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Abstract
The utilization of phosphorescent metal complexes as emissive dopants for organic
light-emitting diodes (OLEDs) has been the subject of intense research. Cyclometalated Pt(II)
complexes are particularly popular triplet emitters due to their color-tunable emissions. To make
them viable for practical applications as OLED emitters, it is essential to develop Pt(II)
complexes with high radiative decay rate constants (kr) and photoluminescence quantum yields
(PLQY). To this end, an efficient and accurate prediction tool is highly desirable. In this work,
we propose a general yet powerful protocol achieving metal complex generation, high
throughput virtual screening (HTVS), and fast predictions with high accuracy. More than 3600
potential structures are generated in a synthesis-friendly manner. Moreover, three
HTVS-machine learning (ML) models are established using different algorithms with carefully
designed features that are suitable for metal complexes. Specifically, 30 potential candidates are
filtered out by HTVS-ML models with a three-tier screening rule and put into accurate
predictions with experimental calibration ∆-learning method. The highly accurate prediction
approach further reduces the stress of experiments and inspires greater confidence in identifying
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the most promising complexes as excellent emitters. As a result, 12 promising complexes
(kr > 105 s−1 and PLQY > 0.6) with the same superior core structures are confirmed from over
3600 Pt-complexes. Experiments revealed that two very close complexes have excellent
emission properties and are consistent with the prediction results, providing strong evidence for
the efficacy of the proposed protocol. We expect this protocol will become a valuable tool,
expediting the rational design and rapid development of novel OLED materials with
desired properties.

Supplementary material for this article is available online

Keywords: phosphorescent emitters, OLED, generation, high throughput virtual screening,
machine learning

1. Introduction

Organic light-emitting diodes (OLEDs) are becoming increas-
ingly popular as sustainable light sources in digital displays,
portable systems, and many other fields [1]. While the first-
generation fluorescence-based OLEDs are limited to 25%
internal quantum efficiency (IQE) due to the 1:3 ratio of singlet
and triplet excitons according to spin statistics [2]. To over-
come this limitation, triplet excitons can be utilized through
the use of phosphorescent heavy metal-based emitters such as
iridium and platinum. These heavy metal atoms can induce
strong spin–orbit coupling to facilitate the intersystem cross-
ing process from the singlet to triplet excited states and to
promote radiative decay from the triplet excited state through
phosphorescence [3]. As a result, the second-generation phos-
phorescent OLEDs (PhOLEDs) based on iridium/platinum
emitters can achieve IQE up to 100%. Over the past decade,
research on platinum-based PhOLEDs has grown significantly
and device performances have been improved with the intro-
duction of tetradentate cyclometalated platinum complexes
[4–8]. However, it would still require substantial time and cost
to develop superior PhOLED emitters in a trial-and-error man-
ner through experiments.

Density functional theory [9] (DFT) and time-dependent
DFT [10] (TDDFT) are extensively employed to predict
material properties [11–13]. These methods provide a good
balance between accuracy and efficiency when simulating the
properties of target systems. Nevertheless, despite the advant-
ages of first-principles calculations, there are certain limit-
ations and challenges [14–16]. Notably, the results derived
from DFT or TDDFT calculations on phosphorescent plat-
inum emitters are still not accurate compared with the exper-
imental ones [17]. Besides, the computational costs are usu-
ally not affordable for a large library of metal complexes when
exploring vast chemical space.

High throughput virtual screening (HTVS) [18, 19] with
machine learning (ML) algorithms has become a vital tech-
nology in pharmaceutical research [20–24] and material
development [25–29], which rapidly evaluates potential can-
didates from a large library of compounds. Despite the con-
siderable investments made into HTVS-ML, there remain sev-
eral daunting challenges in the Pt-based PhOLED field. These

