High-Entropy Argyrodite Glass-Ceramic Electrolytes for All-Solid-State Batteries
-
摘要: Only Lithium argyrodite superionic conductors with the general formula Li6PS5X (X = Cl, Br, I) have been intensively investigated in recent years and further successfully adopted in the field of solid-state batteries (SSBs). The transport properties of argyrodite solid electrolytes usually strongly depend on the degree of occupational disorder. Increasing disorder through complex doping or substitution has been shown to directly affect ionic conductivity. Herein, we explore a high-entropy lithium argyrodite of nominal composition Li6.6[P0.2Si0.2Sn0.2Ge0.2Sb0.2]S5I. This material can be readily prepared by mechanochemistry. Using complementary diffraction techniques, nuclear magnetic resonance spectroscopy, and charge-transport measurements, we show that upon tailoring crystallinity and defect concentration by post-annealing at temperatures up to 220 °C, a high room-temperature ionic conductivity of about 0.9 mS/cm (~4.4 mS/cm bulk conductivity) can be achieved. Both as-prepared and annealed (at 220 °C) samples were also tested in pellet-stack SSB cells. The mechanochemically prepared glass-ceramic solid electrolyte was found to exhibit superior performance, even outperforming commercially available Li6PS5Cl. Collectively, the results highlight the importance of considering structural aspects on different length scales when optimizing the properties of lithium argyrodites for SSB applications.Abstract: Only Lithium argyrodite superionic conductors with the general formula Li6PS5X (X = Cl, Br, I) have been intensively investigated in recent years and further successfully adopted in the field of solid-state batteries (SSBs). The transport properties of argyrodite solid electrolytes usually strongly depend on the degree of occupational disorder. Increasing disorder through complex doping or substitution has been shown to directly affect ionic conductivity. Herein, we explore a high-entropy lithium argyrodite of nominal composition Li6.6[P0.2Si0.2Sn0.2Ge0.2Sb0.2]S5I. This material can be readily prepared by mechanochemistry. Using complementary diffraction techniques, nuclear magnetic resonance spectroscopy, and charge-transport measurements, we show that upon tailoring crystallinity and defect concentration by post-annealing at temperatures up to 220 °C, a high room-temperature ionic conductivity of about 0.9 mS/cm (~4.4 mS/cm bulk conductivity) can be achieved. Both as-prepared and annealed (at 220 °C) samples were also tested in pellet-stack SSB cells. The mechanochemically prepared glass-ceramic solid electrolyte was found to exhibit superior performance, even outperforming commercially available Li6PS5Cl. Collectively, the results highlight the importance of considering structural aspects on different length scales when optimizing the properties of lithium argyrodites for SSB applications.
-
Keywords:
- high-entropy materials /
- solid electrolytes /
- solid-state batteries
-
-
[1] Janek J, Zeier W G. A solid future for battery development. 2016 Nat Energy 116141.
[2] Frith J T, Lacey M J and Ulissi U A non-academic perspective on the future of lithium-based batteries. 2023 Nat. Commun. 14420.
[3] Kim K J, Balaish M, Wadaguchi M, Kong L and Rupp J L M Solid-State Li-Metal Batteries: Challenges and Horizons of Oxide and Sulfide Solid Electrolytes and Their Interfaces 2021 Adv. Energy Mater. 112002689.
[4] Zhang Z, Shao Y, Lotsch B, Hu Y, Li H, Janek J, Nazar L F, Nan C W, Maier J, Armand M and Chen L New horizons for inorganic solid state ion conductors 2018 Energy Environ Sci. 111945-1976.
[5] Janek J, Zeier W G Challenges in speeding up solid-state battery development 2023 Nat. Energy 8230-240.
[6] Bachman J C, Muy S, Grimaud A, Chang H H, Pour N, Lux S F, Paschos O, Maglia F, Lupart S, Lamp P, Giordano L and Yang S H Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction 2016 Chem Rev. 116140-162.
