Processing math: 100%
Florian Strauss, Seyedhosein Payandeh, Aleksandr Kondrakov, Torsten Brezesinski. On the role of surface carbonate species in determining the cycling performance of all-solid-state batteries[J]. Materials Futures, 2022, 1(2): 023501. DOI: 10.1088/2752-5724/ac5b7d
Citation: Florian Strauss, Seyedhosein Payandeh, Aleksandr Kondrakov, Torsten Brezesinski. On the role of surface carbonate species in determining the cycling performance of all-solid-state batteries[J]. Materials Futures, 2022, 1(2): 023501. DOI: 10.1088/2752-5724/ac5b7d
Perspective •
OPEN ACCESS

On the role of surface carbonate species in determining the cycling performance of all-solid-state batteries

© 2022 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory
Materials Futures, Volume 1, Number 2
  • Received Date: January 19, 2022
  • Revised Date: March 06, 2022
  • Accepted Date: March 06, 2022
  • Available Online: March 08, 2022
  • Published Date: April 21, 2022
  • This short perspective summarizes recent findings on the role of residual lithium present on the surface of layered Ni-rich oxide cathode materials in liquid- and solid-electrolyte based batteries, with emphasis placed on the carbonate species. Challenges and future research opportunities in the development of carbonate-containing protective nanocoatings for inorganic solid-state battery applications are also discussed.
  • In recent years, Li-ion batteries (LIBs) have become the primary energy-storage technology, enabling portable electronics and electrifying transportation. State-of-the-art LIBs usually rely on the combination of a metal oxide cathode as lithium source, a graphite anode, a porous polymer separator and an organic carbonate based liquid electrolyte. To achieve high energy densities (>250 Wh kg-1) on a cell level, layered Ni-rich oxide cathode active materials (CAMs), such as LiNi1-x-yCoxMnyO2 (referred to as NCM or NMC in the battery community), are commonly employed and currently represent a hot topic in cathode R&D [1, 2]. However, it has been recognized both in academia and industry that surface residuals, primarily carbonate and hydroxide species, remaining from the synthesis (use of excess reagents) or formed during storage and handling, play a critical role on their processability and cyclability [3-7]. Especially the carbonate contaminants have been thoroughly studied in the past and shown to contribute to gas evolution via chemical (equation (1)) and/or electrochemical decomposition (equation (2)), which can lead to problems with battery performance and safety [4, 8-10]: Li2CO3+2H+2Li++H2O+ CO2
    2Li2CO34Li++4e+2CO2+O2.

    (1)

    Through a combination of in situ gas analysis and isotope labeling experiments, it has been demonstrated that carbonate species are responsible for a large fraction of the released CO2 in the initial cycle [11-14]. Nevertheless, their effect on CO2 evolution during long-term cycling is minor (depending on the cycling conditions and other relevant parameters). Besides, it has been shown that the electrochemical oxidation of surface carbonates leads to the generation of reactive oxygen (singlet oxygen, 1O2), see equation (2) [15]. Similarly, reactive (lattice) oxygen is released from NCM cathodes at high degrees of delithiation or, in other words, at high states of charge (80%), due to unfavorable phase transitions (layered to spinel and/or rocksalt) resulting from structural stability issues [8]. Apparently, this oxygen further contributes to CO2 evolution through follow-up reactions with the liquid electrolyte [15-17]. It should be noted though that a recent review article by Schrmann et al is questioning the electrochemical generation of 1O2 [18]. Regardless, for the application of Ni-rich NCM-type CAMs in high-performance LIBs, washing for the removal of residual lithium (followed by drying or post-annealing), without adversely affecting the lithium inventory and surface structure, is frequently required [12, 19-25].

    In contrast to LIBs, surface carbonates on NCM have been shown to be beneficial to the cycling performance and stability of inorganic solid-state batteries (SSBs) with superionic lithium thiophosphate electrolytes [26, 27]. In particular, they act as a kind of protective buffer layer between solid electrolyte and CAM, thereby mitigating electrochemical degradation of the former and leading to improved reversibility and capacity retention. Via isotope labeling of the carbonate species, it has been found that in SSBs, as somewhat expected, carbonate contaminants are also responsible for CO2 evolution, while the accompanying oxygen release seems to cause SO2 generation through gas-solid reactions with the lithium thiophosphate (sulfide) electrolyte [27-31]. However, unlike in LIBs, the carbonate species are getting stepwise decomposed and the amount of gas evolution is much lower in SSBs [14, 28].

