# **Supporting Information**

# High-brightness green InP-based QLEDs enabled by in-situ passivating core surface with zinc myristate

Yuanbin Cheng<sup>†</sup>, Qian Li<sup>†</sup>, Mengyuan Chen, Fei Chen<sup>\*</sup>, Zhenghui Wu<sup>\*</sup> and Huaibin Shen

*†These authors contributed equally to this work.* 

Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology Henan University, Kaifeng 475004, China E-mail: <u>chenfei.henu@henu.edu.cn</u>and <u>wuzhenghuihk@henu.edu.cn</u>

#### Chemicals

Zinc acetate (Zn(Ac)<sub>2</sub>, 99.99%), indium acetate (In(Ac)<sub>3</sub>, 99.99%), selenium (Se, 99.99%, powder), myristic acid (MA, 99%), sulfur (S, 99.5%, powder), zinc stearate (Zn(St)<sub>2</sub>, 12.5~14.0% ZnO), trioctylphosphine (TOP, 97%),  $(TMS)_{3}P$ (98%), and 1-octadecene (ODE, 90%), tetramethylammonium hydroxide (TMAH, 99%), magnesium acetate tetrahydrate (Mg(OAc)<sub>2</sub>·4H<sub>2</sub>O, 99.98%), zinc(II) acetate dihydrate (Zn(OAc)<sub>2</sub>·2H<sub>2</sub>O, 99.99%) were purchased from Shanghai Aldrich Reagent Company. Poly((9,9-dioctylfluorenyl-2,7-diyl)-alt-(9-(2-ethylhexyl)-carbazole-3,6-diyl)) (PF8Cz, MW~80000) were purchased from volt-amp optoelectronics tech. co., LTD. Ethyl alcohol (HPLC) and dimethyl sulfoxide (DMSO, 99.7%) were provided by Acros Reagent Company. Chlorobenzene, n-octane, hexanes, and ethanol were purchased from Beijing Chemical Reagent Ltd., China.

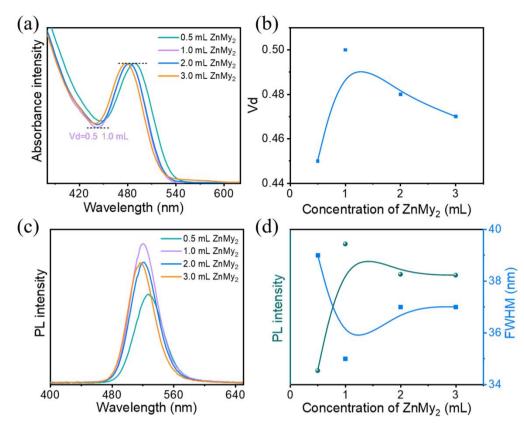
#### **Preparation of precursors**

Phosphorus precursors: 0.14 mmol of (TMS)<sub>3</sub>P was mixed in 1 mL of TOP.

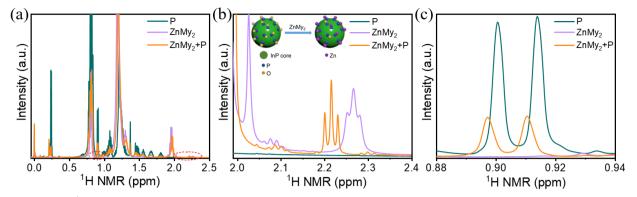
Se precursors (Se-ODE): 2 mmol of Se was dissolved in 10 mL of ODE. The concentration is 0.2 mol  $L^{-1}$ .

S precursors (S-TOP-ODE): 5 mmol of S was dissolved in 5 mL of TOP and 5 mL ODE. The concentration is  $0.5 \text{ mol } L^{-1}$ .

ZnMy<sub>2</sub> precursors: the mixture of 1.25 mmol Zn(Ac)<sub>2</sub>, 1.25 mmol MA and 10 mL ODE was degassed at 150 °C for 30 min, and then cooled to 100 °C and stored in an N<sub>2</sub>-filled flask.