[7] Famprikis T, Canepa P, Dawson J A, Islam M S and Masquelier C Fundamentals of inorganic solid-state electrolytes for batteries. 2019 Nat. Mater. 181278- 1291.
[8] Minafra N, Kraft M A, Bernges T, Li C, Morgan B J and Zeier W G Local Charge Inhomogeneity and Lithium Distribution in the Superionic Argyrodites Li6PS5X (X = Cl, Br, I). 2020 Inorg. Chem. 5911009-11019.
[9] Kraft M A, Culver S P, Calderon M, Böcher F, Krauskopf T, Senyshyn A, Dietrich C, Zevalkink A, Janek J and Zeier W G Influence of Lattice Polarizability on the Ionic Conductivity in the Lithium Superionic Argyrodites Li6PS5X (X = Cl, Br, I). 2017 J. Am. Chem. Soc. 13910909-10918.
[10] Kraft M A, Ohno S, Zinkevich T, Koerver R, Culver S P, Fuchs T, Senyshyn A, Indris S, Morgan B J and Zeier W G Inducing High Ionic Conductivity in the Lithium Superionic Argyrodites Li6+xP1-xGexS5I for All-Solid-State Batteries. 2018 J. Am. Chem. Soc. 14016330-16339.
[11] Ohno S, Helm B, Fuchs T, Dewald G, Kraft M A, Culver S P, Senyshyn A and Zeier W G Further Evidence for Energy Landscape Flattening in the Superionic Argyrodites Li6+xP1-xMxS5I (M = Si, Ge, Sn). 2019 Chem. Mater. 314936-4944.
[12] Lin J, Cherkashinin G, Schäfer M, Melinte G, Indris S, Kondrakov A, Janek J, Brezesinski, T and Strauss F A High-Entropy Multicationic Substituted Lithium Argyrodite Superionic Solid Electrolyte. 2022 ACS Materials Letters, 4, 2187- 2194.
[13] Zhao Y, Li J and Dahn J R Interdiffusion of Cations from Metal Oxide Surface Coatings into LiCoO2 during Sintering. 2017 Chem. Mater. 295239-5248.
[14] Brinek M, Hiebl C and Wilkening H M R Understanding the Origin of Enhanced Li-Ion Transport in Nanocrystalline Argyrodite-Type Li6PS5I. 2020 Chem. Mater. 324754-4766.
[15] Teo J H, Strauss F, Walther F, Ma Y, Payandeh S, Scherer T, Bianchini M, Janek J and Brezesinski T The interplay between (electro) chemical and (chemo) mechanical effects in the cycling performance of thiophosphate-based solid-state batteries. 2022 Mater. Futur. 1015102.
[16] Strauss F, Teo J H, Janek J and Brezesinski T Investigations into the superionic glass phase of Li4PS4I for improving the stability of high-loading all-solid-state batteries. 2020 Inorg. Chem. Front. 73953-3960.
[17] Strauss F, Lin J, Karger L, Weber D and Brezesinski T Probing the Lithium Substructure and Ionic Conductivity of the Solid Electrolyte Li4PS4I. 2021 Inorg. Chem. 615885-5890.
[18] Jodlbauer A, Spychala J, Hogrefe K, Gadermaier B and Wilkening H M Fast Li Ion Dynamics in Defect-Rich Nanocrystalline Li4PS4I─The Effect of Disorder on Activation Energies and Attempt Frequencies. 2022 Chem. Mater. 361648- 1664.
[19] Miß V, Neuberger S, Winter E, Weiershäuser J O, Gerken D, Xu Y, Krüger S, Capua F D, Vogel M, Schedt auf der Grünne J and Roling B Heat TreatmentInduced Conductivity Enhancement in Sulfide-Based Solid Electrolytes: What is the Role of the Thio-LISICON II Phase and of Other Nanoscale Phases? 2022 Chem. Mater. 347721-7729.