    Lithium based transition metal oxide nanocoatings are typically applied to the CAM secondary particles’ surface prior to their use in SSBs, with the most prominent example being LiNbO3 [32-35]. In general, protective coatings help to mitigate the formation of detrimental decomposition interfaces (similar to the anode and cathode solid electrolyte interfaces in LIBs) by preventing direct contact between solid electrolyte and CAM [30, 36, 37]. Sol-gel chemistry is a relatively simple and versatile tool for the preparation of nanocoatings. In this case, alkoxides commonly serve as precursors in low boiling solvents, such as alcohols, followed by heating at temperatures in the range 300 C-500 C to produce the oxide [32, 38-40]. Higher temperatures are avoided to prevent cation migration and interdiffusion [41-43].

    Until recently it has been believed that a pure (clean) LiNbO3 coating is formed by wet chemical deposition. However, the surface layer rather has a hybrid structure consisting of LiNbO3 nanoparticles embedded in an amorphous matrix made from mostly Li2CO3, especially when the heating is done in air [26, 37]. Altering the preparation conditions and the Li:Nb ratio in the synthesis, the carbonate content in the protective coating has been successfully varied while keeping the Nb content constant. Ultimately this allowed for the identification of a sweet spot for maximum cell performance [44]. However, the authors of this study concluded that heating in oxygen is more beneficial. This is because the carbonate content is difficult to control precisely under (unstable) ambient atmosphere conditions. In addition, its effect on both coating microstructure and interfacial chemistry is not well understood and needs further study.

    Previous literature reports revealed that this hybrid coating concept is also compatible with other materials than LiNbO3, for example, Li2ZrO3 and Li3BO3, demonstrating the great versatility in terms of chemical composition (coating formulation) and properties [45-47]. In all of these cases, the coating was capable of suppressing to different extents interfacial decomposition of the solid electrolyte at the contact points with the CAM secondary particles, which otherwise would lead to impedance buildup due to formation of insulating degradation products (oxygenated sulfur and phosphorus species etc) and capacity fade.

    Taken together, these findings demonstrate the beneficial effect that carbonate-containing hybrid coatings may have on the cathode performance. However, their properties have largely been unexplored, but require thorough investigation to rationally improve cyclability, kinetics and lifetime. This also includes engineering of the micro- and nanostructures. From an analytical perspective, the particular role of the carbonate species remains unclear, possibly acting as a network former and adding mechanical flexibility to the coating and/or providing good bonding to the substrate (e.g. via the surface oxygen), without negatively affecting interfacial charge transport. Flexibility and bonding are important given that NCM CAMs, especially when rich in Ni, undergo distinct volume changes during cycling and the volumetric strain induced by unwanted side reactions [48-52]. Both can not only lead to particle fracture and mechanical separation between solid electrolyte and CAM, but can cause delamination of the coating, thereby generating reactive surfaces and facilitating lattice oxygen release. Apart from the increased (electro)chemical resistance and the potential impact on the chemo-mechanics, carbonate-containing hybrid coatings seem to enable high interfacial ionic conductivity, providing a multitude of parameters for tailoring the critical properties of protective coatings.

    In summary, herein we have described recent findings on the introduction of carbonate species into coatings on CAMs, recently recognized to play a pivotal role in the performance of thiophosphate based SSBs. Surface contaminants cannot be neglected, but must be considered carefully in tailoring the coating chemistry and interfacial properties. Practically this can be achieved by taking advantage of the residual lithium during post-treatment of the surface layer or through direct reactions with reactive precursors, either in the liquid or gas phase [53-55]. However, detailed multiscale characterization (prior to and after battery operation) to gain insights into the efficiency and functionality of the nanocoating as well as into related cathode failure modes is challenging. Suitable analytical methods include differential electrochemical mass spectrometry, time-of-flight secondary ion mass spectrometry, x-ray photoelectron spectroscopy, x-ray absorption spectroscopy and advanced electron microscopy, to name a few.

    F Strauss acknowledges financial support from the Fonds der Chemischen Industrie (FCI) through a Liebig fellowship. This work was partially supported by BASF SE.

    Authors to whom any correspondence should be addressed.