### **Device** fabrication

The indium tin oxide (ITO) glass substrates were thoroughly cleaned with deionized water, acetone, and isopropanol, respectively, and then treated under UV-ozone for 15 min. For the hole injection layer (HIL), poly(3,4-ethyle nedioxythiophene):polystyrenesulfonate (PEDOT:PSS) (AI 4083) was spin-coated onto the ITO substrates and annealed at 140 °C for 15 min. Then, these substrates were swiftly transferred into nitrogen-filled glove box for spin-coating the following layer. PF8Cz (8 mg mL<sup>-1</sup> in chlorobenzene) was spin-coated and annealed at 150 °C for 30 min for use as hole transport layer (HTL) material. In turn, InP/ZnSe/ZnS (20 mg mL<sup>-1</sup> in n-octane) and ZnMgO (30 mg mL<sup>-1</sup> in ethanol, were spin-coated at 2000 and 2500 rpm for 20 s, respectively, and followed by baking at 60 °C for 30 min. Finally, an Al anode was deposited via thermal evaporation under a high vacuum of  $4 \times 10^{-6}$  Torr, and the effective area is 4 mm<sup>2</sup>.


#### Materials and devices characterization

UV-vis absorption and photoluminescence (PL) spectra were measured by Ocean Optics spectrophotometer (model PC2000-ISA). X-ray photoelectron spectroscopy (XPS) was recorded by a

VG ESCALAB 220i-XL spectrometer with a 300 W Al K $\alpha$  radiation source, and all binding energies for different elements were calibrated with respect to the C 1s line at 284.8 eV. PL QY data was collected by JY HORIBA FluoroLog-3 fluorescence spectrometer coupled with an integrating sphere. A JEOL JEM-2010 electron microscope operating at 200 kV was used to obtain transmission electron microscopy (TEM) studies. X-ray diffraction (XRD) patterns were recorded on a Bruker D8 Advance diffraction meter using a Cu Ka radiation source ( $\lambda = 1.54056$  Å). An Edinburgh F900 steady/transient state fluorescence spectrometer was used to record the time-resolved PL spectra. The current densityluminance-voltage (J-L-V) characteristics of QLEDs were analyzed using an Agilent 4155C semiconductor parameter analyzer with a calibrated Newport silicon diode. The combination of an Ocean Optics (USB 2000) spectrometer and a Keithley 2400 source meter was used to record the EL spectra. All the measurements were performed at room temperature.



**Figure S1.** (a) UV-vis absorption spectra of InP cores with ZnMy<sub>2</sub> at different concentration. (b) Vd as a function of ZnMy<sub>2</sub> concentration. (c) PL spectra of InP cores with ZnMy<sub>2</sub> at different concentration. (d) PL intensity and FWHM as a function of ZnMy<sub>2</sub> concentration.



**Figure S2.** <sup>1</sup>H NMR spectra of phosphorus precursors,  $ZnMy_2$  and the mixture of phosphorus precursors and  $ZnMy_2$  in chloroform-d. Inset is the schematic illustration of the  $ZnMy_2$ -treated InP core.