[20] Brandstätter H, Wohlmuth D, Bottke P, Pregartner V and Wilkening M Li Ion Dynamics in Nanocrystalline and Structurally Disordered Li2TiO3. 2015 Zeitschrift fur Phys. Chemie 2291363-1374.
[21] Heitjans P, Masoud M, Feldhoff A and Wilkening M NMR and impedance studies of nanocrystalline and amorphous ion conductors: Lithium niobate as a model system. 2007 Faraday Discuss. 13467-82.
[22] Liu Z, Fu W, Payzant E A, Yu X, Wu Z, Dudney N J, Kiggans J, Hong K, Rondinone A J and Liang C Anomalous high ionic conductivity of nanoporous β-Li3PS4. 2013 J. Am. Chem. Soc. 135975-978.
[23] Strauss F, Lin J, Janek J and Brezesinski T Influence of synthesis parameters on crystallization behavior and ionic conductivity of the Li4PS4I solid electrolyte. 2021 Sci. Rep. 1114073.
[24] Di Stefano D, Miglio A, Robeyns K, Filinkchuk Y, Lechartier M, Senyshyn A, Ishidda H, Spannenberger S, Prutsch D, Lunghammer S, Rettenwander D, Wilkening M, Roling B, Kato Y and Hautier G Superionic Diffusion through Frustrated Energy Landscape. 2019 Chem. 52450-2460.
[25] Schweiger L, Hogrefe K, Gadermaier B, Rupp J L and Wilkening M Ionic Conductivity of Nanocrystalline and Amorphous Li10GeP2S12: The Detrimental Impact of Local Disorder on Ion Transport. 2022 J. Am. Chem. Soc. 1449597- 9609.
[26] Yang J, Lin J, Brezesinski T and Strauss F Emerging Superionic Sulfide and Halide Glass-Ceramic Solid Electrolytes: Recent Progress and Future Perspectives. 2024 ACS Energy Lett. 95977-5990.
[27] Singh D K, Henss A, Mogwitz B, Gautam A, Horn J, Krauskopf T, Burkhardt S, Sann J, Richter F H and Janek J Li6PS5Cl microstructure and influence on dendrite growth in solid-state batteries with lithium metal anode. 2022 Cell Reports Phys. Sci. 3101043.
[28] Singh D K, Fuchs T, Krempaszky C, Mogwitz B and Janek J Non-Linear Kinetics of The Lithium Metal Anode on Li6PS5Cl at High Current Density: Dendrite Growth and the Role of Lithium Microstructure on Creep. 2023 Adv. Sci. 102302521.
[29] Wang S, Zhang W, Chen X, Das D, Ruess R, Gautam A, Walther F, Ohno S, Koerver R, Zhang Q, Zeier W G, Richter F H, Nan C W and Janek J Influence of Crystallinity of Lithium Thiophosphate Solid Electrolytes on the Performance of Solid-State Batteries. 2021 Adv. Energy. Mater. 11202100654.
[30] Schweidler S, Botros M, Strauss F, Wang Q, Ma Y, Velasco L, Cadilha Marques G, Sarkar A, Kübel C, Hahn H, Aghassi-Hagmann J, Brezesinski T and Breitung B High-entropy materials for energy and electronic applications. 2024 Nat. Rev. Mater. 9266-281.
[31] Oses C, Toher C, Curtarolo S. High-entropy ceramics. 2020 Nat. Rev. Mater. 5295-309.
[32] Ma Y, Ma Y, Wang Q, Schweidler S, Botros M, Fu T, Hahn H, Brezesinski T and Breitung B High-entropy energy materials: Challenges and new opportunities. 2021 Energy Environ. Sci. 142883-2905.
[33] Zeng Y, Ouyang B, Liu J, Byeon Y W, Cai Z, Miara L J, Wang Y and Ceder G High-entropy mechanism to boost ionic conductivity. 2022 Science 3781320- 1324.