  • [1]
    Myung S-T, Maglia F, Park K-J, Yoon C S, Lamp P, Kim S-J, Sun Y-K 2017 ACS Energy Lett. 2 196-223 DOI: 10.1021/acsenergylett.6b00594
    [2]
    Sun Y-K 2019 ACS Energy Lett. 4 1042-4 DOI: 10.1021/acsenergylett.9b00652
    [3]
    Sicklinger J, Metzger M, Beyer H, Pritzl D, Gasteiger H A 2019 J. Electrochem. Soc. 166 A2322-35 DOI: 10.1149/2.0011912jes
    [4]
    Jung R, Morasch R, Karayaylali P, Phillips K, Maglia F, Stinner C, Shao-Horn Y, Gasteiger H A 2018 J. Electrochem. Soc. 165 A132-41 DOI: 10.1149/2.0401802jes
    [5]
    Kim Y, Park H, Warner J H, Manthiram A 2021 ACS Energy Lett. 6 941-8 DOI: 10.1021/acsenergylett.1c00086
    [6]
    Chen A, et al 2020 Front. Energy Res. 8 593009 DOI: 10.3389/fenrg.2020.593009
    [7]
    Bi Y, Wang T, Liu M, Du R, Yang W, Liu Z, Peng Z, Liu Y, Wang D, Sun X 2016 RSC Adv. 6 19233-7 DOI: 10.1039/C6RA00648E
    [8]
    Jung R, Metzger M, Maglia F, Stinner C, Gasteiger H A 2017 J. Electrochem. Soc. 164 A1361-77 DOI: 10.1149/2.0021707jes
    [9]
    Rowden B, Garcia-Araez N 2020 Energy Rep. 6 10-18 DOI: 10.1016/j.egyr.2020.02.022
    [10]
    Strauss F, Kitsche D, Ma Y, Teo J H, Goonetilleke D, Janek J, Bianchini M, Brezesinski T 2021 Adv. Energy Sustain. Res. 2 2100004 DOI: 10.1002/aesr.202100004
    [11]
    Renfrew S E, McCloskey B D 2017 J. Am. Chem. Soc. 139 17853-60 DOI: 10.1021/jacs.7b08461
    [12]
    Renfrew S E, Kaufman L A, McCloskey B D 2019 ACS Appl. Mater. Interfaces 11 34913-21 DOI: 10.1021/acsami.9b09992
    [13]
    Wuersig A, Scheifele W, Novk P 2007 J. Electrochem. Soc. 154 A449-54 DOI: 10.1149/1.2712138
    [14]
    Hatsukade T, Schiele A, Hartmann P, Brezesinski T, Janek J 2018 ACS Appl. Mater. Interfaces 10 38892-9 DOI: 10.1021/acsami.8b13158
    [15]
    Mahne N, Renfrew S E, McCloskey B D, Freunberger S A 2018 Angew. Chem., Int. Ed. 57 5529-33 DOI: 10.1002/anie.201802277
    [16]
    Freiberg A T S, Roos M K, Wandt J, de Vivie-Riedle R, Gasteiger H A 2018 J. Phys. Chem. A 122 8828-39 DOI: 10.1021/acs.jpca.8b08079
    [17]
    Wandt J, Freiberg A T S, Ogrodnik A, Gasteiger H A 2018 Mater. Today 21 825-33 DOI: 10.1016/j.mattod.2018.03.037
    [18]
    Schrmann A, Lueren B, Mollenhauer D, Janek J, Schrder D 2021 Chem. Rev. 121 12445-64 DOI: 10.1021/acs.chemrev.1c00139
    [19]
    Kim J, Hong Y, Ryu K S, Kim M G, Cho J 2006 Electrochem. Solid-State Lett. 9 A19-23 DOI: 10.1149/1.2135427
    [20]
    Pritzl D, Teufl T, Freiberg A T S, Strehle B, Sicklinger J, Sommer H, Hartmann P, Gasteiger H A 2019 J. Electrochem. Soc. 166 A4056-66 DOI: 10.1149/2.1351915jes
