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Figure S1. SEM images (top panel) and EDS elemental mapping. (a) CrFeCoNi; (b) 

CrFeCoNiMo0.1; (c) CrFeCoNiMo0.2; (d) CrFeCoNiMo0.5; (e) CrFeCoNiMo. Note that: 

the non-uniform distribution in (b) and (c) is not caused by phase separation but by 

dendrites specific to the cast alloy. This structure is formed due to nonequilibrium 

cooling and does not change the f.c.c. structure. 
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Figure S2. SEM images and EDS elemental mapping. (a) CrFeCoNiMo0.3. The white 

dashed circles marked the μ phase. (b) CrFeCoNiMo0.4. It follows that the excessive 

addition of Mo leads to an increase in the volume fraction of the μ phase. 

 

 

Figure S3. TEM images of CrFeCoNi HEA. (a) TEM bright-field image. The inset is 

the SAED pattern. (b) HRTEM image. (c) Magnified image of the red dashed box in 

(b). (d) is the FFT pattern of (c). The results indicate that the CrFeCoNi consisted of a 

single f.c.c. phase. 
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Figure S4. TEM images of CrFeCoNiMo0.2 HEA. (a) TEM bright-field image. The 

inset is the SAED pattern. (b) and (c) are the HRTEM images of the regions with 

relatively high and low Mo content in the structure, respectively. (d) and (e) correspond 

to the enlarged HRTEM image in the red dashed and yellow dashed box in (b) and (c), 

respectively. f, is the FFT pattern of (d) and (e). Due to the identical FFT pattern of (d) 

and (e), only one is shown here. (g) and (h) are the HAADF-TEM images. (g) 

corresponds to high Mo content and (h) corresponds to low Mo contents. 
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Figure S5. TEM images of CrFeCoNiMo HEA. (a) Microscopic morphology of the 

region containing the μ and f.c.c. phases. (b) HRTEM image. The interface between 

HEA and μ-phase is marked by the black dashed line. (c) TEM image at the interface 

between μ and f.c.c. phases. The table in (c) show the atomic ratios of Cr, Fe, Co, Ni, 

and Mo elements in μ and f.c.c. phases. (d) and (e) are the SAED patterns corresponding 

to μ and f.c.c. phase in (a), respectively. (f) and (g) are the enlargement of HRTEM 

images corresponding to μ and f.c.c. phase in (b), respectively. The inset both show the 

corresponding FFT patterns. (h) The EDX-line analysis of the white lines in (c). (i) 

TEM image and the corresponding elemental mappings of Cr, Fe, Co, Ni, Mo elements. 
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Figure S6. CV curves at different scan rates in the non-Faraday interval of 0-0.1 V. (a) 

CrFeCoNiMo0.1. (b) CrFeCoNiMo0.2. (c) CrFeCoNiMo0.3. (d) CrFeCoNiMo0.4. (e) 

CrFeCoNiMo0.5. (f) CrFeCoNiMo. The scan rates are 5, 10, 20, 40, 80, 120 mV s-1. 

 

 

 

Figure S7. OER performance of CrFeCoNiMox. (a) OER polarization curves. (b) Tafel 

slopes. (c) EIS Nyquist plots. (d) Cdl curves. (e) TOF curves. (f) Classification of the 

HEAs based on OER performance. 

 

  



  

7 

 

 

Figure S8. OER performance comparison and electrochemical stability. (a) The OER 

preformance comparison showing the overpotential at 10 mA cm-2 with Tafel slope in 

1.0 M KOH. (b) OER polarization curves after 5000th CVs of CrFeCoNiMo0.2 

electrocatalyst. (c) Long-term stability testing of CrFeCoNiMo0.2 at a constant current 

density of 10 mA cm-2. The inset shows the SEM image of the surface after stability 

test. 
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Figure S9. High-resolution XPS spectra of as-cast samples. (a) Mo 3d. (b) Cr 2p. (c) 

Fe 2p. (d) Co 2p. (e) Ni 2p. 

 

 

Figure S10. High-resolution XPS spectra after OER. (a) Cr 2p. (b) Fe 2p. (c) Co 2p. 

