Volume 2 Issue 2
May  2023
Turn off MathJax
Article Contents
Yuan Liu, Xiaohui Rong, Fei Xie, Yaxiang Lu, Junmei Zhao, Liquan Chen, Yongsheng Hu. Unlocking the multi-electron transfer reaction in NASICON-type cathode materials[J]. Materials Futures, 2023, 2(2): 023502. doi: 10.1088/2752-5724/acc7bb
Citation: Yuan Liu, Xiaohui Rong, Fei Xie, Yaxiang Lu, Junmei Zhao, Liquan Chen, Yongsheng Hu. Unlocking the multi-electron transfer reaction in NASICON-type cathode materials[J]. Materials Futures, 2023, 2(2): 023502. doi: 10.1088/2752-5724/acc7bb
Perspective •
OPEN ACCESS

Unlocking the multi-electron transfer reaction in NASICON-type cathode materials

© 2023 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory
Materials Futures, Volume 2, Number 2
  • Received Date: 2023-01-27
  • Accepted Date: 2023-03-23
  • Publish Date: 2023-05-26
  • The growing concern about scarcity and large-scale applications of lithium resources has attracted efforts to realize cost-effective phosphate-based cathode materials for next-generation Na-ion batteries (NIBs). In previous work, a series of materials (such as Na4Fe3(PO4)2(P2O7), Na3VCr(PO4)3, Na4VMn(PO4)3, Na3MnTi(PO4)3, Na3MnZr(PO4)3, etc) with ∼120 mAh g−1 specific capacity and high operating potential has been proposed. However, the mass ratio of the total transition metal in the above compounds is only ∼22 wt%, which means that one-electron transfer for each transition metal shows a limited capacity (the mass ratio of Fe is 35.4 wt% in LiFePO4). Therefore, a multi-electron transfer reaction is necessary to catch up to or go beyond the electrochemical performance of LiFePO4. This review summarizes the reported NASICON-type and other phosphate-based cathode materials. On the basis of the aforementioned experimental results, we pinpoint the multi-electron behavior of transition metals and shed light on designing rules for developing high-capacity cathodes in NIBs.
  • loading
  • [1]
    Grosjean C, Miranda P H, Perrin M and Poggi P 2012 Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry Renew. Sustain. Energy Rev. 16 1735–44
    [2]
    Kesler S E, Gruber P W, Medina P A, Keoleian G A, Everson M P and Wallington T J 2012 Global lithium resources: relative importance of pegmatite, brine and other deposits Ore Geol. Rev. 48 55–69
    [3]
    Miedema J H and Moll H C 2013 Lithium availability in the EU27 for battery-driven vehicles: the impact of recycling and substitution on the confrontation between supply and demand until 2050 Resour. Policy 38 204–11
    [4]
    Romero H, Méndez M and Smith P 2012 Mining development and environmental injustice in the Atacama desert of Northern Chile Environ. Justice 5 70–76
    [5]
    Slater M D, Kim D, Lee E and Johnson C S 2013 Sodium-ion batteries Adv. Funct. Mater. 23 947–58
    [6]
    Vaalma C, Buchholz D, Weil M and Passerini S 2018 A cost and resource analysis of sodium-ion batteries Nat. Rev. Mater. 3 1–11
    [7]
    Zhao C et al 2020 Rational design of layered oxide materials for sodium-ion batteries Science 370 708–11
    [8]
    Zaghib K, Dubé J, Dallaire A, Galoustov K, Guerfi A, Ramanathan M, Benmayza A, Prakash J, Mauger A and Julien C M 2012 Enhanced thermal safety and high power performance of carbon-coated LiFePO4 olivine cathode for Li-ion batteries J. Power Sources 219 36–44