include the lack of experimental/computational data for plat-
inum PhOLED emitters, as well as the absence of potential
structures in public datasets. Furthermore, the utilization of
simplified molecular-input line-entry system (SMILES) [30]
is not suitable due to the presence of transition metals and
coordination bonds in metal complexes. Additionally, pop-
ular descriptors/fingerprints are not effective in this context
due to the complicated situations caused by multiple coordin-
ation bonds in molecules. In terms of data, many public
datasets [31–35] have been developed, but few of them con-
tain transition metals regardless of the experimental/com-
putational results. David Balcells [36] proposed a dataset
with different transition metals in simple coordination ways,
though the Pt-complexes therein cannot be considered as
potential phosphorescent emitters. Additionally, many gener-
ation algorithms based on SMILES and graphs are not easily
implemented in the Pt-emitters field. Nevertheless, Maestro
in Schrodinger package [37] offers a means of expanding
the chemical space for potential emitter candidates, particu-
larly those involving transition metals. While PDB and MOL
formats are suitable for representing Pt-complexes, they still
require meticulous modification and verification to generate
accurate descriptors and fingerprints. Generally, the popular
descriptors/fingerprints extracted from the RDKit [38] Python
library are effective for pure organic molecules, regardless of
the size ofmolecules, the types of contained atoms, and the dif-
ferent coordination bonds. However, for Pt-complexes, using
the popular descriptors without proper revision and check can
lead to significant errors, even in the simplest descriptors such
as molecular weights. Therefore, modified and self-designed
descriptors are employed to represent the complexes and their
external environments.

After addressing the aforementioned issues, HTVS-ML
models are established to initially predict phosphorescence-
related properties such as the energy gaps between the lowest
triplet state (T1) and the ground state (S0), as well as between
T1 and the first singlet state (S1), along with the non-radiative
decay rate constant (knr). Notably, the capability and general-
ity of the models are evaluated by not only the independent
testing set but an external set consisting of recently reported
Pt-complexes. Furthermore, a three-tier screening strategy is
devised to filter out promising candidates from both radiation
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and non-radiation perspectives. As a result, potential com-
plexes are rapidly identified by virtual screening and they are
highly expected to exhibit superior performance as emitters.
While an accurate assessment of emission wavelength, radiat-
ive decay rate constant (kr), and photoluminescence quantum
yield (PLQY) is paramount, an approach that combines first-
principles quantummechanical method, ML and experimental
calibration is introduced and implemented to obtain highly
precise prediction results [39]. This approach further reduces
the burden of synthesis by confirming the photophysical prop-
erties of the emitters. The workflow of the proposed protocol
is illustrated in figure 1(a). The promising ones are eventually
confirmedwith kr> 105 s−1 and PLQY> 0.6 via highly accur-
ate predictions. It is noteworthy that several of these promising
candidates exhibit striking similarities to the latest synthes-
ized samples prepared by the experimental group, attesting to
the remarkable efficiency and accuracy of the proposed pro-
tocol. In summary, this protocol, which incorporates molecule
generation, HTVS and highly accurate predictions, provides
an efficient tool for the design and advancement of novel
OLED materials.

2. Methodologies

2.1. Dataset construction and division

In this work, our primary focus is on cyclometalated
Pt(II) complexes with tridentate or tetradentate ligands.
Photophysical data of 198 phosphorescent Pt-complexes
reported in the literature are collected, including emis-
sion wavelength/energy, lifetime, PLQY, radiative decay rate
constant (kr) and non-radiative decay rate constant (knr).
These were mostly measured in ambient conditions and
degassed solutions [5], the distributions of which are shown
in figures 1(b)–(d). Besides, S1-T1 gap is calculated by PBE0
under TZP basis set using ADF package [40]. The details of
data pre-processing can be found in section 2 of Supporting
Information (SI). The emission energy spans a range from 1.88
to 2.88 eV, with a mean value of 2.39 eV. The S1-T1 gap
of the compounds distributes with a mean value of 0.456 eV
except for several extremely high values. On the other hand,
knr values span over seven orders of magnitude, with a major-
ity spanned between 105 s−1 and 107 s−1 and a mean value
of 1.03× 106 s−1. This poses a great difficulty in constructing
MLmodels for knr prediction. To address this issue, meticulous
care has been taken in the data processing with log and data
division. An improved Kennard Stone algorithm [41], which
partitions the sample set based on maximum–minimum X–Y
distance [42], is employed to ensure a relative balance between
training and testing sets within the limited and unbalanced
data. The distance can be calculated using equation (1).

dxy (p,q) =
dx (p,q)

maxp,q∈[1,N]dx (p,q)

+
dy (p,q)

maxp,q∈[1,N]dy (p,q)
(p,q ∈ [1,N]) (1)

where x and y represent the features and the target properties,
respectively. p and q denote pth and qth samples in the whole
dataset with N samples.