(d) Ni 2p. (e) Mo 3d. (f) O 1s. 
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Figure S11. XRD patterns of CrFeCoNiMox HEAs before and after electrochemical 

activition. (a) CrFeCoNi. (b) CrFeCoNiMo0.1. (c) CrFeCoNiMo0.2. (d) CrFeCoNiMo0.4. 

(e) CrFeCoNiMo0.5. (f) CrFeCoNiMo. The analysis of CrFeCoNiMox (x = 0.4, 0.5, 1) 

show that the intensity of the diffraction peak corresponding to μ phase decreased after 

activition, indicating that the μ phase is corroded in alkaline solution. 

 

 

Figure S12. TEM-HAADF images of CrFeCoNiMo electrocatalysts after 

electrocatalytic. The Cr, Fe, Co, Ni and Mo elements in the μ phase show significant 

chemical shedding after OER testing. The content of O element on μ phase is much 

higher than on the substrate. It indicates that μ phase is corroded. 
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Figure S13. The ICP-OES results of each element in the electrolyte. 

 

 

Figure S14. SEM and TEM images of CrFeCoNi after electrochemical activition. (a) 

and (b) are SEM images at different magnifications. The formation of nanoparticles on 

the catalyst surface can be clearly observed in (b). (c) TEM images and elemental 

mapping. 
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Figure S15. SEM images of CrFeCoNiMo0.2 after electrochemical activition. From (a) 

to (f) is the stepwise amplification of the multi-metal oxide formed on the surface. 

 

 

Figure S16. SEM images of the characteristic morphology of multi-metal oxides on 

the CrFeCoNiMo0.2 surface. 
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Figure S17. SEM images of oxides on the surface of CrFeCoNiMo. (a) Distribution of 

oxides on the surface. (b) Enlarged view of the yellow box in (a). Compared with 

CrFeCoNiMo0.2, the oxide formed on the surface of CrFeCoNiMo is reduced and 

unshaped. 

 

 

Figure S18. Optimized models considered for DFT calculations. (a) CrFeCoNi. (b) 

CrFeCoNiMo0.2. 

 

 

 

Figure S19. Multistep OER reactions on different atomic configurations of CrFeCoNi. 
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Figure S20. Multistep OER reactions on different atomic configurations of 

CrFeCoNiMo0.2. The groups located in the upper part of the model are oxygen-

containing intermediates 

 

Table S1. The electrocatalytic OER performance of this work and the performance data 

reported for other catalysts, including high entropy materials, amorphous materials and 

containing high value metal materials. 

Number Catalyst Substrate Electrolyte η (mV) 
Tafel slope 

(mV dec-1) 
Ref. 

1 CrFeCoNi 

Integrated 1.0 M KOH 

265 50.9 

This 

work 

2 CrFeCoNiMo0.1 239 34.8 

3 CrFeCoNiMo0.2 215 32.6 

4 CrFeCoNiMo0.3 229 35.4 

5 CrFeCoNiMo0.4 245 36.5 

6 CrFeCoNiMo0.5 256 38.4 

7 CrFeCoNiMo 280 46.8 

High-entropy materials 

8 Fe-Co-Ni-Cr-Nb Self-supported 0.1 M KOH 288  27 [1] 

9 FeCoCrNi 

CCs 1.0 M KOH 

221  38.7 

[2] 10 FeCrNi 255  42.6 

11 CoCrNi 304  51.4 

12 MnFeCoNi/MOx Self-supported 1.0 M KOH 302  83.7 [3] 

13 CoFeLaNiPt HOPG/GC 0.1 M KOH 377   [4] 

14 FeCoNiP 

Self-supported 1.0 M KOH 

280 @ 100 mA cm-2 60 

[5] 15 FeCoNiP0.5S0.5 258 @ 100 mA cm-2 49 

16 FeCoNiS 300 @ 100 mA cm-2 80 

17 AlNiCoRuMo 

GC 1.0 M KOH 

245  54.5 

[6] 18 AlNiCoRuCu 265  57 

19 AlNiCoRu 270  68.3 

20 AlNiCoFeMo Al precursor 1.0 M KOH 240  46 [7] 
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21 CoCrFeNiAl Self-supported 1.0 M KOH 240  57 [8] 