    [9]
    Jin T, Li H, Zhu K, Wang P F, Liu P and Jiao L 2020 Polyanion-type cathode materials for sodium-ion batteries Chem. Soc. Rev. 49 2342–77
    [10]
    Rajagopalan R, Zhang Z, Tang Y, Jia C, Ji X and Wang H 2021 Understanding crystal structures, ion diffusion mechanisms and sodium storage behaviors of NASICON materials Energy Storage Mater. 34 171–93
    [11]
    Anantharamulu N, Koteswara Rao K, Rambabu G, Vijaya Kumar B, Radha V and Vithal M 2011 A wide-ranging review on NASICON-type materials J. Mater. Sci. 46 2821–37
    [12]
    Chen S, Wu C, Shen L, Zhu C, Huang Y, Xi K, Maier J and Yu Y 2017 Challenges and perspectives for NASICON-type electrode materials for advanced sodium-ion batteries Adv. Mater. Weinheim 29 1700431
    [13]
    Hagman L-O, Kierkegaard P, Karvonen P, Virtanen A I and Paasivirta J 1968 The crystal structure of NaM2 IV(PO4)3; MeIV = Ge, Ti, Zr Acta Chem. Scand. 22 1822–32
    [14]
    Goodenough J B 1976 Hong HYP and Kafalas JA Fast Na+-ion transport in skeleton structures Mater. Res. Bull. 11 203–20
    [15]
    Hong H Y P 1976 Crystal structures and crystal chemistry in the system Na1+xZr2SixP3−xO12 Mater. Res. Bull. 11 173–82
    [16]
    Nadiri A, Delmas C, Salmon R and Hagenmuller P 1985 Chemical and electrochemical alkali metal intercalation in the iron(III) molybdate Fe2(MoO4)3 Chem. Inf.-Dienst 16 537–44
    [17]
    Delmas C, Nadiri A and Soubeyroux J L 1988 The NASICON-type titanium phosphates ATi2(PO4)3 (A=Li, Na) as electrode materials Solid State Ion. 28–30 419–23
    [18]
    Uebou Y, Kiyabu T, Okada S and Yamaki J-I 2002 Electrochemical sodium insertion into the 3D-framework of Na3M2(PO4)3 (M=Fe, V) Rep. Res. Inst. Appl. Mech. Kyushu Univ. 16 1–5
    [19]
    Delmas C, Olazcuaga R, Cherkaoui F, Brochu R and Le Flem G 1978 A new family of phosphates with the formula Na3M2(PO4)3 (M = Ti, V, Cr, Fe) C. R. Acad. Sci. 10 168–74
    [20]
    Jian Z, Zhao L, Pan H, Hu Y-S, Li H, Chen W and Chen L 2012 Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries Electrochem. Commun. 14 86–89
    [21]
    Liang L, Li X, Zhao F, Zhang J, Liu Y, Hou L and Yuan C 2021 Construction and operating mechanism of high-rate Mo-doped Na3V2(PO4)3@C nanowires toward practicable wide-temperature-tolerance Na-ion and hybrid Li/Na-ion batteries Adv. Energy Mater. 11 2100287
    [22]
    Xiong H, Sun G, Liu Z, Zhang L, Li L, Zhang W, Du F and Qiao Z A 2021 Polymer stabilized droplet templating towards tunable hierarchical porosity in single crystalline Na3V2(PO4)3 for enhanced sodium-ion storage Angew. Chem., Int. Ed. 60 10334–41
    [23]
    Vesborg P C K and Jaramillo T F 2012 Addressing the terawatt challenge: scalability in the supply of chemical elements for renewable energy RSC Adv. 2 7933–47
    [24]
    Pan H, Hu Y-S and Chen L 2013 Room-temperature stationary sodium-ion batteries for large-scale electric energy storage Energy Environ. Sci. 6 2338–60
    [25]
    Gao H, Li Y, Park K and Goodenough J B 2016 Sodium extraction from NASICON-structured Na3MnTi(PO4)3 through Mn(III)/Mn(II) and Mn(IV)/Mn(III) redox couples Chem. Mater. 28 6553–9
    [26]
