• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

Intrinsic vacancy in 2D defective semiconductor In2S3 for artificial photonic nociceptor

  • Abstract: It is crucial to develop an advanced artificially intelligent optoelectronic information system that accurately simulates photonic nociceptors like the activation process of a human visual nociceptive pathway. Visible light reaches the retina for human visual perception, but its excessive exposure can damage nearby tissues. However, there are relatively few reports on visible light-triggered nociceptors. Here, we introduce a two-dimensional natural defective III-VI semiconductor -In2S3 and utilize its broad spectral response, including visible light brought by intrinsic defects, for visible light-triggered artificial photonic nociceptors. The response mode of the device, under visible light excitation, is very similar to that of the human eye. It perfectly reproduces the pain perception characteristics of the human visual system, such as threshold,’ relaxation,’ no adaptation’, and sensitization’. Its working principle is attributed to the mechanism of charge trapping associated with the intrinsic vacancies in In2S3 nanosheets. This work provides an attractive material system (intrinsic defective semiconductors) for broadband artificial photonic nociceptors.

     

/

返回文章
返回