22 Co-Cu-Fe-Mo Cu foil 

1.0 M KOH 

199  48.8 

[9] 23 Co-Cu-Mo Cu foil 273  57.5 

24 Co-Fe-Mo CCC 253  51.2 

25 Al-Ni-Co-Ir-Mo Al precursor 1.0 M KOH 233  55.2 [10] 

26 CoCrFeMnNi Self-supported 1.0 M NaOH   [11] 

27 (CoCuFeMnNi)3O4 MWCNT 1.0 M KOH 350  59.5 [12] 

28 FeNiMnCrCu 
Self-supported 1.0 M NaOH 

466 @ 40 mA cm-2 58 
[13] 

29 FeCoNiCrAl 580 @ 40 mA cm-2 75 

30 (CrFeCoNi)97O3 

Integrated 1.0 M KOH 

196  29 

[14] 31 (CrFeCoNiCu)97O3 211  27 

32 (CrFeCoNiMn)99O1 271  35 

33 (FeCoNi)3O4-x Self-supported 1.0 M KOH 229   [15] 

34 FeCoNiMnCu self-assembled  280  59 [16] 

35 AlCoFeMoCr GC 1.0 M KOH 260  52.4 [17] 

36 FeCoNiMn 

CFP 1.0 M KOH 

266  64.5 

[18] 37 FeCoNiSn 264  68.2 

38 FeCoNiCu 258  73.9 

39 FeVNbTiZrOF CC 1.0 M KOH 348  110.3 [19] 

40 (CoNiMnZnFe)3O3.2 CFP 1.0 M KOH 336  47.5 [20] 

41 MnFeCoNiCu CC 1.0 M KOH 263  43 [21] 

42 CoFeNiMnMoPi PTFE film 1.0 M KOH 270  74 [22] 

43 K0.8Na0.2(MgMnFeCoNi)F3 

GC 1.0 M KOH 

314  55 

[23] 44 K(MgMnFeCoNi)F3 369  61 

45 Na(MgMnFeCoNi)F3 334  57 

Amorphous/glass materials 

46 NiFeP Self-supported 1.0 M KOH 219  32 [24] 

47 Ni1.5Sn@triMPO4 triMPO4 1.0 M KOH 240  45.2 [25] 

48 
(Fe73.5Si13.5B9Nb3 

Cu1)91.5Ni8.5 
Self-supported 1.0 M KOH 230  130 [26] 

49 Fe40Ni20Co20P15C5 Self-supported 1.0 M KOH 278  40 [27] 

50 Ni40Fe40P20 

Self-supported 1.0 M KOH 

270  35 

[28] 51 Ni70Pd10P20 345  42 

52 Ni40Pd40P20 340  46 

53 Ni-Fe-P Cu foil 30 wt.% KOH 309  79.4 [29] 

Containing high valance metal materials 

54 NiFeMo Ni foam 1.0 M KOH 220  35 [30] 

55 (NixFeyCo6-x-y)Mo6C Ni foam 1.0 M KOH 212  55.1 [31] 

56 FeCoMoS 
NG 1.0 M KOH 

238  51 
[32] 

57 CoMoS 300  77 

58 FeCoMo GC 1.0 M KOH 277  27.7 [33] 

69 NiFe-MoOx Self-supported 1.0 M KOH 276  55 [34] 

60 Co@WC1-x NCNTs 0.1 M KOH 330  90 [35] 

61 Mo-CoP CC 1.0 M KOH 305  56 [36] 

62 FeCoMoW 

CP/Ni foam 1.0 M KOH 

212   

[37] 
63 NiFeMoW 205   

64 NiFeMo 201   

65 NiFeW 202   

66 G-FeCoW 
Au foam 1.0 M KOH 

191   
[38] 

67 A-FeCoW 232   
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68 FeNi-Mo2C carbon layers 1.0 M KOH 288  38.8 [39] 

79 Co0.76Fe0.18Mo0.06O1.35 GC 1.0 M KOH 250  57 [40] 

70 Fe-Mo-Te GC 1.0 M KOH 300  45.6 [41] 

71 P/Mo-Co3O4 CC 1.0 M KOH 265   [42] 

Note: Unless otherwise denoted, the overpotential in the table corresponds to a current density of 

10 mA cm-2. 
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