[34] Fan J, Wang T, Bridges C A, Borisevich A Y, Steren C A, Li P, Thapaliya B P, Do-Thanh C L, Yang Z, Yuan Y and Dai S Entropy stabilized cubic Li7La3Zr2O12 with reduced lithium diffusion activation energy: studied using solid-state NMR spectroscopy. 2023 RSC Adv. 1319856-19861.
[35] Jung S K, Gwon H, Kim H, Yoon G, Shin D, Hong J, Jung C and Kim J S Unlocking the hidden chemical space in cubic-phase garnet solid electrolyte for efficient quasi-all-solid-state lithium batteries. 2022 Nat. Commun. 137638
[36] Ko S-T, Lee T, Qi J, Zhang D, Peng W T, Wang X, Tsai W C, Sun S, Wang Z, Bowman W J, Ping Ong S, Pan X and Luo J Compositionally complex perovskite oxides: Discovering a new class of solid electrolytes with interface-enabled conductivity improvements. 2023 Matter 62395-2418.
[37] Li Y, Song S, Kim H, Nomoto K, Kim H, Sun X, Hori S, Suzuki K, Matsui N, Hirayama M, Mizoguchi T, Saito T, Kamiyama T and Kanno R A lithium superionic conductor for millimeter-thick battery electrode. 2023 Science 38150-53.
[38] Lin J, Schaller M, Indris S, Baran V, Gautam A, Janek J, Kondrakov A, Brezesinski T and Strauss F Tuning Ion Mobility in Lithium Argyrodite Solid Electrolytes via Entropy Engineering. 2024 Angew. Chem. Int. Ed. 63 e202404874.
[39] Li S, Lin J, Schaller M, Indris S, Zhang X, Brezesinski T, Nan C W, Wang S and Strauss F High-Entropy Lithium Argyrodite Solid Electrolytes Enabling Stable AllSolid-State Batteries. 2023 Angew. Chem. Int. Ed. 62 e202314155.
[40] Chupas P J, Chapman K W, Kurtz C, Hanson J C, Lee P L and Grey C P A versatile sample-environment cell for non-ambient X-ray scattering experiments. 2008 J. Appl. Crystallogr. 41822-824.
[41] de Biasi L, Lieser G, Rana J, Indris S, Dräger C, Glatthaar S, Mönig R, Ehrenberg H, Schumacher G, Binder J R and Gesswein H Unravelling the mechanism of lithium insertion into and extraction from trirutile-type LiNiFeF6 cathode material for Li-ion batteries. 2015 Cryst. Eng. Comm. 176163-6174.
[42] Stinton G W, Evans J S O Parametric Rietveld refinement. 2007 J. Appl. Crystallogr. 4087-95.
[43] Dippel A C, Liermann H P, Delitz J T, Walter P, Schulte-Schrepping H, Seeck O H and Franz H Beamline P02.1 at PETRA III for high-resolution and high-energy powder diffraction. 2015 J. Synchrotron Radiat. 22675-687.
[44] Ashiotis G, Deschildre A, Nawaz Z, Wright J P, Karkoulis D, Picca F E and Kieffer J The fast azimuthal integration Python library: PyFAI. 2015 J. Appl. Crystallogr. 48510-519.
[45] Juhás P, Davis T, Farrow C L, and Billinge S J L PDFgetX3: A rapid and highly automatable program for processing powder diffraction data into total scattering pair distribution functions. 2013 J. Appl. Crystallogr. 46560-566.
[46] Clayden N J, Dobson C M and Fern A High-resolution solid-state tin-119 nuclear magnetic resonance spectroscopy of ternary tin oxides. 1989 J. Chem. Soc. Dalt. Trans. 843-847.
[47] Cossement C, Darville J, Gilles J M, Nagy J B, Fernandez C and Amoureux J P Chemical shift anisotropy and indirect coupling in SnO2 and SnO. 1992 Magn. Reson. Chem. 30263-270.
