Supporting Information

Efficient emission quasi-two-dimensional perovskite films casted by ink-jet printing for pixel-defined matrix light-emitting diodes

Junjie Wang ${ }^{\mathbf{1}}$, Danyang Li ${ }^{1}$, Jian Wang ${ }^{\mathbf{1}}$, Junbiao Peng ${ }^{1, *}$

${ }^{1}$ Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.

* E-Mail: psjbpeng@scut.edu.cn

Figure S1. (a) Absorption spectra, (b) PL spectra and (c) PLQY of perovskite films with different SrBr_{2} proportions.

Pb^{2+}	Sr^{2+}	Br	$\left[\mathrm{PbBr}_{6}\right]^{4-}$	$\left[\mathrm{SrBr}_{6}\right]^{4-}$	Octahedral formation energy of $\left(\left[\mathrm{PbBr}_{6}\right]^{4-}\right)$	Octahedral formation energy of $\left(\left[\mathrm{SrBr}_{6}\right]^{4-}\right)$
$\begin{gathered} 14.486 \\ \mathrm{eV} \end{gathered}$	$\begin{gathered} 11.422 \\ \mathrm{eV} \end{gathered}$	$\begin{gathered} -4.976 \\ \mathrm{eV} \end{gathered}$	$\begin{gathered} -29.178 \\ \mathrm{eV} \end{gathered}$	$\begin{gathered} -30.956 \\ \mathrm{eV} \end{gathered}$	$-13.808 \mathrm{eV}$	$-12.522 \mathrm{eV}$

Octahedral formation energy of $\left(\left[\mathrm{ABr}_{6}\right]^{4-}\right)=\left[\mathrm{ABr}_{6}\right]^{4-}-\mathrm{A}^{2+}-6 \mathrm{Br}^{-}$

Figure S2. Octahedral formation energy calculation results of $\left[\mathrm{PbBr}_{6}\right]^{4-}$ and $\left[\mathrm{SrBr}_{6}\right]^{4-}$ by DFT.

Figure S3. Schematic illustration of the spin-coating process for perovskite films on quartz substrate and crystallizing time.

Figure S 4 . (a) Absorption spectra of quasi-2D perovskite films with $6 \% \mathrm{MgBr}_{2}, 6 \% \mathrm{CaBr}_{2}, 6 \%$ BaBr_{2}, (b) XRD spectra of quasi-2D perovskite films with $6 \% \mathrm{MgBr}_{2}, 6 \% \mathrm{CaBr}_{2}, 6 \% \mathrm{BaBr}_{2}$, (c) PLYQ of quasi-2D perovskite films with $6 \% \mathrm{MgBr}_{2}, 6 \% \mathrm{CaBr}_{2}, 6 \% \mathrm{SrBr}_{2}, 6 \% \mathrm{BaBr}_{2}$.

Figure S5. Atomic force microscope images of perovskite film, (a) without and (b) with $6 \% \mathrm{SrBr}_{2}$.

Figure S6. The histogram of grain size distribution.

Figure S7. Absorption spectra of (a) CsPbBr_{3} and PbBr_{2} in DMSO , (b) CsPbBr_{3} film and PbBr_{2} film, (c) CsSrBr_{3} and SrBr_{2} in DMSO, (d) CsSrBr_{3} film and SrBr_{2} film.

Figure S8. (a) TA spectra, (b) TA spectra at selected timescales, (c) TA traces as a function of time and extracted fast component decay constants $\left(\tau_{1}\right)$ for different phases, (d) Relative contents of different phases for quasi-2D perovskite films with $6 \% \mathrm{PbBr}_{2}$, the relative contents were obtained according to the amplitude of GSBs in TA spectra at 0.12 ps .

Figure S9. TA traces as a function of time and extracted fast component decay constants (τ_{1}) for different phases (a) without and (b) with $6 \% \mathrm{SrBr}_{2}$. Relative contents of different phases for quasi-2D perovskite films (c) without and (d) with $6 \% \operatorname{SrBr}_{2}$, the relative contents obtained according to the amplitude of GSBs in TA spectra at 0.12 ps .

