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Abstract
The growing concern about scarcity and large-scale applications of lithium
resources has attracted efforts to realize cost-effective phosphate-based cathode
materials for next-generation Na-ion batteries (NIBs). In previous work, a series
of materials (such as Na4Fe3(PO4)2(P2O7), Na3VCr(PO4)3, Na4VMn(PO4)3,
Na3MnTi(PO4)3, Na3MnZr(PO4)3, etc) with ∼120 mAh g−1 specific capacity and
high operating potential has been proposed. However, the mass ratio of the total
transition metal in the above compounds is only ∼22 wt%, which means that
one-electron transfer for each transition metal shows a limited capacity (the mass
ratio of Fe is 35.4 wt% in LiFePO4). Therefore, a multi-electron transfer reaction
is necessary to catch up to or go beyond the electrochemical performance of
LiFePO4. This review summarizes the reported NASICON-type and other
phosphate-based cathode materials. On the basis of the aforementioned
experimental results, we pinpoint the multi-electron behavior of transition metals
and shed light on designing rules for developing high-capacity cathodes in NIBs.

Keywords: NASICON, Na-ion batteries, cathode materials,
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1. Introduction

Large-scale applications based on Na-ion batteries (NIBs) are expected to
integrate intermittent renewable energy sources because of the low cost, wide
distribution, and abundant reserves of sodium resources [1–7], where the
development of electrode materials is one of the most significant tasks for the
improvement of NIBs. In terms of cathode materials, polyanion compounds have
high safety and chemical/electrochemical stability [8], which could match the
urgent requirement of grid energy storage devices. Among the phosphate-based
cathodes, NASICON-type materials have attracted growing attention due to their
high Na+ ion conductivity [9–12]. It took 30 years from identifying the crystal
structure to realizing reversible charge/discharge behavior in the NIBs
(figure 1(a)). As early as 1968, Hagman’s group [13] reported the NaMe2(PO4)3
(Me = Ge, Ti, Zr) structure. They mentioned that the crystal’s 3D framework is
built up of the corner link of MeO6 octahedra and PO4 tetrahedra, and the oxygen
atoms octahedrally surround the sodium atoms. In 1976, Goodenough and Hong
et al [14, 15] found fast alkali-ion transport in a series of materials conforming to
the chemical formula Na1+ xZr2P3−xSixO12(0 ⩽ x ⩽ 3). These compounds were
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Figure 1. (a) Timeline of the development of phosphate-based cathode materials. (b) Potential and
specific capacity of different cathode materials. Squares are one-electron reactions of each transition
metal (named 1e−/TM); the circle symbols are 1.5e−/TM. NOTE: the reactions with 1.5e−/TM in
Na4VMn(PO4)3 and Na4VFe(PO4)3 are irreversible.

named NASICON (sodium (Na) super (S) ion (I) conductor (CON)), benefiting
from the three-dimensional diffusion tunnel. Subsequently, Nadiri et al [16] used
Fe2(MoO4)3 for the positive electrode and AClO4 (1 M, A = Li/Na) in propylene
carbonate as the electrolyte to fabricate half cells, revealing the intercalation
behavior of alkali metal ions in the NASICON framework. In 1988, reversible
electrochemical (de)intercalation was successfully realized in ATi2(PO4)3 for the
first time [17]. However, much research focused on LIB material systems after the
first commercial lithium-ion battery was issued in 1991. In 2002, Uebou et al
reported electrochemical sodium insertion/extraction of the 3D framework of
Na3V2(PO4)3 [18], which was synthesized by Delmas in 1978 [19]. However, the
insufficient electrochemical data attracted limited attention to such materials until
Hu’s group first proposed the carbon coating approach to significantly improve
the cycling and rate performance [20].