2.2. Features for HTVS-ML

Although PDB and MOL formats may help to get a molecule
read by RDKit [38] library, there are always issues such as
the count of aromatic rings and even the molecular weight.
Therefore, it is essential to carry out careful bondmodification,
selection of calculated descriptors, and creation of new proper
descriptors in order to obtain correct and valid descriptor-
s/fingerprints for the Pt- complexes. Basically, we employ a
strategy considering core structures, molecular properties and
testing medium to represent each complex. In the core struc-
ture part, due to the great differences and numerous variations,
a set of descriptors has been designed to quickly distinguish
and identify the core part. The descriptors that depend on the
empirical pairwise Pauling electronegativity difference (∆χ )
between the coordination atom and any ith adjacent atom apart
from Pt atom are presented:

∆χ coor,i = χ coor −χ i. (2)

These core structural differences include the maximum
(∆χmax), and minimum (∆χmin), as well as the sum:

∆χ sum =
∑
j∈lig.

∑
i∈AA

∆χ j
coor, i (3)

which is taken over the coordination atom and all atoms adja-
cent (AA) to it for all ligands (lig.) in the molecule. Regarding
the molecular properties part, 85 descriptors are cautiously
selected from MoleculeDescriptors module from RDKit [38]
library (version 2020.09). These descriptors predominantly
comprise molecular information, including the count of aro-
matic nitrogen and rotatable bonds, the proportion of C atoms
that are sp3 hybridized, and the average molecular weight of
the molecule without hydrogens. In addition, ring information
such as the number of benzene rings, furan rings, aliphatic
heterocycles, aromatic carbocycles, and saturated carbocycles,
as well as the Kappa [43] and Chi [44] series topological
descriptors, are also included. Hence a comprehensive descrip-
tion of the complexes is accomplished. Additionally, the envir-
onments in which the Pt-complex is tested have a significant
impact on the photophysical properties. Consequently, gen-
eral environment descriptors were developed to better present
the solvent effect and enable rapid ML predictions. These
descriptors relate to the testing medium and further details can
be found in section 3 of SI.

2.3. Feature engineering

In total, 153 descriptors are created for Pt-complexes. To avoid
overfitting and low generality, feature selection and import-
ance analysis are implemented while training the models. All
the features are firstly filtered by variance with a threshold
of 0, which means no difference for the training data. Then,
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Figure 1. (a) Workflow of the proposed protocol; Distribution of (b) emission energy, (c) S1-T1 gap and (d) non-radiative decay rate
constant (knr) in the dataset.

recursive feature elimination (RFE) based on random forest
[45] algorithm is employed to rapidly reduce the complex-
ity of the model by recursively removing features that are
not contributing to the targets. RFE assists in identifying the
important features that are most relevant to the target variable.
Subsequently, feature importance analysis after RFE helps to
confirm the most important features, and all the features with
no contributions are removed from the feature matrix. The fea-
ture selection details are illustrated in Section 4 of SI. As a
result, the optimal HTVS-ML models are trained and benefit
the screening procedure.

2.4. ML algorithms

Six types of algorithms including adaptive boosting [46], light
gradient boosting (GB) machine [47] (LightGBM), extreme
GB[48] (XGB), support vector machines [49] (SVM), k-
nearest neighbors [50] (KNN), and kernel ridge regression
[51] (KRR) are considered to establish regression models.
After data division, 80% of the dataset was partitioned for
model training, and the remaining 20% was taken as an inde-
pendent test set. The hyperparameters are tuned by Python lib-
rary hyperopt [52] with 10-fold cross-validation. Details of the
hyperparameter optimization can be found in Section 4 of SI.
Performances of the models are evaluated based on the cor-
relation coefficient (r), the root mean square error (RMSE),
and mean absolute error (MAE). Partial features employed
in HTVS-ML models are calculated by RDKit [38] package
in Python environment and the designed descriptors can be
obtained through Data and code availability section.