	$\boldsymbol{\tau}_{\mathrm{au}}(\mathbf{n s})$	$\boldsymbol{\tau}_{\mathbf{1}}(\mathbf{n s})$	\mathbf{A}_{1}	$\boldsymbol{\tau}_{\mathbf{2}}(\mathbf{n s})$	$\mathbf{A}_{\mathbf{2}}$	$\boldsymbol{\tau}_{\mathbf{3}}(\mathbf{n s})$	$\mathbf{A}_{\mathbf{3}}$
Pristine	26.2	8.0	39%	52.0	44%	1.4	17%
$\mathbf{6 \%} \mathbf{P b B r}_{2}$	16.0	1.3	23%	6.4	43%	38.2	34%
$\mathbf{6 \%} \mathbf{S r B r}_{2}$	39.5	13.3	39%	68.0	50%	2.6	11%

Figure S10. TRPL fitting data of perovskite films without additive, with $6 \% \mathrm{PbBr}_{2}$ and with 6% SrBr_{2}, respectively.

Figure S11. Energy level diagram of the PeLED device structure.

b

	V_{on} (V)	$\mathrm{L}_{\text {max }}$ $\left(\mathrm{cd} \mathrm{m}^{-2}\right)$	EL peak (nm)	$\mathrm{CE}_{\text {max }}$ $\left(\mathrm{cd} \mathrm{A}^{-1}\right)$	$\mathrm{EQE}($ $\%)$
$3 \% \mathrm{SrBr}_{2}$	3.0	12064	510	24.0	8.2
$6 \% \mathrm{SrBr}_{2}$	2.9	15194	509	39.2	13.9
$9 \% \mathrm{SrBr}_{2}$	3.0	11406	507	29.1	11.0

Figure S12. (a) Current density-voltage-luminance, (b) current efficiency-current density curves, and (c) EL spectra of PeLEDs with different SrBr_{2} proportions.

Figure S13. (a) Current density-voltage-luminance, (b) current efficiency-current density curves, and (c) EL spectra of PeLEDs with $6 \% \mathrm{PbBr}_{2}$.

Figure S14. (a-c) EL images of perovskite film pixel under a driven voltage of $3.5 \mathrm{~V}, 4.5 \mathrm{~V}$, and 5.5 V , respectively.

Figure S15. (a, b) The confocal images of perovskite film.

b

Figure S16. (a) Photo of a working PeLED device operated under voltage of 4.5 V with an active area of $10.0 \mathrm{~cm}^{2}$, (b) EL intensity curves of the selected micro-areas marked in (a).

Figure S17. Transmittance of glass and PI substrates.

Table S1. Comparison of device performances for PeLEDs based on ink-jet printing technology reported to date.

References
[1] D. Li, J. Wang, M. Li, G. Xie, B. Guo, L. Mu, H. Li, J. Wang, H.-L. Yip, J. Peng. Adv. Mater. Technol. 2020, 5, 2000099.
[2] C. Zheng, X. Zheng, C. Feng, S. Ju, Z. Xu, Y. Ye, T. Guo, F. Li. Organic Electronics. 2021, 93, 106168.
[3] F. Hermerschmidt, F. Mathies, V. R. F. Schröder, C. Rehermann, N. Z. Morales, E. L. Unger, E. J. W. List-Kratochvil. Mater. Horiz. 2020, 7, 1773.
[4] Y. Li, Z. Chen, D. Liang, J. Zang, Z. Song, L. Cai, Y. Zou, X. Wang, Y. Wang, P. Li, X. Gao, Z. Ma, X. Mu, A. El-Shaer, L. Xie, W. Su, T. Song, B. Sun. Adv. Optical. Mater. 2021, 6, 2100553.
[5] C. Wei, W. Su, J. Li, B. Xu, Q. Shan, Y. Wu, F. Zhang, M. Luo, H. Xiang, Z. Cui, H. Zeng. Adv. Mater, 2022, 34, 2107798.
[6] J. Zhao, L.-W. Lo, H. Wan, P. Mao, Z. Yu, C. Wang. Adv. Mater. 2021, 33, 2102095.
[7] J. Wang, D. Li, L. Mu, M. Li, Y. Luo, B. Zhang, C. Mai, B. Guo, L. Lan, J. Wang, H.-L. Yip, J. Peng. ACS Appl. Mater. Interfaces 2021, 13, 41773.
[8] D. Li, J. Wang, M. Li, B. Guo, L. Mu, Y. Luo, Y. Xiao, C. Mai, J. Wang, J. Peng. Mater. Futures 2022, 1, 015301.
[9] J. Wang, D. Li, Y. Luo, J. Wang, J. Peng. Adv. Mater. Technol. 2022, 2200370. DOI: 10.100 2/admt. 202200370.