Since then, Na3V2(PO4)3 has been regarded as a promising cathode candidate
earning wide investigation, and several modification strategies have been explored
to optimize its electrochemical performance [20–22]. However, vanadium’s high
cost and low resource sustainability became one of the most serious bottlenecks
contrary to the requirements of large-scale applications [23]. In 2013, Hu’s group
proposed Mn2+/3+/4+ redox couples in NASICON-type cathodes, and kinds of
Mn-rich compounds were designed (such as Na3MnTi(PO4)3 and
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Na3MnZr(PO4)3, etc) [24]. Subsequently, the reversible redox couples of
Mn2+/3+/4+ in a NASICON-type cathode have been realized with a high
operating potential in Na3MnTi(PO4)3 (∼3.6 V and ∼4.0 V) [25]. Furthermore,
Fe-rich NASICON-type cathode materials (such as Na3Fe2(PO4)3) have attracted
great interest due to their wide sources, low costs and abundant reserves on Earth.
However, the limited thermodynamic equilibrium potential of Fe2+/3+ restricted
the research of Fe-based NASICON-type cathodes. It is exciting that researchers
found that P2O7

4− and F− can increase the redox potential based on Fe2+/3+ due
to the strong electronegativity of such ions. As a result, a series of new structures
has been discovered for phosphate-based mixed-polyanion cathodes [26–28].
However, the low transition metal mass fraction of the above compounds leads to
a limited theoretical specific capacity, as shown in figure 1(b). Therefore, realizing
the multi-electron transfer reaction is crucial for advanced next-generation NIBs.

In this review, we summarized redox couples with electrochemical activity in
NASICON-type cathodes and other polyanionic compounds. Based on reported
voltage profiles and previous accumulations on multi-electron transfer reactions,
we pinpoint the reversibility of redox couples in NASICON-type cathodes closely
related to the crystal structure. As a result, we demonstrate a cascade of guiding
lines for enabling better designs of high-capacity polyanionic NIB cathodes.

2. Structure

NASICON-type cathode materials are increasingly attracting attention as
phosphate-based compounds due to tunable transition metal sites and fast Na+

ion transport pathways. As early as 1976, a series of materials with the chemical
formula Na1+ xZr2P3−xSixO12(0 ⩽ x ⩽ 3) were named NASICON (an acronym
for sodium (Na) Super Ionic CONductor) [14]. Similarly, NASICON-type
material structures usually refer to a family of solids with the chemical formula
AMM’(PO4)3 [11]. Where the ‘A’ site can be occupied by alkali ions (Li+, Na+,
K+, Rb+, and Cs+), alkaline earth ions (Mg2+, Ca2+, Sr2+, and Ba2+), transition
metals (Cu2+, Ag+, Pb2+, Cd2+, Mn2+, Co2+, Ni2+, Zn2+, Al3+, Ge4+, Zr4+,
and Hf4+), and ion-molecules (H3O+ and NH4

+), may also be vacancies. The M
and M’ sites are divided by 3d (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Zn), 4d (Y, Zr, Nb,
Mo), 5d (Lu, Hf, Ta), and main-group (Al, Si, In, Ge, As, Sn, Sb) elements to
balance the charge appropriately. Phosphorus can be partially or even entirely
replaced by S, Si, As, W and Mo, while O can also be replaced by F and Cl.
Furthermore, the crystal structure can be rhombohedral, monoclinic, triclinic,
orthorhombic, garnet, SW-type, corundum, etc, with different elements. Notably,
rhombohedral structures have been extensively reported due to their superior ion
diffusion pathway. In this structure, MO6 and M’O6 octahedrons share all angles
with XO4 tetrahedrons, and MO6 and M’O6 octahedrons are arranged linearly
along the c-axis. The octahedron MO6 and M’O6 connect three tetrahedral XO4

units to form a basic unit called a lantern [29]. Each lantern is connected to six
other lanterns, thereby constructing a stable 3D skeleton structure [30]. In this
open 3D framework, interconnected channels provide a high-speed transmission
pathway for the ions encapsulated in the ‘A’ site. Intriguingly, its content is
between 1 and 5 [31, 32]. In addition, it can be de-intercalated continuously
without structural collapse.

3. Electrochemical performance of reported materials

The NASICON-type compounds are much favored by the open 3D diffusion
channels and stable skeleton structure. Currently, research focuses on the
following directions: optimizing strategies for Na3V2(PO4)3-based materials
(e.g. carbon coating [20, 33–37], morphology control [22, 38], element doping
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[21, 39–45], etc), and exploring unknown material systems by replacing the
M/M’ transition metal sites [25, 46–48]. To date, the NASICON-type cathode
materials with various electrochemically active metals (V, Mn, Fe, Cr, Ti, etc)
have been extensively explored. Meanwhile, phosphate-based mixed-polyanion
compounds (such as Na3V2(PO4)2F3, Na4Fe3(PO4)2(P2O7), Na2FePO4F, etc)
have also been proposed as cathodes in NIBs.