    Kim H, Park I, Seo D-H, Lee S, Kim S-W, Kwon W J, Park Y-U, Kim C S, Jeon S and Kang K 2012 New iron-based mixed-polyanion cathodes for lithium and sodium rechargeable batteries: combined first principles calculations and experimental study J. Am. Chem. Soc. 134 10369–72
    [27]
    Cao Y, Yang C, Liu Y, Xia X, Zhao D, Cao Y, Yang H, Zhang J, Lu J and Xia Y 2020 A new polyanion Na3Fe2(PO4)P2O7 cathode with high electrochemical performance for sodium-ion batteries ACS Energy Lett. 5 3788–96
    [28]
    Park Y U, Seo D-H, Kim B, Hong K-P, Kim H, Lee S, Shakoor R A, Miyasaka K, Tarascon J-M and Kang K 2012 Tailoring a fluorophosphate as a novel 4 V cathode for lithium-ion batteries Sci. Rep. 2 704
    [29]
    Jian Z et al 2014 Atomic structure and kinetics of NASICON NaxV2(PO4)3 cathode for sodium-ion batteries Adv. Funct. Mater. 24 4265–72
    [30]
    Zou Z et al 2021 Identifying migration channels and bottlenecks in monoclinic NASICON-type solid electrolytes with hierarchical ion-transport algorithms Adv. Funct. Mater. 31 2107747
    [31]
    Qiu Q, Li C, Liu H, Liao Y, Zhao C, Geng F, Shen M, Li J, Tong W and Hu B 2021 NMR evidence for the multielectron reaction mechanism of Na3V2(PO4)3 cathode and the impact of polyanion site substitution J. Phys. Chem. C 125 15200–9
    [32]
    Park S, Wang Z, Deng Z, Moog I, Canepa P, Fauth F, Carlier D, Croguennec L, Masquelier C and Chotard J-N 2021 Crystal structure of Na2V2(PO4)3, an intriguing phase spotted in the Na3V2(PO4)3–Na1V2(PO4)3 system Chem. Mater. 34 451–62
    [33]
    Li S, Dong Y, Xu L, Xu X, He L and Mai L 2014 Effect of carbon matrix dimensions on the electrochemical properties of Na3V2(PO4)3 nanograins for high-performance symmetric sodium-ion batteries Adv. Mater. Weinheim 26 3545–53
    [34]
    Zhu C, Song K, van Aken P A, Maier J and Yu Y 2014 Carbon-coated Na3V2(PO4)3 embedded in porous carbon matrix: an ultrafast Na-storage cathode with the potential of outperforming Li cathodes Nano Lett. 14 2175–80
    [35]
    Dou X, Hasa I, Saurel D, Vaalma C, Wu L, Buchholz D, Bresser D, Komaba S and Passerini S 2019 Hard carbons for sodium-ion batteries: structure, analysis, sustainability, and electrochemistry Mater. Today 23 87–104
    [36]
    Oh J A S, He H, Sun J, Cao X, Chua B, Huang Y, Zeng K and Lu L 2020 Dual-nitrogen-doped carbon decorated on Na3V2(PO4)3 to stabilize the intercalation of three sodium ions ACS Appl. Energy Mater. 3 6870–9
    [37]
    Yi G-D, Fan C-L, Hu Z, Zhang W-H, Han S-C and Liu J-S 2021 Construction of high performance N-doped Na3V2(PO4)2F3/C cathode assisting by plasma enhanced chemical vapor deposition for sodium-ion batteries Electrochim. Acta 383 138370
    [38]
    An Q, Xiong F, Wei Q, Sheng J, He L, Ma D, Yao Y and Mai L 2015 Nanoflake-assembled hierarchical Na3V2(PO4)3/C microflowers: superior Li storage performance and insertion/extraction mechanism Adv. Energy Mater. 5 1401963
    [39]
    Yan J, Yuan W, Tang Z-Y, Xie H, Mao W-F and Ma L 2012 Synthesis and electrochemical performance of Li3V2(PO4)3−xClx/C cathode materials for lithium-ion batteries J. Power Sources 209 251–6
    [40]
    Peng M, Zhang D, Zheng L, Wang X, Lin Y, Xia D, Sun Y and Guo G 2017 Hierarchical Ru-doped sodium vanadium fluorophosphates hollow microspheres as a cathode of enhanced superior rate capability and ultralong stability for sodium-ion batteries Nano Energy 31 64–73