[48] Price W S. Pulsed-field gradient nuclear magnetic resonance as a tool for studying translational diffusion: Part II. Experimental aspects. 1998 Concepts Magn. Reson. 10197-237.
[49] Payandeh S, Strauss F, Mazilkin A, Kondrakov A and Brezesinski T Tailoring the LiNbO3 coating of Ni-rich cathode materials for stable and high-performance allsolid-state batteries. 2022 Nano. Res. Energy 19120016.
[50] Strauss F, Zinkevich T, Indris S and Brezesinski T Li7GeS5Br-An Argyrodite LiIon Conductor Prepared by Mechanochemical Synthesis. 2020 Inorg. Chem. 5912954-12959.
[51] Gautam A, Sadowski M, Ghidiu M, Minafra N, Senyshyn A, Albe K and Zeier W G Engineering the Site-Disorder and Lithium Distribution in the Lithium Superionic Argyrodite Li6PS5Br. 2021 Adv Energy Mater. 11202003369.
[52] Gautam A, Sadowski M, Prinz N, Eickhoff H, Minafra N, Ghidiu M, Culver S P, Albe K, Fässler T F, Zobel M and Zeier W G Rapid Crystallization and Kinetic Freezing of Site-Disorder in the Lithium Superionic ArgyroditeLi6PS5Br. 2019 Chem Mater. 3110178-10185.
[53] Park S, Lee J W. Structure and ion conductivity study of argyrodite (Li5.5PS4.5Cl1.5) according to cooling method. 2021 J. Korean Inst. Met. Mater. 59247-255.
[54] Banik A, Famprikis T, Ghidiu M, Ohno S, Kraft M A and Zeier W G On the underestimated influence of synthetic conditions in solid ionic conductors. 2021 Chem. Sci. 126238-6263.
[55] Rodríguez-Carvajal J Fullproff Manual. 1993 Phys. B 19255-69.
[56] Stöffler H, Zinkevich T, Yavuz M, Hansen A L, Knapp M, Bednarcik J, Randau S, Richter F H, Janek J, Ehrenberg H and Indris S Amorphous versus Crystalline Li3PS4: Local Structural Changes during Synthesis and Li Ion Mobility. 2019 J. Phys. Chem. C 12310280-10290.
[57] Liu Z, Zinkevich T, Indris S, He X, Liu J, Xu W, Bai J, Xiong S, Mo Y and Chen H Li15P4S16Cl3, a Lithium Chlorothiophosphate as a Solid-State Ionic Conductor. 2020 Inorg. Chem. 59226-234.
[58] Strauss F, Lin J, Duffiet M, Wang K, Zinkevich T, Hansen A L, Indris S and Brezesinski T High-Entropy Polyanionic Lithium Superionic Conductors. 2022 ACS Mater. Lett. 4418-423.
[59] Dietrich C, Sadowski M, Sicolo S, Weber D A, Sedlmaier S J, Weldert K S, Indris S, Albe K, Janek J and Zeier W G Local Structural Investigations, Defect Formation, and Ionic Conductivity of the Lithium Ionic Conductor Li4P2S6. 2016 Chem. Mater. 288764-8773.
[60] Dietrich C, Weber D A, Sedlmaier S J, Indris S, Culver S P, Walter D, Janek J and Zeier W G Lithium ion conductivity in Li2S-P2S5 glasses-building units and local structure evolution during the crystallization of superionic conductors Li3PS4, Li7P3S11 and Li4P2S7. 2017 J. Mater. Chem. A 518111-18119.
[61] Kaus M, Stöffler H, Yavuz M, Zinkevich T, Knapp M, Ehrenberg H and Indris S Local Structures and Li Ion Dynamics in a Li10SnP2S12-Based Composite Observed by Multinuclear Solid-State NMR Spectroscopy. 2017 J. Phys. Chem. C 12123370-23376.