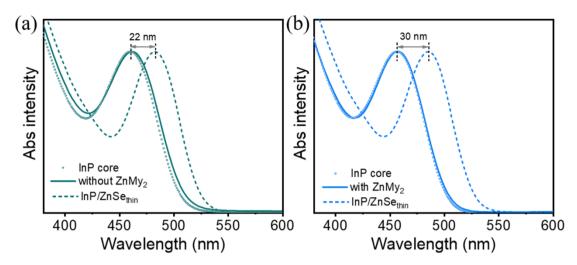
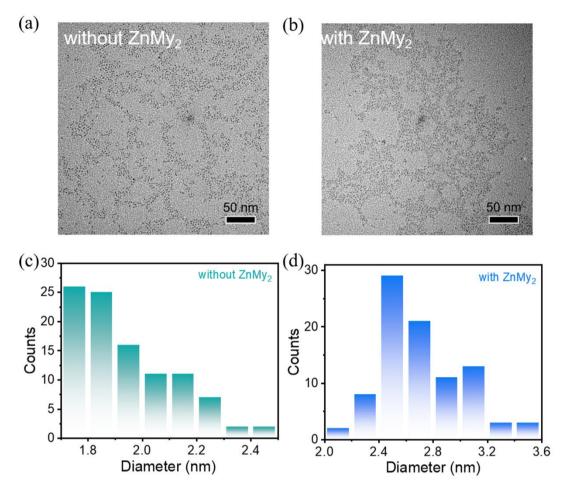
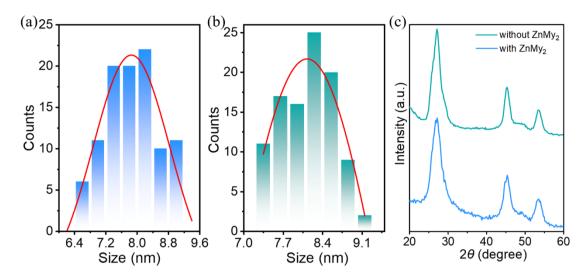
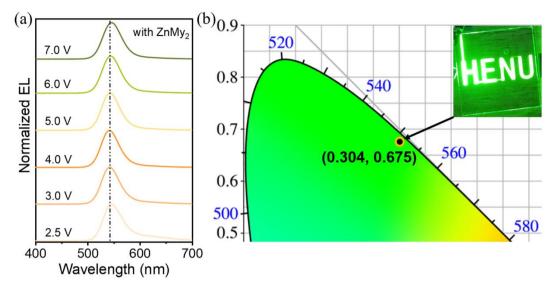
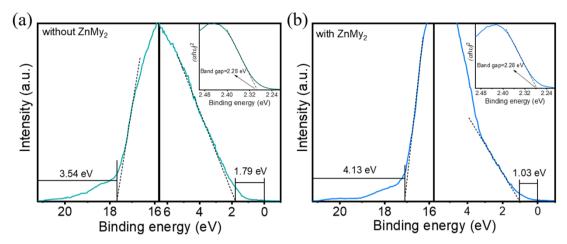
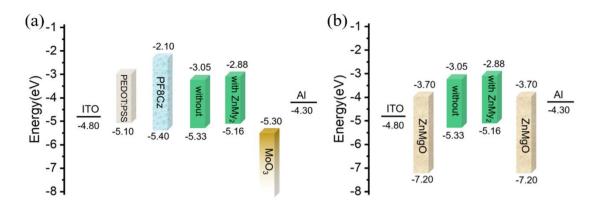



Figure S3. UV-vis absorption spectra of InP/ZnSethin cores (a) without and (b) with ZnMy<sub>2</sub>.



Figure S4. TEM pictures of  $InP/ZnSe_{thin}$  core synthesized (a) without and (b) with  $ZnMy_2$ . The orresponding size distribution histograms of  $InP/ZnSe_{thin}$  cores synthesized (c) without and (d) with  $ZnMy_2$ .




**Figure S5.** Size distribution histograms of InP/ZnSe/ZnS QDs synthesized (a) without and (b) with ZnMy<sub>2</sub>. (c) The corresponding XRD patterns.



**Figure S6.** (a) Electroluminescence (EL) spectra of QLEDs under different driving voltages. (b) CIE chromatic coordinates of our QLED, and the inset shows the photograph of EL emission from the device operated at 5 V.



**Figure S7.** The ultraviolet photoelectron spectroscopy (UPS) spectra of the high-binding energy secondary electron cutoff regions and the valence-band edge regions of InP/ZnSe/ZnS QDs synthesized (a) without and (b) with ZnMy<sub>2</sub>.



**Figure S8.** Energy level diagrams of (a) HOD with ITO/PEDOT:PSS/TFB/QDs/MoO<sub>3</sub>/Al and (b) EOD with ITO/ZnMgO/QDs/ZnMgO/Al.

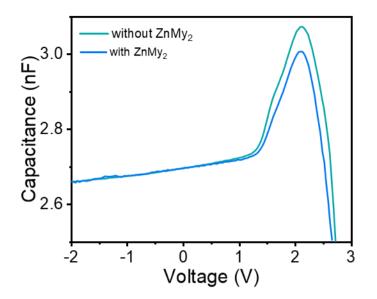



Figure S9. The capacitance-voltage characteristics of QLEDs based on InP/ZnSe/ZnS QDs synthesized without and with  $ZnMy_2$ .