3.1. V-based NASICON cathodes

Vanadium compounds have attracted great attention for their excellent redox,
electrochemical, catalytic, and magnetic properties [49–51]. Surprisingly, the
vanadium atoms can adopt different oxidation states (from II to V), coordination
(from 6 to 4), and environments (octahedral to tetrahedral) in the reported
vanadium phosphates. Abundant bonds lead to a wide variety of V-based
polyanion compounds. Na3V2(PO4)3 can be indexed as the rhombohedral phase
R3̄C space group [29, 32, 52], and the oxidation state of V in Na3V2(PO4)3 is
confirmed to be trivalent [31]. As a cathode material, it exhibits a theoretical
specific capacity of 117.6 mAh g−1 with 3.4 V operating voltage (vs. Na+/Na).
The incompletely occupied Na+ sites provide a fast ion diffusion channel, which
enables the material to exhibit excellent rate capability [53]. Furthermore,
Masquelier et al have made many contributions to elucidate the crystal structure
and charge/discharge behavior of Na3V2(PO4)3 [32, 52].

The transition metal substitution of the V element in Na3V2(PO4)3 has also
been widely studied due to the high cost of V-based compounds. In 2016, Fe, Mn,
and Ni were used to replace V to synthesize a series of materials of
Na4VM(PO4)3 (M = Fe, Mn, Ni) [48]. Similar to LMFP, the operating potential
of Na4VMn(PO4)3 can be significantly improved without capacity fading.
Immediately, researchers focused on enhancing the electrochemical performance
of Na4VMn(PO4)3 [54–60]. However, as shown in figure 2(c), the V4+/5+ redox
couple is irreversible in Na4VMn(PO4)3. It should be noted that the
multi-electron transfer reaction is one of the prerequisites for high capacity
NASICON-type cathodes. Therefore, the failure mechanism and how to realize a
reversible V4+/5+ redox couple are crucial. In 2020, Liu et al [61] revealed that
the small ion radius of V5+ can migrate to Na_vacancy sites and block the sodium
ion pathway in Na3VCr(PO4)3. Interestingly, a similar phenomenon was captured
in Na3VSc(PO4)3, and a slightly reversible capacity at the 4.0 V platform was
shown at −20 ◦C [62]. Based on the above finding, we can speculate that the
transition metal migration of V5+ is a common issue of the irreversible V4+/5+

redox couple. It should be noted that the replacing elements of Al3+, Cr3+, and
Ga3+ make the V4+/5+ redox couple reaction reversible, and a platform located at
4.0 V (vs. Na+/Na) occurred in the discharge curve (figure 2(d)) [63–66]. This
finding can be attributed to the small Al3+ and the eliminated Jahn–Teller effect
of Mn3+, so the crystal structure can be stable. In addition, the modification of
polyanion groups in the NASICON framework also can be considered [67].
However, the above conclusions are inferred based on the reported experimental
results, and research on such topics is still limited [68]. Therefore, we must pay
attention to such issues and draw a whole picture of failure mechanisms or
optimization strategies.

Furthermore, benefitting from the stronger electronegativity of F−, the partial
substitution of V-F for V-O can significantly improve the operating voltage of
V-based cathode materials [50]. In recent years, fluorine-containing
vanadium-based polyanion compounds such as NaVPO4F [69, 70],
Na3V2(PO4)2F3 [71–74], and Na3V2O2x(PO4)2F3−2x [28, 75–77] have been
reported as cathodes for NIBs (figures 2(a) and (b)). Although the above cathodes
deliver a reversible specific capacity of ∼120 mAh g−1, the crystal structure will
collapse when the V valence exceeds +4. In 2019, Yan et al [78] showed a
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Figure 2. (a) Crystal structures and (b) voltage profiles of the typical V-based NASICON-type
cathode materials, data from [69, 70, 79, 80]. (c) Charge curves of the V3+ to V5+ in which the
V4+/5+ redox couple is irreversible, data from [54, 62]. (d) Voltage profiles of the reversible V4+/5+

redox couple reactions, data from [46].

detailed picture of the structural evolution of Na3V2(PO4)2F3 when more than 2.5
sodium ions were extracted. In addition, they revealed that the Na0V2(PO4)2F3
phase accommodates sodium in a disordered way and does not convert back to
the initial structure. The aforementioned experimental results indicate that more
than 1Na/TM can be extracted upon further charging, but the structural collapse
occurs simultaneously. Therefore, this is the key problem of V-based
high-capacity cathodes.