[62] Hartmann F, Benkada A, Indris S, Poschmann M, Lühmann H, Duchstein P, Zahn D and Densch W Directed Dehydration as Synthetic Tool for Generation of a New Na4SnS4 Polymorph: Crystal Structure, Na+ Conductivity, and Influence of Sb-Substitution. 2022 Angew. Chem. Int. Ed. 61 e202202182.
[63] Harm S, Hatz A K, Moudrakovski I, Eger R, Kuhn A, Hoch C and Lotsch B Lesson Learned from NMR: Characterization and Ionic Conductivity of LGPS-like Li7SiPS8. 2019 Chem. Mater. 311280-1288.
[64] Schlenker R, Hansen AL, Senyshyn A, Zinkevich T, Knapp M, Hupfer T Ehrenberg H and Indris S Structure and Diffusion Pathways in Li6PS5Cl Argyrodite from Neutron Diffraction, Pair-Distribution Function Analysis, and NMR. 2022 Chem. Mater. 328420-8430.
[65] Hogrefe K, Minafra N, Hanghofer I, Banik A, Zeier W G and Wilkening H M Opening Diffusion Pathways through Site Disorder: The Interplay of Local Structure and Ion Dynamics in the Solid Electrolyte Li6+xP1-xGexS5I as Probed by Neutron Diffraction and NMR. 2022 J. Am. Chem. Soc. 1441795-1812.
[66] Zhou L, Minafra N, Zeier W G and Nazar L Innovative Approaches to LiArgyrodite Solid Electrolytes for All-Solid-State Lithium Batteries. 2021 Acc. Chem. Res. 542717-2728.
[67] Sadowski M, Albe K Grain Boundary Transport in the Argyrodite-TypeLi6PS5Br Solid Electrolyte: Influence of Misorientation and Anion Disorder on Li Ion Mobility. 2024 Adv. Mater. Interfaces 2400423.
[68] Stejskal E O, Tanner J E Spin diffusion measurements: Spin echoes in the presence of a time-dependent field gradient. 1965 J. Chem. Phys. 42288-292.
[69] Calaminus R, Harm S, Fabini D H, Balzat L G, Halz A K, Duppel V, Moudrakovski I and Lotsch B V Enhancing Ionic Conductivity by in Situ Formation of Li7SiPS8/Argyrodite Hybrid Solid Electrolytes. 2022 Chem. Mater. 347666-7677.
[70] Ramos E P, Bazak J D, Assoud A, Huq A, Goward G and Nazar L Structure of the Solid-State Electrolyte Li3+2xP1-xAlxS4: Lithium-Ion Transport Properties in Crystalline vs Glassy Phases. 2022 ACS Appl. Mater. Interfaces 1456767- 56779.
[71] Hood Z D, Kates C, Kirkham M, Adhikari S, Liang C and Holzwarth N A W Structural and electrolyte properties of Li4P2S6. 2016 Solid State Ionics 28461- 70.
[72] Zhao F, Liang J, Yu C, Sun Q, Li X, Adair K, Wang C, Zhao Y, Zhang S, Li W, Deng S, Li R, Huang Y, Huang H, Zhang L, Zhao S, Lu S and Sun X A Versatile Sn-Substituted Argyrodite Sulfide Electrolyte for All-Solid-State Li Metal Batteries. 2020 Adv. Energy Mater. 101903422.
[73] Lewis J A, Tippens J, Cortes F J Q and McDowell M T Chemo-Mechanical Challenges in Solid-State Batteries. 2019 Trends Chem. 1845-857.
[74] Koerver R, Zhang W, de Biasi L, Schweidler S, Kondrakov A O, Kolling S, Brezesinski T, Hartmann P, Zeier W G and Janek J Chemo-mechanical expansion of lithium electrode materials-on the route to mechanically optimized all-solid-state batteries. 2018 Energy Environ. Sci. 112142-2158.
-
其他相关附件
-
本文图文摘要
TOC-100584 点击下载19167KB
-
计量
- 文章访问数: 26
- HTML全文浏览量: 0
- PDF下载量: 2