Volume 1 Issue 1
March  2021
Turn off MathJax
Article Contents
Danyang Li, Junjie Wang, Miaozi Li, Biao Guo, Lan Mu, Yu Luo, Yi Xiao, Chaohuang Mai, Jian Wang, Junbiao Peng. Efficient red perovskite quantum dot light-emitting diode fabricated by inkjet printing[J]. Materials Futures, 2022, 1(1): 015301. doi: 10.1088/2752-5724/ac3568
Citation: Danyang Li, Junjie Wang, Miaozi Li, Biao Guo, Lan Mu, Yu Luo, Yi Xiao, Chaohuang Mai, Jian Wang, Junbiao Peng. Efficient red perovskite quantum dot light-emitting diode fabricated by inkjet printing[J]. Materials Futures, 2022, 1(1): 015301. doi: 10.1088/2752-5724/ac3568
Paper •
OPEN ACCESS

Efficient red perovskite quantum dot light-emitting diode fabricated by inkjet printing

© 2022 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory
Materials Futures, Volume 1, Number 1
  • Received Date: 2021-09-06
  • Accepted Date: 2021-11-02
  • Rev Recd Date: 2021-10-18
  • Publish Date: 2022-01-12
  • Perovskite quantum dots (PeQDs) are considered potential display materials due to their high color purity, high photoluminescence quantum yield (PLQY), low cost and easy film casting. In this work, a novel electroluminescence (EL) device consisting of the interface layer of long alkyl-based oleylammonium bromide (OAmBr), which passivates the surface defects of PeQDs and adjusts the carrier transport properties, was designed. The PLQY of the OAmBr/PeQD bilayer was significantly improved. A high-performance EL device with the structure of indium tin oxide/poly(3,4-ethylenedioxythiophene) polystyrene sulfonate/poly(bis(4-phenyl)(2,4,6-trimethylphenyl)amine)/OAmBr/PeQDs/2,2,2-(1,3,5-benzinetriyl)-tris(1-phenyl-1H benzimidazole)/LiF/Al was constructed using a spin-coating method. A peak external quantum efficiency (EQE) of 16.5% at the emission wavelength of 646 nm was obtained. Furthermore, an efficient matrix EL device was fabricated using an inkjet printing method. A high-quality PeQD matrix film was obtained by introducing small amounts of polybutene into the PeQDs to improve the printing process. The EQE reached 9.6% for the matrix device with 120 pixels per inch and the same device structure as that of the spin-coating one.
  • loading
  • Author contributions

    Danyang Li and Junbiao Peng designed the experiments; Danyang Li performed the experiments; Junjie Wang, Miaozi Li, Yu Luo, Yi Xiao, Chaohuang Mai helped with the measurements. Biao Guo, Lan Mu helped with the inkjet printing operation. Danyang Li wrote the paper with support from Junbiao Peng. Jian Wang gave valuable advice. All authors contributed to the general discussion.

  • [1]
    Chiba T, Hayashi Y, Ebe H, Hoshi K, Sato J, Sato S, Pu Y, Ohisa S, Kido J 2018 Nat. Photon. 12 681-7 doi: 10.1038/s41566-018-0260-y
    [2]
    Park M H, et al 2019 Adv. Funct. Mater. 29 1902017 doi: 10.1002/adfm.201902017
    [3]
    Hassan Y, et al 2021 Nature 591 72-7 doi: 10.1038/s41586-021-03217-8
    [4]
    Lin K, et al 2018 Nature 562 245-8 doi: 10.1038/s41586-018-0575-3
    [5]
    Dong Y, et al 2020 Nat. Nanotechnol. 15 668-74 doi: 10.1038/s41565-020-0714-5
    [6]
    Shen Y, Wu H, Li Y, Shen K, Gao X, Song F, Tang J 2021 Adv. Funct. Mater. 31 2103870 doi: 10.1002/adfm.202103870
    [7]
    Xiang C, et al 2020 Nat. Commun. 11 1646 doi: 10.1038/s41467-020-15481-9
    [8]
    Li D, Wang J, Li M, Xie G, Guo B, Mu L, Li H, Wang J, Yip H L, Peng J 2020 Adv. Mater. Technol. 5 2000099 doi: 10.1002/admt.202000099
    [9]
    Li Y, et al 2021 Adv. Opt. Mater. 9 2100553 doi: 10.1002/adom.202100553
    [10]
    Hermerschmidt F, Mathies F, Schrder V R F, Rehermann C, Morales N Z, Unger E L, List-Kratochvil E J W 2020 Mater. Horiz. 7 1773-81 doi: 10.1039/D0MH00512F
    [11]
    Zheng C, Zheng X, Feng C, Ju S, Xu Z, Ye Y, Guo T, Li F 2021 Org. Electron. 93 106168 doi: 10.1016/j.orgel.2021.106168
    [12]
    Zhang J, Zhong Y, Chen L, Yang L 2020 Chem. Phys. Lett. 752 137572 doi: 10.1016/j.cplett.2020.137572
    [13]
    Chen C, Xuan T, Bai W, Zhou T, Huang F, Xie A, Wang L, Xie R 2021 Nano Energy 85 106033 doi: 10.1016/j.nanoen.2021.106033
    [14]
    Yao J, Ge J, Wang K, Zhang G, Zhu B, Chen C, Zhang Q, Luo Y, Yu S, Yao H 2019 J. Am. Chem. Soc. 141 2069-79 doi: 10.1021/jacs.8b11447
    [15]
    Shen X, et al 2019 Nano Lett. 19 1552-9 doi: 10.1021/acs.nanolett.8b04339
    [16]
    Shin Y S, et al 2020 ACS Appl. Mater. Interfaces 12 31582-90 doi: 10.1021/acsami.0c06213
    [17]
    Ye J, Byranvand M M, Martinez C O, Hoye R L Z, Saliba M, Polavarapu L 2021 Angew. Chem. 133 21804-28 doi: 10.1002/ange.202102360
    [18]
    Song J, Fang T, Li J, Xu L, Zhang F, Han B, Shan Q, Zeng H 2018 Adv. Mater. 30 1805409 doi: 10.1002/adma.201805409
    [19]
    Chiba T, Ishikawa S, Sato J, Takahashi Y, Ebe H, Ohisa S, Kido J 2020 Adv. Opt. Mater. 8 2000289 doi: 10.1002/adom.202000289
    [20]
    Jiang C, Zhong Z, Liu B, He Z, Zou J, Wang L, Wang J, Peng J, Cao Y 2016 ACS Appl. Mater. Inter. 8 26162-8 doi: 10.1021/acsami.6b08679
    [21]
    Liu Y, Li F, Xu Z, Zheng C, Guo T, Xie X, Qian L, Fu D, Yan X 2017 ACS Appl. Mater. Inter. 9 25506-12 doi: 10.1021/acsami.7b05381
    [22]
    Roh H, Ko D, Shin D Y, Chang J H, Hahm D, Bae W K, Lee C, Kim J Y, Kwak J 2021 Adv. Opt. Mater. 9 2002129 doi: 10.1002/adom.202002129
    [23]
    Cho H, Kim Y, Wolf C, Lee H, Lee T 2018 Adv. Mater. 30 1704587 doi: 10.1002/adma.201704587
  • mfac3568supp1.pdf
  • 加载中

Catalog

    Figures(6)  / Tables(2)

    Article Metrics

    Article Views(1600) PDF downloads(127)
    Article Statistics
    Related articles from

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return