    [21]
    Zhou Y, Hu Z, Huang Y, Wu Y, Hong Z 2021 J. Alloys Compd. 888 161584 DOI: 10.1016/j.jallcom.2021.161584
    [22]
    Su Y, et al 2020 Front. Chem. 8 573 DOI: 10.3389/fchem.2020.00573
    [23]
    Doo S W, Kim K, Kim H, Lee S, Choi S H, Lee K T 2021 J. Electrochem. Soc. 168 100529 DOI: 10.1149/1945-7111/ac2f05
    [24]
    Fantin R, Trevisanello E, Ruess R, Pokle A, Conforto G, Richter F H, Volz K, Janek J 2021 Chem. Mater. 33 2624-34 DOI: 10.1021/acs.chemmater.1c00471
    [25]
    Weber D, Tripkovi , Kretschmer K, Bianchini M, Brezesinski T 2020 Eur. J. Inorg. Chem. 2020 3117-30 DOI: 10.1002/ejic.202000408
    [26]
    Kim A-Y, Strauss F, Bartsch T, Teo J H, Hatsukade T, Mazilkin A, Janek J, Hartmann P, Brezesinski T 2019 Chem. Mater. 31 9664-72 DOI: 10.1021/acs.chemmater.9b02947
    [27]
    Bartsch T, Strauss F, Hatsukade T, Schiele A, Kim A-Y, Hartmann P, Janek J, Brezesinski T 2018 ACS Energy Lett. 3 2539-43 DOI: 10.1021/acsenergylett.8b01457
    [28]
    Strauss F, Teo J H, Schiele A, Bartsch T, Hatsukade T, Hartmann P, Janek J, Brezesinski T 2020 ACS Appl. Mater. Interfaces 12 20462-8 DOI: 10.1021/acsami.0c02872
    [29]
    Teo J H, Strauss F, Tripkovi , Schweidler S, Ma Y, Bianchini M, Janek J, Brezesinski T 2021 Cell Rep. Phys. Sci. 2 100465 DOI: 10.1016/j.xcrp.2021.100465
    [30]
    Teo J H, Strauss F, Walther F, Ma Y, Payandeh S, Scherer T, Bianchini M, Janek J, Brezesinski T 2022 Mater. Futures 1 015102 DOI: 10.1088/2752-5724/ac3897
    [31]
    Ma Y, Teo J H, Kitsche D, Diemant T, Strauss F, Ma Y, Goonetilleke D, Janek J, Bianchini M, Brezesinski T 2021 ACS Energy Lett. 6 3020-8 DOI: 10.1021/acsenergylett.1c01447
    [32]
    Culver S P, Koerver R, Zeier W G, Janek J 2019 Adv. Energy Mater. 9 1900626 DOI: 10.1002/aenm.201900626
    [33]
    Takada K, Ohta N, Zhang L, Fukuda K, Sakaguchi I, Ma R, Osada M, Sasaki T 2008 Solid State Ion. 179 1333-7 DOI: 10.1016/j.ssi.2008.02.017
    [34]
    Li J, Liu Y, Yao W, Rao X, Zhong S, Qian L 2020 Solid State Ion. 349 115292 DOI: 10.1016/j.ssi.2020.115292
    [35]
    Payandeh S, Goonetilleke D, Bianchini M, Janek J, Brezesinski T 2022 Curr. Opin. Electrochem. 31 100877 DOI: 10.1016/j.coelec.2021.100877
    [36]
    Auvergniot J, Cassel A, Ledeuil J-B, Viallet V, Seznec V, Dedryvre R 2017 Chem. Mater. 29 3883-90 DOI: 10.1021/acs.chemmater.6b04990
    [37]