| Year | PL   | FWHM | PL QY | Device structure                                                             | EQE   | $\eta_{\rm A}$        | L                     | Von | T <sub>50</sub> @ 100  | Ref.         |
|------|------|------|-------|------------------------------------------------------------------------------|-------|-----------------------|-----------------------|-----|------------------------|--------------|
|      | (nm) | (nm) | (%)   |                                                                              | (%)   | (cd A <sup>-1</sup> ) | (cd m <sup>-2</sup> ) | (V) | cd m <sup>-2</sup> (h) |              |
| 2013 | 518  | 64   | 80    | ITO/ZnO/PFN/InP@ZnSeS/TC<br>TA/MoO <sub>3</sub> /Al                          | 3.46  | 10.9                  | 3900                  | 2.2 |                        | 1            |
| 2019 | 516  | 53   | 67    | ITO/PEDOT:PSS/TFB/InP/GaP<br>/ZnS/ZnO/Al                                     | 6.3   | 13.7                  | 2938                  | 2.6 |                        | 2            |
| 2019 | 531  | 34   | 82    | ITO/PEDOT:PSS/poly-<br>TPD:PVK/InP QD/ZnMgO/Al                               | 13.6  |                       | 13900                 | 2.5 |                        | 3            |
| 2019 | 529  | 41   | 86    | Glass/Ag/ZnO/PFN/InP/ZnSeS/<br>CzSi/TCTA/MoO <sub>x</sub> /Ag                |       | 15.3                  | 38800                 |     |                        | 4            |
| 2020 | 525  | 40   | 81    | ITO/ZnO/TmPPPyTz/InP<br>QD/TCTA/MoO3/Al                                      | 10    |                       |                       | 2.4 |                        | 5            |
| 2021 | 545  |      | 86    | ITO/ZnMgO/InP/ZnSe/ZnS/TC<br>TA/MoO <sub>3</sub> /Al                         | 16.3  | 57.5                  | 12646.3               | 2   | 1033.4                 | 6            |
| 2022 | 526  | 35   | 97    | ITO/PEDOT:PSS/TFB/InP<br>QD/ZnSe <sub>x</sub> S <sub>1-x</sub> /ZnS/ZnMgO/Al | 15.2  |                       | 2300@<br>4V           | 2.1 |                        | 7            |
| 2022 | 535  | 43   | 54    | ITO/PEDOT:PSS/PVK/InP/Zn<br>Se/ZnS/PO-T2T/Al                                 | 15    |                       | 10010                 | 3.1 | 1430                   | 8            |
| 2022 | 528  | 38   | 89    | ITO/ZnO@ZnS/In(Zn)P/ZnSeS<br>/ZnS/DBTA/PCBBiF/HATCN/<br>Al                   | 10.8  | 37.5                  | 1756                  | 2.4 | 60255                  | 9            |
| 2022 | 510  | 36   | 91    | ITO/PEDOT:PSS/TFB/PVP/In<br>P/ZnSe/ZnS/ZnO/Al                                | 10.6  | 40.7                  | 15606                 | 1.8 | 5642                   | 10           |
| 2023 | 533  |      |       | ITO/PEDOT:PSS/MoO <sub>3</sub> /PVK/I<br>nP/ZnS/ZnO/Al                       | 7.39  |                       | 52730                 | 2.5 | 104.09                 | 11           |
| 2023 | 529  |      | 80    | Ag/ZnMgO/InP/ZnSe/ZnS/TA<br>DF-EHL/TCTA/MoO <sub>3</sub> /Ag                 |       | 68                    | 40700                 |     |                        | 12           |
| 2023 | 532  | 36   | 90    | ITO/PEDOT:PSS/PTAA/InP/Z<br>nSe/ZnS/ZnMgO@NaCl/Al                            | 13.8  | 52.2                  | 16788                 | 2.2 | 5944                   | 13           |
| 2023 | 535  | 33.7 | 95    | ITO/PEDOT:PSS/TFB/InP/ZnS<br>eS/ZnS/ZnMgO/Al                                 | 14.3  | 39                    | 11920                 | 2.2 |                        | 14           |
| 2024 | 534  | 44   | 91    | ITO/PEDOT:PSS/PF8Cz/InP/Z<br>nSe/ZnS/ZnMgO/Al                                | 12.74 | 53.31                 | 175084                | 2.0 | 20044                  | This<br>work |

Table S1. Comparison of the device performance in this work and from other works reported previously.