2.5. Screening rules

Based on the HTVS-ML models, three crucial properties are
predicted and can be set as screening criteria. Generally,

radiative decay rate constant (kr) and PLQY (ϕPL) are both
key factors when developing new phosphorescent emitters and
PLQY can be calculated as follows:

ϕPL =
kr

kr + knr
=

1

1+ knr
kr

. (4)

It is found that kr and knr are with enormous significance for
Pt-complexes, thus screening excellent emitters can be con-
ducted by increasing kr and decreasing knr. In other words,
higher kr and lower knr contribute to the outstanding perform-
ance of the phosphorescent emitters. A three-tier screening
rule is rationally designed to filter out the promising candid-
ates from both radiation and non-radiation aspects.

Tier 1: Radiative decay rate constant kr is a fundamental
quantity that determines the performance of OLEDs. Low kr
results in high efficiency roll-off at high luminance and mater-
ial degradation due to side reactions. The radiative decay rate
constant (kr) can be calculated as follows:

kr (ν̃) =
8π 2η3ν̃3

3ε0h̄
|M|2 (5)

where ν is the emission energy from the lowest triplet state
(T1) to the ground state (S0); ε0 and h̄ denote the vacuum per-
mittivity and reduced Planck constant, respectively; η repres-
ents the refractive index andM stands for the transition dipole
moment of T1 → S0 transition. In the framework of perturb-
ation theory and assuming a three-level system, the transition
dipole moment M that couples the emitting triplet state to the
singlet ground state is approximated by:

M≈ ⟨ψ T1 |HSOC|ψ S1⟩
ES1 −ET1

MS1 (6)

where MS1 is the transition dipole moment of the perturbing
singlet state. According to the expressions (5) and (6), the
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score function F1 can be set as below:

F1 =
ν3

(ES1 −ET1)
2 (7)

where the emission energy and S1-T1 energy gap can be
promptly predicted using the HTVS-ML models. F1 value is
proportional to kr thus implying the possibility of high kr (neg-
lecting other parameters such as HSOC and Ms1 at this stage).

Tier 2: Having a high possibility of superior kr is not enough
to guarantee the exceptional performance of the emitters. knr is
taken into consideration and evaluated in this tier. After select-
ing the complexes with higher kr possibility in Tier 1, low knr
complexes are sought by the HTVS-ML model.

Tier 3: Excel out the complexes with heavy molecular
weights of more than 1000, which may not be friendly to
the sublimation process for purification and device fabric-
ation via vapor deposition. Through the three-tier screen-
ing, promising candidates can be filtered out and put into
a high-accuracy prediction step. The specific criteria of the
three tiers and the rationale behind them are illustrated in
section 8 of SI.

2.6. Accurate predictions via ∆-learning

A combination of first-principles quantum mechanical
method, ML and experimental calibration is employed to
obtain highly accurate prediction results. Our previous results
have demonstrated that ensemble learning models combined
with stacking-based approaches yield the best performance
[39]. First-principles simulations are utilized to calculate the
photophysical properties of complexes to generate molecu-
lar features. Overall, we select the features that are associ-
ated with the metal coordination, as well as those related
to the photophysical properties of the Pt-complexes, for
training the ML models. In a Pt-emitter, the metal ion and
its surrounding atoms play key roles in the phosphores-
cence process, thus the average electron densities of these
atoms are taken as features. Additionally, the coordination
bond type and coordination bond length are considered as
well. Furthermore, the calculated emission energy, oscil-
lator strength, and spin–orbit coupling constants are included
in the feature matrix. Details on first-principles calcula-
tions can be found in section 6 of SI or Methodologies
section of [39].

3. Results and discussions

3.1. Potential complex generation

From a synthesis-friendly perspective, four core structures
and fifteen functional groups are selected from the literature.
The H atoms at substitution sites (highlighted in figure 2) are
replaced with various functional groups. For symmetric core
structures, the substitution sites are kept in a symmetric man-
ner (core I, II, and III) with up to 4 substitutions. For the core

IV, the substitutions are limited to 2 sites and cannot occur
in the same 6-membered ring. As a result, more than 3600
complexes are generated using the Schrödinger package [37]
with PDB format which can be quickly read by RDKit [38]
python library.