    [41]
    Hu Q, Liao J-Y, He X-D, Wang S, Xiao L-N, Ding X and Chen C-H 2019 In situ catalytic formation of graphene-like graphitic layer decoration on Na3V2−xGax(PO4)3 (0 ⩽ x ⩽ 0.6) for ultrafast and high energy sodium storage J. Mater. Chem. A 7 4660–7
    [42]
    Bi L, Liu X, Li X, Chen B, Zheng Q, Xie F, Huo Y and Lin D 2020 Modulation of the crystal structure and ultralong life span of a Na3V2(PO4)3-based cathode for a high-performance sodium-ion battery by niobium–vanadium substitution Ind. Eng. Chem. Res. 59 21039–46
    [43]
    Park J Y et al 2020 An iron-doped NASICON type sodium ion battery cathode for enhanced sodium storage performance and its full cell applications J. Mater. Chem. A 8 20436–45
    [44]
    Chen Y, Cheng J, Sun S, Tian Z, Jiang X, Wang Y, He Z, Liu C, Huang Q and Guo L 2021 Constructing hierarchical porous Fe/F-codoped Na3V2(PO4)3/C composite enwrapped with carbon nanotubes as high-performance cathode for symmetric sodium ion batteries J. Power Sources 513 230545
    [45]
    Ghosh S, Jose N, Senthilkumar B, Amonpattaratkit P and Senguttuvan P 2021 Multi-redox (V5+/V4+/V3+/V2+) driven asymmetric sodium (de)intercalation reactions in NASICON-Na3VIn(PO4)3 cathode J. Electrochem. Soc. 168 050534
    [46]
    Liu R et al 2017 Exploring highly reversible 1.5-electron reactions (V3+/V4+/V5+) in Na3VCr(PO4)3 cathode for sodium-ion batteries ACS Appl. Mater. Interfaces 9 43632–9
    [47]
    Gao H, Seymour I D, Xin S, Xue L, Henkelman G and Goodenough J B 2018 Na3MnZr(PO4)3: a high-voltage cathode for sodium batteries J. Am. Chem. Soc. 140 18192–9
    [48]
    Zhou W, Xue L, Lü X, Gao H, Li Y, Xin S, Fu G, Cui Z, Zhu Y and Goodenough J B 2016 NaxMV(PO4)3 (M = Mn, Fe, Ni) structure and properties for sodium extraction Nano Lett. 16 7836–41
    [49]
    Zhang X, Rui X, Chen D, Tan H, Yang D, Huang S and Yu Y 2019 Na3V2(PO4)3: an advanced cathode for sodium-ion batteries Nanoscale 11 2556–76
    [50]
    Boivin E, Chotard J N, Masquelier C and Croguennec L 2021 Towards reversible high-voltage multi-electron reactions in alkali-ion batteries using vanadium phosphate positive electrode materials Molecules 26 1428
    [51]
    Lv Z, Ling M, Yue M, Li X, Song M, Zheng Q and Zhang H 2021 Vanadium-based polyanionic compounds as cathode materials for sodium-ion batteries: toward high-energy and high-power applications J. Energy Chem. 55 361–90
    [52]
    Chotard J-N, Rousse G, David R, Mentré O, Courty M and Masquelier C 2015 Discovery of a sodium-ordered form of Na3V2(PO4)3 below ambient temperature Chem. Mater. 27 5982–7
    [53]
    Rui X, Sun W, Wu C, Yu Y and Yan Q 2015 An advanced sodium-ion battery composed of carbon coated Na3V2(PO4)3 in a porous graphene network Adv. Mater. Weinheim 27 6670–6
    [54]
    Chen F, Kovrugin V M, David R, Mentré O, Fauth F, Chotard J N and Masquelier C 2018 A NASICON-type positive electrode for Na batteries with high energy density: Na4MnV(PO4)3 Small Methods 3 1800218
    [55]
    Ghosh S, Barman N, Mazumder M, Pati S K, Rousse G and Senguttuvan P 2019 High capacity and high-rate NASICON-Na3.75V1.25Mn0.75(PO4)3 cathode for Na-ion batteries via modulating electronic and crystal structures Adv. Energy Mater. 10 1902918
    [56]
