerogel electrocatalysts that is superior to Pt ACS Appl. Mater. Interfaces 11 14159–65
    [150]
    Yang C M et al 2022 Large-scale synthetic Mo@(2H-1T)-MoSe2 monolithic electrode for efficient hydrogen evolution in all pH scale ranges and seawater Appl. Catal. B 304 120933
    [151]
    Shi S P, Gao D Q, Xia B R, Liu P T and Xue D S 2015 Enhanced hydrogen evolution catalysis in MoS2 nanosheets by incorporation of a metal phase J. Mater. Chem. A 3 24414–21
    [152]
    Xie J F, Qu H C, Xin J P, Zhang X X, Cui G W, Zhang X D, Bao J, Tang B and Xie Y 2017 Defect-rich MoS2 nanowall catalyst for efficient hydrogen evolution reaction Nano Res. 10 1178–88
    [153]
    Xiao W, Tao P, Zhang J Y, Song W D, Feng Y P, Gao D Q and Ding J 2017 Dual-functional N dopants in edges and basal plane of MoS2 nanosheets toward efficient and durable hydrogen evolution Adv. Energy Mater. 7 1602086
    [154]
    Meng X Y, Ma C, Jiang L Z, Si R, Meng X G, Tu Y C, Yu L, Bao X H and Deng D H 2020 Distance synergy of MoS2-confined rhodium atoms for highly efficient hydrogen evolution Angew. Chem., Int. Ed. 132 10588–93
    [155]
    Luo Z, Zhang H, Yang Y, Wang X, Li Y, Jin Z, Jiang Z, Liu C, Xing W and Ge J 2020 Reactant friendly hydrogen evolution interface based on di-anionic MoS2 surface 2020 Nat. Commun. 11 1116
    [156]
    Deng S J et al 2019 Synergistic doping and intercalation: realizing deep phase modulation on MoS2 arrays for high-efficiency hydrogen evolution reaction Angew. Chem., Int. Ed. 58 16289–96
    [157]
    Jin Q, Liu N, Dai C N, Xu R N, Wu B, Yu G Q, Chen B H and Du Y Z 2020 H2-directing strategy on in situ synthesis of Co-MoS2 with highly expanded interlayer for elegant HER activity and its mechanism Adv. Energy Mater. 10 2000291
    [158]
    Li C Y et al 2020 Flexible and free-standing hetero-electrocatalyst of high-valence-cation doped MoS2/MoO2/CNT foam with synergistically enhanced hydrogen evolution reaction catalytic activity J. Mater. Chem. A 8 14944–54
    [159]
    Yang W W et al 2020 Conversion of intercalated MoO3 to multi-heteroatoms-doped MoS2 with high hydrogen evolution activity Adv. Mater. 32 2001167
    [160]
    Li Y et al 2021 Synergistic Pt doping and phase conversion engineering in two-dimensional MoS2 for efficient hydrogen evolution Nano Energy 84 105898
    [161]
    Tan C L et al 2018 Preparation of high-percentage 1T-phase transition metal dichalcogenide nanodots for electrochemical hydrogen evolution Adv. Mater. 30 1705509
    [162]
    Zhang X, Zhou F, Zhang S, Liang Y Y and Wang R H 2019 Engineering MoS2 basal planes for hydrogen evolution via synergistic ruthenium doping and nanocarbon hybridization Adv. Sci. 6 1900090
    [163]
    Zhang L Y, Zheng Y J, Wang J C, Geng Y, Zhang B, He J J, Xue J M, Frauenheim T and Li M 2021 Ni/Mo bimetallic-oxide-derived heterointerface-rich sulfide nanosheets with Co-doping for efficient alkaline hydrogen evolution by boosting Volmer reaction Small 17 2006730
    [164]
    Anjum M A R, Jeong H Y, Lee M H, Shin H S and Lee J S 2018 Efficient hydrogen evolution reaction catalysis in alkaline media by all-in-one MoS2 with multifunctional active sites Adv. Mater. 30 1707105
    [165]
    Sun T et al 2018 Engineering the electronic structure of MoS2 nanorods by N and Mn dopants for ultra-efficient hydrogen production ACS Catal. 8 7585–92
    [166]
    Xing Z C, Yang X R, Asiri A M and Sun X P 2016 Three-dimensional structures of MoS2@Ni core/shell nanosheets array toward synergetic electrocatalytic water splitting ACS Appl. Mater. Interfaces 8 14521–6
    [167]
    Mao B D, Wang B, Yu F R, Zhang K W, Zhang Z Y, Hao J H, Zhong J B, Liu Y H and Shi W D 2018 Hierarchical MoS2 nanoflowers on carbon cloth as an efficient cathode electrode for hydrogen evolution under all pH values Int. J. Hydrog. Energy 43 11038–46
    [168]
    Yang X, Nash J, Oliveira N, Yan Y S and Xu B J 2019 Understanding the pH dependence of underpotential deposited hydrogen on platinum Angew. Chem. 131 17882–7
    [169]
    Montenegro A, Dutta C, Mammetkuliev M, Shi H T, Hou B Y, Bhattacharyya D, Zhao B, Cronin S B and Benderskii A V 2021 Asymmetric response of interfacial water to applied electric fields Nature 594 62–65
    [170]
    Sun K et al 2022 Interfacial water engineering boosts neutral water reduction Nat. Commun. 13 6260
    [171]
    Staazak-Jirkovsk´y J et al 2016 Design of active and stable Co–Mo–Sx chalcogels as pH-universal catalysts for the hydrogen evolution reaction Nat. Mater. 15 197–203
    [172]
    Wang J et al 2021 Redirecting dynamic surface restructuring of a layered transition metal oxide catalyst for superior water oxidation Nat. Catal. 4 212–22
    [173]
    Zheng Y, Jiao Y, Vasileff A and Qiao S Z 2018 The hydrogen evolution reaction in alkaline solution: from theory, single crystal models, to practical electrocatalysts Angew. Chem., Int. Ed. 57 7568–79
    [174]
    Xie H P, Zhao Z Y, Liu T, Wu Y F, Lan C, Jiang W C, Zhu L Y, Wang Y P, Yang D S and Shao Z P 2022 A membrane-based seawater electrolyser for hydrogen generation Nature 612 673–8
    [175]
    Liu R Q, Guo T, Fei H, Wu Z Z, Wang D Z and Liu F Y 2021 Highly efficient electrocatalytic N2 reduction to ammonia over metallic 1T phase of MoS2 enabled by active sites separation mechanism Adv. Sci. 9 2103583
    [176]
    Fei H, Guo T, Xin Y, Wang L B, Liu R Q, Wang D Z, Liu F Y and Wu Z Z 2022 Sulfur vacancy engineering of MoS2 via phosphorus incorporation for improved electrocatalytic N2 reduction to NH3 Appl. Catal. B 300 120733
  • 加载中

Catalog

    Figures(1)

    Article Metrics

    Article Views(290) PDF downloads(66)
    Article Statistics
    Related articles from

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return