3.2. HTVS

3.2.1. Rapid screening ML models. Approximately 200
phosphorescent platinum(II) complexes have been collected
and employed as the dataset for ML. In this study, we develop
three HTVS-ML models to predict emission energy, S1-T1

gap, and non-radiative decay rate constant (knr). The ML
models are constructed using various algorithms, including
AdaBoost [46], LightGBM [47], XGB [48], SVM [49], KNN
[50] and KRR [51]. The performance of each model in pre-
dicting emission energy is detailed in table S4, while the
optimal one is summarized in table 1. LightGBMdemonstrates
the best performance in terms of both correlation coefficient
and error metrics. This algorithm enhances the efficiency and
scalability of GB algorithm without compromising its inher-
ent effectiveness, making it suitable for the rapid evaluation
of a large library of potential molecules. Subsequently, fea-
ture selection is conducted using variance filter, RFE and fea-
ture importance analysis. The results are presented in table
S7. Ultimately, a total of 48 features are selected, with the
predicted results and the ten most significant features illus-
trated in figures 3(a) and 4(a), respectively. FpDensityMorgan
[53] series descriptors contribute significantly to the model,
ranking first, third, and sixth. FpDensityMorgan generates the
similarity fingerprints using certain chemical and connectivity
attributes of atoms, which are essentially a normalized count
of the number of unique atomic environments in a molecule,
which can be increased/decreased by adding/removing unique
substructures. Besides, HeavyAtomMolWt and BalabanJ [54],
which calculate the molecular weight of the molecule ignor-
ing hydrogens, and Balaban’s J value for a molecule are in the
second and fourth place among all the features. Additionally,
topological descriptors like Kappa1 [43] and Kappa3 [43] also
contribute to the optimal model.

On the side of S1-T1 gap, the optimal model’s per-
formance following 10-fold cross-validation is listed in
table 1. Similarly, LightGBM achieves the best performance.
Furthermore, feature engineering and importance analysis,
detailed in table S8, highlight the most important features
depicted in figure 4(b). The BalabanJ [54] value presents the
most remarkable contribution in determining the target prop-
erty. In addition, structure-related descriptors such as the num-
bers of bicyclic rings, para-hydroxylation sites, and aliphatic
heterocycles contribute significantly to the model as well.
Others are primarily similarity fingerprints and topological
descriptors. The prediction results of S1-T1 gap based on the
optimal model can be seen in figure 3(b).

Non-radiative decay rate constant knr is a fundamental
property that determines the efficiency of OLEDs. Emitters
with large knr values suffer from low PLQYs, which would
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Figure 2. (a) Four core structures and fifteen functional groups for Pt-complexes generation (b) HTVS statistical collection of 200 selected
complexes after Tier 1 (top) and 30 potential candidates after Tier 2 & 3 (bottom) (c) Promising candidates with accurate PLQY (left) and kr
(right) prediction results.

Table 1. Performance of the optimal ML models in predicting emission energy, S1-T1 gap and knr.

Tasks Optimal ML models

Independent testing seta

MAEb RMSEb r

Emission energy LightGBM 0.06 ± 0.01 0.09 ± 0.01 0.95 ± 0.01
S1-T1 gap LightGBM 0.07 ± 0.01 0.11 ± 0.01 0.77 ± 0.04
knr SVM 0.38 ± 0.01 0.47 ± 0.02 0.67 ± 0.04
a The standard deviations are calculated by the difference in the prediction of each fold.
b The errors for energy terms are measured in eV, while knr is measured in s−1 in log scale.

Figure 3. HTVS-ML model performances of (a) emission energy, (b) S1-T1 gap, and (c) non-radiative decay rate constant (knr) on the
independent testing set.

Figure 4. Ten most important features for (a) emission energy extracted from LightGBM-based ML model (b) S1-T1 gap extracted from
LightGBM-based ML model (c) knr extracted from SVM-based ML model.