    Anishchenko D V, Zakharkin M V, Nikitina V A, Stevenson K J and Antipov E V 2020 Phase boundary propagation kinetics predominately limit the rate capability of NASICON-type Na3+xMnxV2-x(PO4)3 (0⩽x⩽1) materials Electrochim. Acta 354 136761
    [57]
    Ghosh S, Barman N and Senguttuvan P 2020 Impact of Mg2+ and Al3+ substitutions on the structural and electrochemical properties of NASICON-NaxVMn0.75M0. 25(PO4)3 (M= Mg and Al) cathodes for sodium-ion batteries Small 16 e2003973
    [58]
    Ma X, Cao X, Zhou Y, Guo S, Shi X, Fang G, Pan A, Lu B, Zhou J and Liang S 2020 Tuning crystal structure and redox potential of NASICON-type cathodes for sodium-ion batteries Nano Res. 13 3330–7
    [59]
    Xu C et al 2021 A novel NASICON-typed Na4VMn0.5Fe0.5(PO4)3 cathode for high-performance Na-ion batteries Adv. Energy Mater. 11 2100729
    [60]
    Zhang J, Zhao X, Song Y, Li Q, Liu Y, Chen J and Xing X 2019 Understanding the superior sodium-ion storage in a novel Na3.5Mn0.5V1.5(PO4)3 cathode Energy Stor. Mater. 23 25–34
    [61]
    Liu R, Zheng S, Yuan Y, Yu P, Liang Z, Zhao W, Shahbazian-Yassar R, Ding J, Lu J and Yang Y 2020 Counter-intuitive structural instability aroused by transition metal migration in polyanionic sodium ion host Adv. Energy Mater. 11 2003256
    [62]
    Perfilyeva T I et al 2021 Complete three-electron vanadium redox in NASICON-type Na3VSc(PO4)3 electrode material for Na-ion batteries J. Electrochem. Soc. 168 110550
    [63]
    Wang Q, Gao H, Li J, Liu G B and Jin H 2021 Importance of crystallographic sites on sodium-ion extraction from NASICON-structured cathodes for sodium-ion batteries ACS Appl. Mater. Interfaces 13 14312–20
    [64]
    Sun C, Zhao Y, Ni Q, Sun Z, Yuan X, Li J and Jin H 2022 Reversible multielectron redox in NASICON cathode with high energy density for low-temperature sodium-ion batteries Energy Stor. Mater. 49 291–8
    [65]
    Li M, Sun C, Ni Q, Sun Z, Liu Y, Li Y, Li L, Jin H and Zhao Y 2023 High entropy enabling the reversible redox reaction of V4+/V5+ couple in NASICON-type sodium ion cathode Adv. Energy Mater. 13 2203971
    [66]
    Zhao Y, Gao X, Gao H, Jin H and Goodenough J B 2020 Three electron reversible redox reaction in sodium vanadium chromium phosphate as a high-energy-density cathode for sodium-ion batteries Adv. Funct. Mater. 30 1908680
    [67]
    Liu Y, Sun C, Ni Q, Sun Z, Li M, Ma S, Jin H and Zhao Y 2022 Enhanced electrochemical performance of NASICON-type sodium ion cathode based on charge balance theory Energy Stor Mater. 53 881–9
    [68]
    Liu Y, Li J, Shen Q, Zhang J, He P, Qu X and Liu Y 2022 Advanced characterizations and measurements for sodium-ion batteries with NASICON-type cathode materials eScience 2 10–31
    [69]
    Ling M, Lv Z, Li F, Zhao J, Zhang H, Hou G, Zheng Q and Li X 2020 Revisiting of tetragonal NaVPO4F: a high energy density cathode for sodium-ion batteries ACS Appl. Mater. Interfaces 12 30510–9
    [70]
    Shraer S D et al 2022 Development of vanadium-based polyanion positive electrode active materials for high-voltage sodium-based batteries Nat. Commun. 13 4097
    [71]
    Le Meins J M, Crosnier-Lopez M P, Hemon-Ribaud A and Courbion G 1999 Phase transitions in the Na3M2(PO4)2F3 family (M=Al3+, V3+, Cr3+, Fe3+, Ga3+): synthesis, thermal, structural, and magnetic studies J. Solid State Chem. 148 260–77