    Walther F, Strauss F, Wu X, Mogwitz B, Hertle J, Sann J, Rohnke M, Brezesinski T, Janek J 2021 Chem. Mater. 33 2110-25 DOI: 10.1021/acs.chemmater.0c04660
    [38]
    Li X, Jin L, Song D, Zhang H, Shi X, Wang Z, Zhang L, Zhu L 2020 J. Energy Chem. 40 39-45 DOI: 10.1016/j.jechem.2019.02.006
    [39]
    Ohta N, Takada K, Sakaguchi I, Zhang L, Ma R, Fukuda K, Osada M, Sasaki T 2007 Electrochem. Commun. 9 1486-90 DOI: 10.1016/j.elecom.2007.02.008
    [40]
    Lee J S, Park Y J 2021 ACS Appl. Mater. Interfaces 13 38333-45 DOI: 10.1021/acsami.1c10294
    [41]
    Schipper F, et al 2018 Adv. Energy Mater. 8 1701682 DOI: 10.1002/aenm.201701682
    [42]
    Xin F, Zhou H, Bai J, Wang F, Whittingham M S 2021 J. Phys. Chem. Lett. 12 7908-13 DOI: 10.1021/acs.jpclett.1c01785
    [43]
    Xin F, et al 2021 ACS Energy Lett. 6 1377-82 DOI: 10.1021/acsenergylett.1c00190
    [44]
    Kim A-Y, Strauss F, Bartsch T, Teo J H, Janek J, Brezesinski T 2021 Sci. Rep. 11 5367 DOI: 10.1038/s41598-021-84799-1
    [45]
    Strauss F, Teo J H, Maibach J, Kim A-Y, Mazilkin A, Janek J, Brezesinski T 2020 ACS Appl. Mater. Interfaces 12 57146-54 DOI: 10.1021/acsami.0c18590
    [46]
    Jung S H, Oh K, Nam Y J, Oh D Y, Brner P, Kang K, Jung Y S 2018 Chem. Mater. 30 8190-200 DOI: 10.1021/acs.chemmater.8b03321
    [47]
    Kitsche D, Strauss F, Tang Y, Bartnick N, Kim A-Y, Ma Y, Kbel C, Janek J, Brezesinski T 2022 Batteries Supercaps DOI: 10.1002/batt.202100397R1
    [48]
    Han Y, Jung S H, Kwak H, Jun S, Kwak H H, Lee J H, Hong S-T, Jung Y S 2021 Adv. Energy Mater. 11 2100126 DOI: 10.1002/aenm.202100126
    [49]
    de Biasi L, Kondrakov A O, Gewein H, Brezesinski T, Hartmann P, Janek J 2017 J. Phys. Chem. C 121 26163-71 DOI: 10.1021/acs.jpcc.7b06363
    [50]
    Ishidzu K, Oka Y, Nakamura T 2016 Solid State Ion. 288 176-9 DOI: 10.1016/j.ssi.2016.01.009
    [51]
    Ryu H-H, Park K-J, Yoon C S, Sun Y-K 2018 Chem. Mater. 30 1155-63 DOI: 10.1021/acs.chemmater.7b05269
    [52]
    Strauss F, de Biasi L, Kim A-Y, Hertle J, Schweidler S, Janek J, Hartmann P, Brezesinski T 2020 ACS Mater. Lett. 2 84-88 DOI: 10.1021/acsmaterialslett.9b00441
    [53]
    Sattar T, Sim S-J, Jin B-S, Kim H-S 2021 Sci. Rep. 11 18590 DOI: 10.1038/s41598-021-98123-4
    [54]
    Negi R S, Celik E, Pan R, Stglich R, Senker J, Elm M T 2021 ACS Appl. Energy Mater. 4 3369-80 DOI: 10.1021/acsaem.0c03135
    [55]
    Kitsche D, Tang Y, Ma Y, Goonetilleke D, Sann J, Walther F, Bianchini M, Janek J, Brezesinski T 2021 ACS Appl. Energy Mater. 4 7338-45 DOI: 10.1021/acsaem.1c01487
  • Related Articles