6
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Figure 5. HTVS-ML model performances of (a) emission energy, (b) S1-T1 gap, and (c) non-radiative decay rate constant (knr) on the
external testing set.

also exhibit low electric-to-light conversion efficiencies in
OLEDs. To efficiently predict the knr values, six models are
constructed using various ML algorithms, with their perform-
ance summarized in table S6. It is observed that SVM and
LightGBM exhibit comparable correlation coefficients and
MAEs. However, SVM demonstrates the lowest RMSE and is
therefore selected as the optimal model. Feature engineering
and analysis are performed, resulting in the ten most import-
ant features, which are illustrated in table S9 and figure 4(c),
respectively. LabuteASA [55] and TPSA [56], which repres-
ent Labute’s approximate surface area and topological polar
surface area based on fragments, respectively, have super-
ior importance compared to other features. Molecular weight
without hydrogens is the second most important descriptor,
followed by the number of rings, H acceptors, and aro-
matic rings. Additionally, topological descriptors such as
Chi [44] and Kappa [43] are also important features in the
model. The performance of the optimal model for knr is
plotted in figure 3(c).

Overall, the emission energy model demonstrates excep-
tional performance in accurately evaluating target molecules,
with MAE and RMSE capped at 0.1 eV. Notably, the r val-
ues for both S1-T1 gap and knr exceed 0.7, indicating strong
precision and suitability for high-throughput virtual screen-
ing. Additionally, the generality of the three models is further
assessed using an external dataset comprising recently repor-
ted Pt-complexes. The performance is presented in figure 5.
For emission energy, the r value for the external set reaches
as high as 0.86. Furthermore, the errors observed in the
external dataset for the S1-T1 gap and knr are comparable to,
or even superior to, those found in the independent testing
set. This highlights the model’s superior capability in screen-
ing the generated complexes, with further details provided in
section 5 of the SI.

The utilization of the developed HTVS-ML models for
emission energy and the S1-T1 gap facilitates the efficient
screening of complexes with high F1 scores, which are likely
to exhibit elevated kr values, based on the screening criteria
outlined in Tier 1. Furthermore, the emission energy can be
converted into emission wavelength, aiding in the prelimin-
ary differentiation of the emission color. Following the Tier
1 screening, the HTVS-ML model for knr can be applied to

identify complexes with high PLQY, as indicated in Tier 2. By
incorporating considerations of synthesis, we can effectively
select promising candidates with the support of the three
HTVS-ML models.

3.2.2. HTVS results. With the three optimal HTVS-ML
models and well-designed screening rules, 200molecules with
the largest F1 score are filtered out according to the screen-
ing rule in Tier 1. Among these complexes, 69.5% are sub-
stituted on the core IV as presented in figure 2(b). In com-
parison, 30.5% are based on core III which initially presents
the superiority of core structure IV in terms of the high prob-
ability of excellent kr performance. Moreover, the highest-
performing complex based on core III ranks only 67th among
200molecules. Following Tier 2 and 3 screening, 30 candidate
complexes with the lowest knr are selected, indicating a poten-
tially higher PLQY. See complex structures and prediction res-
ults from HTVSmodels in figure S2 and table S12 of SI. It can
be observed that they are all on the basis of core IV and 86.7%
of them are with 2-site substitutions. The promising ones are
subsequently put into a highly accurate prediction step.

3.3. Accurate predictions

Although 30 promising complexes with a high potential for
superior emitter performance have been screened, there is
a lack of a direct and highly accurate assessment of their
emission properties. In previous work [39], a general pro-
tocol was developed for accurate predictions of emission
wavelength, radiative decay rate constant (kr), and PLQY for
Pt(II) phosphorescent emitters, based on the combination of
first-principles quantum mechanical method, ML, and experi-
mental calibration. Ensemble learning models combined with
stacking-based approaches exhibited the best performance,
and their generality for a broad palette of Pt(II) emitters has
been proven. Employing the three accurate ML models, emis-
sion wavelength, kr, and PLQY of the 30 complexes are pre-
dicted and listed in table S13 of SI. Among them, 86.7% of the
complexes own a PLQY over 0.5, with a mean value of 0.60,
and 76.7% of the molecules are with more than 9 × 104 s−1