    [72]
    Gover R, Bryan A, Burns P and Barker J 2006 The electrochemical insertion properties of sodium vanadium fluorophosphate, Na3V2(PO4)2F3 Solid State Ion. 177 1495–500
    [73]
    Xu M, Xiao P, Stauffer S, Song J, Henkelman G and Goodenough J B 2014 Theoretical and experimental study of vanadium-based fluorophosphate cathodes for rechargeable batteries Chem. Mater. 26 3089–97
    [74]
    Dacek S T, Richards W D, Kitchaev D A and Ceder G 2016 Structure and dynamics of fluorophosphate Na-ion battery cathodes Chem. Mater. 28 5450–60
    [75]
    Massa W, Yakubovich O V and Dimitrova O V 2002 Crystal structure of a new sodium vanadyl(IV) fluoride phosphate Na3{V2O2F[PO4]2} Solid State Sci. 4 495–501
    [76]
    Park Y U, Seo D H, Kwon H S, Kim B, Kim J, Kim H, Kim I, Yoo H I and Kang K 2013 A new high-energy cathode for a Na-ion battery with ultrahigh stability J. Am. Chem. Soc. 135 13870–8
    [77]
    Kumar P R, Jung Y H, Lim C H and Kim D K 2015 Na3V2O2x(PO4)2F3−2x: a stable and high-voltage cathode material for aqueous sodium-ion batteries with high energy density J. Mater. Chem. A 3 6271–5
    [78]
    Yan G, Mariyappan S, Rousse G, Jacquet Q, Deschamps M, David R, Mirvaux B, Freeland J W and Tarascon J M 2019 Higher energy and safer sodium ion batteries via an electrochemically made disordered Na3V2(PO4)2F3 material Nat. Commun. 10 585
    [79]
    Bianchini M, Fauth F, Brisset N, Weill F, Suard E, Masquelier C and Croguennec L 2015 Comprehensive investigation of the Na3V2(PO4)2F3-NaV2(PO4)2F3 system by operando high resolution synchrotron x-ray diffraction Chem. Mater. 27 3009–20
    [80]
    Guo J Z, Wang P F, Wu X L, Zhang X H, Yan Q, Chen H, Zhang J P and Guo Y G 2017 High-energy/power and low-temperature cathode for sodium-ion batteries: in situ XRD study and superior full-cell performance Adv. Mater. Weinheim 29 1701968
    [81]
    Snarskis G, Pilipavicius J, Gryaznov D, Mikoliu Naite L and Vilciauskas L 2021 Peculiarities of phase formation in Mn-based Na superIonic conductor (NaSICon) systems: the case of Na1+2xMnxTi2-x(PO4)3 (0.0⩽ x⩽ 1 5 Chem. Mater. 33 8394–403
    [82]
    Zhou Y, Shao X, Lam K H, Zheng Y, Zhao L, Wang K, Zhao J, Chen F and Hou X 2020 Symmetric sodium-ion battery based on dual-electron reactions of NASICON-structured Na3MnTi(PO4)3 material ACS Appl. Mater. Interfaces 12 30328–35
    [83]
    Liu J, Lin K, Zhao Y, Zhou Y, Hou X, Liu X, Lou H, Lam K-H and Chen F 2021 Exceeding three-electron reactions in Na3+2xMn1+xTi1−x(PO4)3 NASICON cathodes with high energy density for sodium-ion batteries J. Mater. Chem. A 9 10437–46
    [84]
    Li H, Xu M, Gao C, Zhang W, Zhang Z, Lai Y and Jiao L 2020 Highly efficient, fast and reversible multi-electron reaction of Na3MnTi(PO4)3 cathode for sodium-ion batteries Energy Storage Mater. 26 325–33
    [85]
    Zhu T et al 2019 Realizing three-electron redox reactions in NASICON-structured Na3MnTi(PO4)3 for sodium-ion batteries Adv. Energy Mater. 9 2338–60
    [86]
    Zhu T, Hu P, Cai C, Liu Z, Hu G, Kuang Q, Mai L and Zhou L 2020 Dual carbon decorated Na3MnTi(PO4)3: a high-energy-density cathode material for sodium-ion batteries Nano Energy 70 104548
    [87]