3.2. Mn-based NASICON cathodes

Manganese-based electrode materials are attractive due to their excellent stability,
resource non-criticality, and high electrode potential [24, 81]. Currently, Mn-rich
NASICON-type phosphates provide high electrode potentials and robust anionic
redox-free frameworks, such as Na3MnTi(PO4)3 [25, 81–89], Na3MnZr(PO4)3
[47, 90], and Na4MnCr(PO4)3 [91–95] (figure 3(a)). In 2013, Pan et al [24] first
proposed Na3MnTi(PO4)3 and Na3MnZr(PO4)3 as cathode materials for NIBs.
Subsequently, Gao et al [25] successfully achieved a discharge capacity of
80 mAh g−1 in Na3MnTi(PO4)3. It should be noted that the Mn2+/3+ and
Mn3+/4+ redox couples can be entirely activated within the voltage range of
2.5–4.2 V. The corresponding thermodynamic equilibrium potential is ∼3.6 V
and ∼4.0 V, respectively. As shown in figure 3(b), the voltage profiles of
Na4MnAl(PO4)3, Na3MnTi(PO4)3, and Na3MnZr(PO4)3 exhibit initial capacity
fading and voltage hysteresis (Al3+ < Ti4+ < Zr4+). However, the significant
capacity fading of Mn-rich NASICON-type cathodes arises in the initial cycle,
and an outstanding cycling performance is displayed in the following cycles
[86, 89]. This result means that the failure mechanism of Mn-based cathodes is
different from that of V-based ones (V5+ migrates to Na_vacancy sites during
charging). For the high-capacity cathode, Wang et al [93] found that Cr3+ can not
only activate the Mn2+/4+ redox couple, but Cr3+/4+ is also electrochemically
active in Na4MnCr(PO4)3. Therefore, Na4MnCr(PO4)3 exhibits a high reversible
capacity of 150.3 mAh g−1, which is close to the 1.5e−/TM transfer reaction,
as shown in figure 3(c). Unfortunately, the high operating voltage and poor
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Figure 3. (a) Crystal structures and (b) voltage profiles of the typical Mn-based NASICON-type
cathode materials, data from [25, 47, 96]. (c) Charge/discharge curve of Na4MnCr(PO4)3 within the
range of 1.5–4.5 V.

Figure 4. (a) Crystal structures of the typical Fe-based NASICON-type cathode materials.
(b) Abundance in Earth’s crust [111] and (c) prices [112] of elements. (d) Potential vs. specific
capacity plots for Na4Fe3(PO4)2(P2O7) [113], Na2Fe2(SO4)3 [108], Na2FePO4F [105], and
Na3Fe2(PO4)3 [101] normalized to the theoretical specific capacity per one-electron Fe2+ ↔ Fe3+

transition from experimental data.

stability limit its application, and more study is needed to optimize the
electrochemical performance.

3.3. Fe-based NASICON cathodes

Fe-based phosphate compounds play a dominant role in NIB cathode research,
which is encouraged by the success of LiFePO4 [97]. As shown in figures 4(b)
and (c), the low cost and high resource abundance [23] of Fe/Na match the
requirements of large-scale energy storage devices. However, the
thermodynamically stable structure of NaFePO4 is an electrochemically inactive
maricite phase [98]. Furthermore, the electrode potential of the Fe2+/3+ reversible
redox couple is ∼2.4 V (vs. Na+/Na) in NASICON-type compounds [99–101].
The operating potential is too low for the cathode material. Subsequently, anion
groups with stronger electronegativity are used to increase the thermodynamic
equilibrium potential of the Na-Fe-P-O system (e.g. P2O7

4− [102–104], F− [105,
106], etc). In 2012, Barpanda et al [104] found that Na2FeP2O7 has a high
theoretical specific capacity of 97 mAh g−1, with the thermodynamic equilibrium
potential of the Fe2+/3+ redox couple raised to ∼3.0 V (vs. Na+/Na). However,
the high molecular mass of P2O7