in terms of kr with a mean value of 1.02 × 105 s−1, which
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strongly demonstrates the efficiency and validity of the HTVS-
ML models and screening rules. As a result, 12 complexes
are eventually selected with the criteria of PLQY > 0.6 and
kr > 105 s−1 and are recommended for further synthesis
and testing. The structures and prediction results can be seen
in figure 2(c) in a PLQY descending order. The indexes in
figure 2(c) are the ranks after HTVS. Among these 12 com-
plexes, the highest PLQY and kr are 0.81 and 1.41 × 105 s−1,
respectively. The molecule 20 is very close to the complex [5]
which has been developed previously with a PLQY of 0.73
and a kr of 1.55 × 105 s−1. Moreover, molecule 12 closely
resembles the structure of a new complex (Pt-1 in the [57])
with PLQY over 0.80 and kr 3× 105 s−1. Minor discrepancies
between the predicted results and experimental ones can be
observed, highlighting the excellent capabilities of the HTVS-
MLmodels and highly accurate predictionmodels. The dataset
expansion and more experimental comparisons are presented
in section 9 of SI. In summary, the highly accurate prediction
approach not only reduces the experimental stress, but also
provides greater confidence in identifying the most promising
complexes as exceptional emitters.

4. Conclusion

In summary, a general protocol of platinum complex gener-
ation, HTVS, and highly accurate prediction is constructed
to screen promising phosphorescent Pt(II) emitters. Based on
the core structures and the functional groups, more than 3600
synthesis-friendly complexes are generated. A feature strategy
concerning core structures, molecular properties and testing
medium is established to represent each complex correctly
and validly. To rapidly screen candidate molecules, different
ML algorithms are utilized and compared based on a data-
set of 198 Pt-based emitters. The feature importance analysis
reveals that molecular properties such as molecular weight of
heavy atoms and the fraction of C atoms that are sp3 hybrid-
ized, similarity fingerprints like FpDensityMorgan, and topo-
logical descriptors such as Kappa show significant contribu-
tions in the predictions. Recently reported Pt-complexes are
introduced as external samples to evaluate the capability of
the HTVS-ML models, which indicates the generality of the
optimal models. Under the favor of a three-tier well-designed
screening rule and highly accurate predictions approach, 12
most promising complexes are ultimately selected and recom-
mended for further synthesis. Importantly, two of them are
very similar to the emitters with excellent performance. This
work presents the first ML-based general protocol for gen-
erating, HTVS and accurately evaluating vital photophysical
properties of Pt-emitters. We expect the protocol will be bene-
ficial in rationally designing Pt-emitters and thus help discover
novel OLED materials with distinguished performances.

5. Future perspective

In the future outlook, significant advancements are
expected through the integration of artificial intelligence
(AI), ML, and quantum chemistry. The potential for

transformative breakthroughs lies in the convergence of
these technologies, focusing on themes such as mater-
ials property prediction, screening, and inverse design.
Additionally, accelerated materials simulations and explain-
able ML methods will play a crucial role in shaping
the future landscape.

Within the realm of developing Pt(II) complexes for
OLED applications, the integration of HTVS-ML and ∆-
learning stands out as a highly promising approach. The pro-
posed robust protocol not only streamlines complex gen-
eration and HTVS but also delivers accurate predictions
of key photophysical properties. This approach reduces the
experimental workload and instils confidence in the rational
design and rapid development of novel OLED materials with
tailored properties.

Looking ahead, the continuous progress in AI, ML, and
quantum chemistry, particularly ∆-learning in materials sci-
ence, holds immense promise for expediting materials dis-
covery and optimization across various applications, including
OLED technology. Future endeavours will focus on address-
ing the challenges such as efficient representations of complex
materials and establishing advanced frameworks for predict-
ing properties of low-sample materials, where experimental
and computational data are scarce.

Data and code availability

All data and code employed in this work are avail-
able from an open GitHub repository: https://github.com/
JerryShuaiWANG/Pt-HTVS-ML.
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