    [1]Binodhya Wijerathne, Ting Liao, Xudong Jiang, Juan Zhou, Ziqi Sun. Plant-inspired surfaces and interfaces for sustainable technologies[J]. Materials Futures, 2025, 4(1): 012301. DOI: 10.1088/2752-5724/ad93ea
    [2]Chunyan Zuo, Hengyuan Hu, Meisheng Han, Yejun Qiu, Guohua Tao. High performance energy-saving electrocatalysts for hydrogen evolution reaction: a minireview on the influence of structure and support[J]. Materials Futures, 2025, 4(1): 012101. DOI: 10.1088/2752-5724/ada99c
    [3]Jing Lin, Mareen Schaller, Ruizhuo Zhang, Volodymyr Baran, Hao Liu, Ziming Ding, Sylvio Indris, Aleksandr Kondrakov, Torsten Brezesinski, and Florian Strauss. High-Entropy Argyrodite Glass-Ceramic Electrolytes for All-Solid-State Batteries[J]. Materials Futures. DOI: 10.1088/2752-5724/adde76
    [4]Zhong Yang, Xianglin Xiang, Jian Yang, Zong-Yan Zhao. High-entropy oxides as energy materials: from complexity to rational design[J]. Materials Futures, 2024, 3(4): 042103. DOI: 10.1088/2752-5724/ad8463
    [5]Yuanbin Cheng, Qian Li, Mengyuan Chen, Fei Chen, Zhenghui Wu, Huaibin Shen. High-brightness green InP-based QLEDs enabled by in-situ passivating core surface with zinc myristate[J]. Materials Futures, 2024, 3(2): 025201. DOI: 10.1088/2752-5724/ad3a83
    [6]Junbo Wang, Sren L Dreyer, Kai Wang, Ziming Ding, Thomas Diemant, Guruprakash Karkera, Yanjiao Ma, Abhishek Sarkar, Bei Zhou, Mikhail V Gorbunov, Ahmad Omar, Daria Mikhailova, Volker Presser, Maximilian Fichtner, Horst Hahn, Torsten Brezesinski, Ben Breitung, Qingsong Wang. P2-type layered high-entropy oxides as sodium-ion cathode materials[J]. Materials Futures, 2022, 1(3): 035104. DOI: 10.1088/2752-5724/ac8ab9
    [7]Marie-Claude Bay, Rabeb Grissa, Konstantin V Egorov, Ryo Asakura, Corsin Battaglia. Low Na--alumina electrolyte/cathode interfacial resistance enabled by a hydroborate electrolyte opening up new cell architecture designs for all-solid-state sodium batteries[J]. Materials Futures, 2022, 1(3): 031001. DOI: 10.1088/2752-5724/ac8947
    [8]Hongmei Tang, Zhe Qu, Yaping Yan, Wenlan Zhang, Hua Zhang, Minshen Zhu, Oliver G Schmidt. Unleashing energy storage ability of aqueous battery electrolytes[J]. Materials Futures, 2022, 1(2): 022001. DOI: 10.1088/2752-5724/ac52e8
    [9]Liubin Ben, Jin Zhou, Hongxiang Ji, Hailong Yu, Wenwu Zhao, Xuejie Huang. Si nanoparticles seeded in carbon-coated Sn nanowires as an anode for high-energy and high-rate lithium-ion batteries[J]. Materials Futures, 2022, 1(1): 015101. DOI: 10.1088/2752-5724/ac3257
    [10]Haoran Mu, Wenzhi Yu, Jian Yuan, Shenghuang Lin, Guangyu Zhang. Interface and surface engineering of black phosphorus: a review for optoelectronic and photonic applications[J]. Materials Futures, 2022, 1(1): 012301. DOI: 10.1088/2752-5724/ac49e3
  • Cited by