4− results in a limited capacity. Kim et al [26]
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developed a new mixed-polyanion cathode for NIBs, Na4Fe3(PO4)2(P2O7).
Na4Fe3(PO4)2(P2O7) [107–109] shows a robust open framework with 3D Na+

ion diffusion paths. It is a new striking Fe-based polyanion material due to its
high theoretical capacity (∼129 mAh g−1), with an average discharge potential of
∼3.1 V (vs. Na+/Na). In addition, Na2Fe2(SO4)3 [27, 110], Na3Fe2(PO4)(P2O7)
[98, 105, 106], and Na2FePO4F [98, 105, 106] have also been considered
candidates for advanced commercial NIB cathode materials (figure 4(d)).

For the active electrochemical elements, 4d elements have also been reported,
except for the above reported 3d transition metal element redox couples. In 2018,
NaMo2(PO4)3 was confirmed to achieve stable electrochemical cycling based on
the Mo3+/4+ redox couple [114] with a theoretical specific capacity of
98.2 mAh g−1 at an equilibrium potential of 2.45 V. In addition, the reversible
reactions of redox couples such as Nb4+/5+ [115], Ti3+/4+ [116], Zr3+/4+ [117],
and Cr3+/4+ [93] have also been reported in NASICON-type materials. However,
the thermodynamic equilibrium potentials of the above compounds are either too
low or too high to be used in cathode materials, whereas the relevant research is
still in the initial stage.

4. Multi-electron transfer reaction

The low mass ratio of the transition metal means that a multi-electron transfer
reaction is required to go beyond the electrochemical performance of LiFePO4

(LFP). We will reveal the issue of reported compounds and show the basic rule
for designing high-capacity cathode materials around Na content, transition metal
sites, and polyanion frameworks.

4.1. Na content and structural stability

The number of alkali metal sites in the NASICON structure is typically 1–4.
Recently, researchers found that a new phase with a Na content of 5 will occur
when the discharge potential is between 0 and 1 V [118], and the polyanion
skeleton structure is unchanged. However, previous results have shown that the
discharge voltage platform of the above structures is close to 0 V, which cannot be
used as cathode materials. Therefore, we speculate that the highest Na content is
∼4 among NASICON-type cathode materials. Furthermore, Yan et al [78]
confirmed that structural collapse occurs in Na0V2(PO4)2F3 when charged to
4.8 V. Similar phenomena have also been reported in other systems. Theoretical
calculations also show that the skeleton structure of NASICON-type compounds
is difficult to maintain due to the high formation energy when the Na content is
lower than 1. The above finding shows that it is necessary to design a structure
with a Na content close to 4 to ensure enough Na+ ions for extraction.

Notably, Liu et al [61] suggested that V5+ with a small ionic radius can diffuse
to the Na1 site and induce kinetic hysteresis. According to the above result, the
reversibility of the V4+/5+ redox couple can be realized when maintaining the
occupancy of the Na1 site at high voltage. Recently, many works have focused on
Na1 and Na2 sites for developing low-cost and high-energy-density V-based
NASICON-type cathode materials [63, 119]. However, Na+ ion diffusion in
NASICON frameworks is completed by the cooperation of the Na1 and Na2 sites,
which means the Na+ in the Na1 and Na2 sites are dynamically evolving
throughout the charging and discharging process. Therefore, some V-based
NASICON compounds with a Na content of 4 (e.g. Na4VNi(PO4)3, etc) showed
limited reversibility even if there was enough Na+ at the Na2 site in the pristine
structure. Here, we pinpoint that rather than focusing on precisely controlling the
Na+ content of Na1 and Na2 sites in the initial structure, it might be more
necessary to ensure that Na1 is a thermodynamically/kinetically stable site in the
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Figure 5. A voltage map of NASICON electrodes, NaxMM′(PO4)3, where M and M′ = Ti, V, Cr,
Mn, Fe, Co, and Ni. The text in each box represents the redox couple and the corresponding voltage
vs. Na+/Na [120]. The redox couples and the corresponding electrode potentials are shown in boxes
(e.g. the redox couple in the range of 3 ⩽ x ⩽ 4 (x of NaxV2(PO4)3) is V2+/3+, and the electrode
potential is 1.5 V). Reproduced from [120] with permission from the Royal Society of Chemistry.

entire voltage platform of the V4+/5+ redox couple. Meanwhile, blocking the
migration channel of V5+ to the Na site is crucial too.