    Sun X, Wang T, Zhang W, Li H, Lai Y and Zhang Z 2020 Dual carbon decorated Na3MnTi(PO4)3 as an advanced cathode for sodium-ion batteries Ionics 26 3919–27
    [88]
    Gao H and Goodenough J B 2016 An aqueous symmetric sodium-ion battery with NASICON-structured Na3MnTi(PO4)3 Angew. Chem., Int. Ed. 55 12768–72
    [89]
    Zhang J, Lin C, Xia Q, Wang C and Zhao X S 2021 Improved performance of Na3MnTi(PO4)3 using a non-stoichiometric synthesis strategy ACS Energy Lett. 6 2081–9
    [90]
    Ma X, Wu X, Liu Y, Wu W, Pan Z and Shen P K 2021 Toward a high-energy-density cathode with enhanced temperature adaptability for sodium-ion batteries: a case study of Na3MnZr(PO4)3 microspheres with embedded dual-carbon networks ACS Appl. Mater. Interfaces 13 21390–400
    [91]
    Zhang J, Liu Y, Zhao X, He L, Liu H, Song Y, Sun S, Li Q, Xing X and Chen J 2020 A novel NASICON-type Na4MnCr(PO4)3 demonstrating the energy density record of phosphate cathodes for sodium-ion batteries Adv. Mater. Weinheim 32 1906348
    [92]
    Zhang W, Li H, Zhang Z, Xu M, Lai Y and Chou S L 2020 Full activation of Mn4+/Mn3+ redox in Na4MnCr(PO4)3 as a high-voltage and high-rate cathode material for sodium-ion batteries Small 16 e2001524
    [93]
    Wang J, Wang Y, Seo D H, Shi T, Chen S, Tian Y, Kim H and Ceder G 2020 A high-energy NASICON-type cathode material for Na-ion batteries Adv. Energy Mater. 10 1903968
    [94]
    Zhao Y, Gao X, Gao H, Dolocan A and Goodenough J B 2021 Elevating energy density for sodium-ion batteries through multielectron reactions Nano Lett. 21 2281–7
    [95]
    Li J et al 2022 Stabilized multi-electron reactions in a high-energy Na4Mn0.9CrMg0.1(PO4)3 sodium-storage cathode enabled by the pinning effect Small 18 e2202879
    [96]
    Wang Q, Ling C, Li J, Gao H, Wang Z and Jin H 2021 Experimental and theoretical investigation of Na4MnAl(PO4)3 cathode material for sodium-ion batteries Chem. Eng. J. 425 130680
    [97]
    He L, Li H, Ge X, Li S, Wang X, Wang S, Zhang L and Zhang Z 2022 Iron-phosphate-based cathode materials for cost-effective sodium-ion batteries: development, challenges, and prospects Adv. Mater. Interfaces 9 2200515
    [98]
    Avdeev M, Mohamed Z, Ling C D, Lu J, Tamaru M, Yamada A and Barpanda P 2013 Magnetic structures of NaFePO4 maricite and triphylite polymorphs for sodium-ion batteries Inorg. Chem. 52 8685–93
    [99]
    Cao Y J, Liu Y, Zhao D Q, Xia X P, Zhang L C, Zhang J X, Yang H S and Xia Y Y 2020 Highly stable Na3Fe2(PO4)3@hard carbon sodium-ion full cell for low-cost energy storage ACS Sustain. Chem. Eng. 8 1380–7
    [100]
    Qiu S et al 2019 NASICON-type Na3Fe2(PO4)3 as a low-cost and high-rate anode material for aqueous sodium-ion batteries Na3Fe2(PO4)3 as a low-cost and high-rate anode material for aqueous sodium-ion batteries Nano Energy 64 103941
    [101]
    Rajagopalan R et al 2017 Improved reversibility of Fe3+/Fe4+ redox couple in sodium super ion conductor type Na3Fe2(PO4)3 for sodium-ion batteries Adv. Mater. Weinheim 29 1605694
    [102]
    Barpanda P, Liu G D, Ling C D, Tamaru M, Avdeev M, Chung S C, Yamada Y and Yamada A 2013 Na2FeP2O7: a safe cathode for rechargeable sodium-ion batteries Chem. Mater. 25 3480–7
    [103]
    Jung Y H, Lim C H, Kim J H and Kim D K 2014 Na2FeP2O7 as a positive electrode material for rechargeable aqueous sodium-ion batteries RSC Adv. 4 9799–802
