• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

Extending MoS2-based materials into the catalysis of non-acidic hydrogen evolution: challenges, progress, and perspectives

  • Abstract: Water splitting is regarded as among the most prospective methods of generating green hydrogen. Switching electrolytes of water electrolysis from acidic to non-acidic ones will enable the use of noble-metal-free electrocatalysts and mitigate material corrosion, thus lowering the capital cost of water electrolyzers and improving their operational stability. However, increasing electrolyte pH will degrade the hydrogen evolution reaction (HER) activity because of the reduced concentration of H3O+ as reactants, making non-acidic HER sluggish. To accelerate HER, MoS2-based materials with the advantages of unique atomistic structure, low cost, and high abundance have been considered prospective electrocatalysts to substitute for Pt in acid. Great efforts are being spent on extending MoS2-based materials into the catalysis of non-acidic HER, and their further development requires clarification of the existing challenges and current progress. However, it has not yet been discussed for non-acidic HER on MoS2-based electrocatalysts. To mitigate the disparity, we systematically overview MoS2-based electrocatalysts for non-acidic HER, covering catalytic mechanisms, modulation strategies, materials development, current challenges, research progress, and perspectives. This review will contribute to the rational design of MoS2-based materials for high-performance HER in non-acidic conditions.

     

/

返回文章
返回