## **Supplementary References**

 Lim J, Park M, Bae W K, Lee D, Lee S, Lee C and Char K 2013 Highly Efficient Cadmium-Free Quantum Dot Light-Emitting Diodes Enabled by the Direct Formation of Excitons within InP@ZnSeS Quantum Dots ACS Nano 7, 9019-9026.

- [2] Zhang H, Hu N, Zeng Z, Lin Q, Zhang F, Tang A, Jia Y, Li L S, Shen H, Teng F and Du Z 2019 High-Efficiency Green InP Quantum Dot-Based Electroluminescent Device Comprising Thick-Shell Quantum Dots *Adv. Optical Mater.* 7, 1801602.
- [3] Moon H, Lee W, Kim J, Lee D, Cha S, Shin S and Chae H 2019 Composition-tailored ZnMgO nanoparticles for electron transport layers of highly efficient and bright InP-based quantum dot light emitting diodes *Chem. Commun.* 55, 13299-13302.
- [4] Lee T, Hahm D, Kim K, Bae W K, Lee C, and Kwak J 2019 Highly Efficient and Bright Inverted Top-Emitting InP Quantum Dot Light-Emitting Diodes Introducing a Hole-Suppressing Interlayer Small 15, 1905162.
- [5] Iwasaki Y, Motomura G, Ogura K, and Tsuzuki T 2020 Efficient green InP quantum dot light-emitting diodes using suitable organic electron-transporting materials *Appl. Phys. Lett.* **117**, 111104.
- [6] Chao W C, Chiang T H, Liu Y C, Huang Z X, Liao C C, Chu C H, Wang C H, Tseng H W, Hung W Y and Chou P T 2021 High efficiency green InP quantum dot light-emitting diodes by balancing electron and hole mobility *Commun. Mater.* 2, 96.
- [7] Yu P, Cao S, Shan Y, Bi Y, Hu Y, Zeng R, Zou B, Wang Y and Zhao J 2022 Highly efficient green InP-based quantum dot light-emitting diodes regulated by inner alloyed shell component *Light: Sci. Appl.* **11**, 162.
- [8] Gao P, Zhang Y, Qi P, and Chen S 2022 Efficient InP Green Quantum-Dot Light-Emitting Diodes Based on Organic Electron Transport Layer Adv. Optical Mater. 10, 2202066.
- [9] Mude N N, Khan Y, Thuy T T, Walker B and Kwon J H 2022 Stable ZnS Electron Transport Layer for High-Performance Inverted Cadmium-Free Quantum Dot Light-Emitting Diodes ACS Appl. Mater. Interfaces 14, 5592555932.
- [10] Wu Q, Cao F, Wang S, Wang Y, Sun Z, Feng J, Liu Y, Wang L, Cao Q, Li Y, Wei B Wong W Y, and Yang X 2022 Quasi-Shell-Growth Strategy Achieves Stable and Efficient Green InP Quantum Dot Light-Emitting Diodes *Adv. Sci.* 9, 2200959.
- [11] Zhang T, Liu P, Zhao F, Tan Y, Sun J, Xiao X, Wang Z, Wang Q, Zheng F, Sun X W, Wu D, Xing G and Wang K 2023 Electric dipole modulation for boosting carrier recombination in green InP QLEDs under strong electron injection *Nanoscale Adv.* 5, 385.
- [12] Kim J, Hong A, Hahm D, Lee H, Bae W K, Lee T and Kwak J 2023 Realization of Highly Efficient InP Quantum Dot Light-Emitting Diodes through In-Depth Investigation of Exciton-Harvesting Layers Adv. Optical Mater. 11, 2300088.
- [13] Wu Q, Wang L, Cao F, Wang S, Li L, Jia G and Yang X 2023 Bridging Chloride Anions Enables Efficient and Stable InP Green Quantum-Dot Light-Emitting Diodes Adv. Optical Mater. 11, 2300659.
- [14] Shin S, Gwak N, Yoo H, Jang H, Lee M, Kang K, Kim S, Yeon S, Kim T A, Kim S, Hwang G W and Oh N 2023 Fluoride-free synthesis strategy for luminescent InP cores and effective shelling processes via combinational precursor chemistry *Chem. Eng. J.* 466, 143223.