    Periodical cited type(22)

    1. Yang, J., Gu, X., Xu, C. et al. Metal-organic framework-derived materials for enhanced performance of aqueous zinc ion batteries: a mini review. CrystEngComm, 2024, 26(38): 5314-5323. DOI:10.1039/d4ce00774c
    2. An, S., Karger, L., Dreyer, S.L. et al. Improving cycling performance of the NaNiO2 cathode in sodium-ion batteries by titanium substitution. Materials Futures, 2024, 3(3): 035103. DOI:10.1088/2752-5724/ad5faa
    3. Guan, Y., Guo, Z., Zhou, S. et al. Metal-organic framework-derived bimetallic oxides as anode materials for lithium-ion batteries: a mini review. New Journal of Chemistry, 2024, 48(30): 13466-13474. DOI:10.1039/d4nj02608j
    4. Aktekin, B., Sedykh, A.E., Müller-Buschbaum, K. et al. The Formation of Residual Lithium Compounds on Ni-Rich NCM Oxides: Their Impact on the Electrochemical Performance of Sulfide-Based ASSBs. Advanced Functional Materials, 2024, 34(21): 2313252. DOI:10.1002/adfm.202313252
    5. Karger, L., Nunes, B.N., Yusim, Y. et al. Protective Nanosheet Coatings for Thiophosphate-Based All-Solid-State Batteries. Advanced Materials Interfaces, 2024, 11(14): 2301067. DOI:10.1002/admi.202301067
    6. He, Y., Dreyer, S.L., Ting, Y.-Y. et al. Entropy-Mediated Stable Structural Evolution of Prussian White Cathodes for Long-Life Na-Ion Batteries. Angewandte Chemie - International Edition, 2024, 63(7): e202315371. DOI:10.1002/anie.202315371
    7. Peljo, P., Villevieille, C., Girault, H.H. The redox aspects of lithium-ion batteries. Energy and Environmental Science, 2024. DOI:10.1039/d4ee04560b
    8. Villevieille, C.. The challenge of studying interfaces in battery materials. Nature Nanotechnology, 2024. DOI:10.1038/s41565-024-01836-6
    9. Zhang, X., Deng, G., Huang, M. et al. From charge storage mechanism to performance: A strategy toward boosted lithium/sodium storage through heterostructure optimization. Journal of Energy Chemistry, 2024. DOI:10.1016/j.jechem.2023.09.012
    10. Zhang, X., Huang, M., Peng, Z. et al. Metal-organic-framework derived Zn-V-based oxide with charge storage mechanism as high-performance anode material to enhance lithium and sodium storage. Journal of Colloid and Interface Science, 2023. DOI:10.1016/j.jcis.2023.08.139
    11. Nunes, B.N., van den Bergh, W., Strauss, F. et al. The role of niobium in layered oxide cathodes for conventional lithium-ion and solid-state batteries. Inorganic Chemistry Frontiers, 2023, 10(24): 7126-7145. DOI:10.1039/d3qi01857a
    12. Lu, G., Jiang, Y., Wu, X. et al. “Win-Win” Modification of LiCoO2 Enables Stable and Long-Life Cycling of Sulfide-Based All Solid-State Batteries. ChemSusChem, 2023, 16(20): e202300517. DOI:10.1002/cssc.202300517
    13. Zhang, X., Peng, Y., Zeng, C. et al. Nanostructured conversion-type anode materials of metal-organic framework-derived spinel XMn2O4 (X = Zn, Co, Cu, Ni) to boost lithium storage. Journal of Colloid and Interface Science, 2023. DOI:10.1016/j.jcis.2023.04.042
    14. Dolina, E.S., Kulyamin, P.A., Grekova, A.A. et al. Thermal Stability and Vibrational Properties of the 6, 6, 12-Graphyne-Based Isolated Molecules and Two-Dimensional Crystal. Materials, 2023, 16(5): 1964. DOI:10.3390/ma16051964
    15. Neupane, T., Tabibi, B., Kim, W.-J. et al. Spatial Self-Phase Modulation in Graphene-Oxide Monolayer. Crystals, 2023, 13(2): 271. DOI:10.3390/cryst13020271
    16. Payandeh, S., Njel, C., Mazilkin, A. et al. The Effect of Single versus Polycrystalline Cathode Particles on All-Solid-State Battery Performance. Advanced Materials Interfaces, 2023, 10(3): 2201806. DOI:10.1002/admi.202201806
    17. Wei, C., Yu, C., Chen, S. et al. Unraveling the LiNbO3 coating layer on battery performances of lithium argyrodite-based all-solid-state batteries under different cut-off voltages. Electrochimica Acta, 2023. DOI:10.1016/j.electacta.2022.141545
    18. Payandeh, S., Strauss, F., Mazilkin, A. et al. Tailoring the LiNbO3 coating of Ni-rich cathode materials for stable and high-performance all-solid-state batteries. Nano Research Energy, 2022, 1(3): e9120016. DOI:10.26599/NRE.2022.9120016
    19. Lin, J., Cherkashinin, G., Schäfer, M. et al. A High-Entropy Multicationic Substituted Lithium Argyrodite Superionic Solid Electrolyte. ACS Materials Letters, 2022, 4(11): 2187-2194. DOI:10.1021/acsmaterialslett.2c00667
    20. Dreyer, S.L., Kondrakov, A., Janek, J. et al. In situ analysis of gas evolution in liquid- and solid-electrolyte-based batteries with current and next-generation cathode materials. Journal of Materials Research, 2022, 37(19): 3146-3168. DOI:10.1557/s43578-022-00586-2
    21. Wang, J., Dreyer, S.L., Wang, K. et al. P2-type layered high-entropy oxides as sodium-ion cathode materials. Materials Futures, 2022, 1(3): 035104. DOI:10.1088/2752-5724/ac8ab9
    22. Minnmann, P., Strauss, F., Bielefeld, A. et al. Designing Cathodes and Cathode Active Materials for Solid-State Batteries. Advanced Energy Materials, 2022, 12(35): 2201425. DOI:10.1002/aenm.202201425

    Other cited types(0)

Catalog

    Article Metrics

    Article views (593) Full Text (239) PDF downloads (103) Cited by(22)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return