4.2. Selection of transition metal elements

The elements that can be placed in transition metal sites are shown in figure 5. To
facilitate element screening, we propose the following notes. First, the total
valence state of the transition metal site is +5, and the Na content can be 4, so
multi-element co-union is needed (M and M’ are +2 and +3, respectively).
Second, previous studies have shown that V5+ easily migrates to the alkali sites,
which may be the predominant issue for the irreversibility of V4+/5+ redox
couples (e.g. Na4VMn(PO4)3, Na4VFe(PO4)3, Na4VNi(PO4)3, Na3VSc(PO4)3,
etc). Interestingly, the substitution of Al3+ and Ga3+ in group 13 (IIIA) can
realize the reversible reaction of the V4+/5+ redox couple [41, 63]. Therefore, it is
essential to understand the relationship between the reversibility of the V4+/5+

redox couple and the NASICON backbone. Finally, Mn2+/4+ is a significant step
in developing low-cost NASICON-type cathode materials. However, the
activation of Mn2+/4+ redox couples often relies on Al3+, Ti4+, and Zr4+, which
cannot be used for high energy density materials (the +4 valence state of Ti and
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Zr is too high, and Al3+ is electrochemically inactive) [24]. Excitingly, recent
results have shown that Cr3+ can also activate the Mn2+/4+ redox couple, and the
Cr3+/4+ redox reaction can be conducted at ∼4.4 V platform [93], suggesting a
promising material that deep research is necessary to improve its electrochemical
performance. Likewise, exploring other electrochemically active +3-valent
elements for activating Mn2+/4+ is also a feasible strategy.

4.3. Polyanion frameworks

The polyanion groups are various, such as BO3
3−, CO3

2−, C2O4
2−, SiO4

4−, PO4
3−,

SO4
2−, etc. Currently, the reported materials with excellent electrochemical

performance are mainly phosphate-based compounds, and the exploration of
other anionic groups is still limited. In addition, researchers demonstrated that F,
Cl, etc, were able to replace the O sites, which endowed an abundant selection of
polyanion frameworks. Therefore, except for focusing on the element replacement
of NaxMM’(PO4)3, more polyanion frameworks also need to be explored.

5. Future perspectives

The low cost, wide distribution, and abundant reserves of sodium resources
triggered the research of Na-ion batteries (NIBs) in the energy storage devices
field. More notably, polyanionic-type NIB cathode materials are expected to meet
the expansive demands for large-scale applications, benefitting from their
long-term stability and high safety. Since our group first proposed the Mn-rich
cathodes, several low cost NASICON cathodes with excellent cycling
performance have been reported. However, the low transition metal mass fraction
(for example, Fe is 35.4 wt% in LiFePO4, and V is 22.35 wt% in Na3V2(PO4)3)
of the above compounds leads to a limited theoretical specific capacity.
Additionally, the costs of the total batteries are much higher than the costs of the
active materials as additional items, such as electrolytes, binders, casings, and
even the electric battery management system, are included. Therefore, a higher
capacity is needed for developing advanced polyanionic-type NIB cathode
materials, which can further reduce the cost of inactive material. For the next
generation of NASICON-type cathode materials, the low transition metal mass
ratio means that the multi-electron transfer reaction is essential for high-capacity
NASICON-type cathode materials.

Through extensive literature review, we demonstrate the key challenge of
realizing the 1.5e-/TM transfer reaction and delivering design rules from Na
content, transition metal sites, and polyanion frameworks. Fortunately, the
flexible structure gives a promising future in designing multi-electron transfer
reaction NASICON-type cathode materials. Although it is important to develop
new materials, it is equally essential to focus on the failure mechanism of
reported high-capacity systems (such as Na4VMn(PO4)3, Na4VFe(PO4)3,
Na4MnCr(PO4)3, etc.). Overall, the characteristics of polyanionic compounds
differ substantially from those of traditional layered oxide materials, and in-depth
research is needed.
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