    [104]
    Barpanda P, Ye T, Nishimura S-I, Chung S-C, Yamada Y, Okubo M, Zhou H and Yamada A 2012 Sodium iron pyrophosphate: a novel 3.0 V iron-based cathode for sodium-ion batteries Electrochem. Commun. 24 116–9
    [105]
    Li H, Wang T, Wang S, Wang X, Xie Y, Hu J, Lai Y and Zhang Z 2021 Scalable synthesis of the Na2FePO4F cathode through an economical and reliable approach for sodium-ion batteries ACS Sustain. Chem. Eng. 9 11798–806
    [106]
    Dong J et al 2022 Electronic structure regulation of Na2FePO4F cathode toward superior high-rate and high-temperature sodium-ion batteries Energy Stor. Mater. 45 851–60
    [107]
    Barpanda P, Oyama G, Nishimura S, Chung S C and Yamada A 2014 A 3.8-V earth-abundant sodium battery electrode Nat. Commun. 5 4358
    [108]
    Chen M et al 2018 A novel graphene oxide wrapped Na2Fe2(SO4)3/C cathode composite for long life and high energy density sodium-ion batteries Adv. Energy Mater. 8 1800944
    [109]
    Plewa A, Kulka A, Hanc E, Zaja˛c W, Sun J, Lu L and Molenda J 2020 Facile aqueous synthesis of high performance Na2FeM(SO4)3 (M = Fe, Mn, Ni) alluaudites for low cost Na-ion batteries J. Mater. Chem. A 8 2728–40
    [110]
    Wang H, Pan Z, Zhang H, Dong C, Ding Y, Cao Y and Chen Z 2021 A green and scalable synthesis of Na3Fe2(PO4)P2O7/rGO cathode for high-rate and long-life sodium-ion batteries Small Methods 5 e2100372
    [111]
    William M H, David R L and Thomas J B 2016 CRC Handbook of Chemistry and Physics; Abundance of Elements in the Earth’s Crust and in the Sea 97th edn (Boca Raton, FL: CRC Press) pp 14–17
    [112]
    Trading economics 2022 (available at: https://tradingeconomics.com/)
    [113]
    Chen M et al 2019 NASICON-type air-stable and all-climate cathode for sodium-ion batteries with low cost and high-power density Nat. Commun. 10 1480
    [114]
    Panin R V, Drozhzhin O A, Fedotov S S, Khasanova N R and Antipov E V 2018 NASICON-type NaMo2(PO4)3: electrochemical activity of the Mo+4 polyanion compound in Na-cell Electrochim. Acta 289 168–74
    [115]
    Tillement O, Couturier J C, Angenault J and Quarton M 1991 Crystal chemistry and electrical study of NaxNbTi(PO4)3 Solid State Ion. 48 249–55
    [116]
    Tillement O, Angenault J, Couturier J C and Quarton M 1992 Electrochemical studies of mixed valence NASICON Solid State Ion. 53-56 391–9
    [117]
    Wang W, Jiang B, Hu L and Jiao S 2014 NASICON material NaZr2(PO4)3: a novel storage material for sodium-ion batteries J. Mater. Chem. A 2 1341–5
    [118]
    Jian Z, Sun Y and Ji X 2015 A new low-voltage plateau of Na3V2(PO4)3 as an anode for Na-ion batteries Chem. Commun. 51 6381–3
    [119]
    Xu C et al 2022 Reversible activation of V4+/V5+ redox couples in NASICON phosphate cathodes Adv. Energy Mater. 12 2200966
    [120]
    Singh B, Wang Z, Park S, Gautam G S, Chotard J-N, Croguennec L, Carlier D, Cheetham A K, Masquelier C and Canepa P 2021 A chemical map of NASICON electrode materials for sodium-ion batteries J. Mater. Chem. A 9 281–92
  • 加载中

Catalog

    Figures(1)

    Article Metrics

    Article Views(292) PDF downloads(101)
    Article Statistics
    Related articles from

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return