Citation: | Yanqing Zhu, Min Hu, Mi Xu, Bo Zhang, Fuzhi Huang, Yi-Bing Cheng, Jianfeng Lu. Bilayer metal halide perovskite for efficient and stable solar cells and modules[J]. Materials Futures, 2022, 1(4): 042102. doi: 10.1088/2752-5724/ac9248 |
Conflict of interest
The authors declare no competing financial interest.
[1] |
Green M A, Dunlop E D, HohlEbinger J, Yoshita M, Kopidakis N, Hao X 2020 Solar cell efficiency tables (version 56) Prog. Photovolt., Res. Appl. 28 629-38 doi: 10.1002/pip.3303
|
[2] |
Cao Q, Li P, Chen W, Zang S, Han L, Zhang Y, Song Y 2022 Two-dimensional perovskites: impacts of species, components, and properties of organic spacers on solar cells Nano Today 43 101394 doi: 10.1016/j.nantod.2022.101394
|
[3] |
Bai Y, Dong Q, Shao Y, Deng Y, Wang Q, Shen L, Wang D, Wei W, Huang J 2016 Enhancing stability and efficiency of perovskite solar cells with crosslinkable silane-functionalized and doped fullerene Nat. Commun. 7 1-9 doi: 10.1038/ncomms12806
|
[4] |
Mo Y, et al 2022 Nitrogen-doped tin oxide electron transport layer for stable perovskite solar cells with efficiency over 23% Interdiscip. Mater. 1 309-15 doi: 10.1002/idm2.12022
|
[5] |
Xie Y-M, Yao Q, Xue Q, Zeng Z, Niu T, Zhou Y, Zhuo M-P, Tsang S-W, Yip H-L, Cao Y 2022 Subtle side chain modification of triphenylamine-based polymer hole-transport layer materials produces efficient and stable inverted perovskite solar cells Interdiscip. Mater. 1 281-93 doi: 10.1002/idm2.12023
|
[6] |
Bi D, Yi C, Luo J, Dcoppet J-D, Zhang F, Zakeeruddin Shaik M, Li X, Hagfeldt A, Grtzel M 2016 Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21% Nat. Energy 1 1-5 doi: 10.1038/nenergy.2016.142
|
[7] |
Kanda H, et al 2022 Three-terminal perovskite/integrated back contact silicon tandem solar cells under low light intensity conditions Interdiscip. Mater. 1 148-56 doi: 10.1002/idm2.12006
|
[8] |
Zheng X, Chen B, Dai J, Fang Y, Bai Y, Lin Y, Wei H, Zeng X, Huang J 2017 Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations Nat. Energy 2 1-9 doi: 10.1038/nenergy.2017.102
|
[9] |
Li Z, Yang M, Park J-S, Wei S-H, Berry J J, Zhu K 2015 Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys Chem. Mater. 28 284-92 doi: 10.1021/acs.chemmater.5b04107
|
[10] |
Lin Y, Bai Y, Fang Y, Chen Z, Yang S, Zheng X, Tang S, Liu Y, Zhao J, Huang J 2018 Enhanced thermal stability in perovskite solar cells by assembling 2D/3D stacking structures J. Phys. Chem. Lett. 9 654-8 doi: 10.1021/acs.jpclett.7b02679
|
[11] |
Wang Z, Lin Q, Chmiel F P, Sakai N, Herz L M, Snaith H J 2017 Efficient ambient-air-stable solar cells with 2D-3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites Nat. Energy 2 1-10 doi: 10.1038/nenergy.2017.135
|
[12] |
Wu Y-H, Ding Y, Liu X-Y, Ding X-H, Liu X-P, Pan X, Dai S-Y 2019 Ambient stable FAPbI3-based perovskite solar cells with a 2D-EDAPbI4 thin capping layer Sci. China Mater. 63 47-54 doi: 10.1007/s40843-019-1174-3
|
[13] |
Stoumpos C C, Kanatzidis M G 2016 Halide perovskites: poor man’s high-performance semiconductors Adv. Mater. 28 5778-93 doi: 10.1002/adma.201600265
|
[14] |
Lin L, Jones T W, Yang T C J, Duffy N W, Li J, Zhao L, Chi B, Wang X, Wilson G J 2020 Inorganic electron transport materials in perovskite solar cells Adv. Funct. 31 2008300 doi: 10.1002/adfm.202008300
|
[15] |
Zhao X, Liu T, Loo Y L 2022 Advancing 2D perovskites for efficient and stable solar cells: challenges and opportunities Adv. Mater. 34 e2105849 doi: 10.1002/adma.202105849
|
[16] |
Dou L, et al 2015 Atomically thin two-dimensional organic-inorganic hybrid perovskites Science 349 1518-21 doi: 10.1126/science.aac7660
|
[17] |
Quan L N, et al 2016 Ligand-stabilized reduced-dimensionality perovskites J. Am. Chem. Soc. 138 2649-55 doi: 10.1021/jacs.5b11740
|
[18] |
Lin H, Zhou C, Tian Y, Siegrist T, Ma B 2017 Low-dimensional organometal halide perovskites ACS Energy Lett. 3 54-62 doi: 10.1021/acsenergylett.7b00926
|
[19] |
Sun S, Lu M, Gao X, Shi Z, Bai X, Yu W W, Zhang Y 2021 0D perovskites: unique properties, synthesis, and their applications Adv. Sci. 8 e2102689 doi: 10.1002/advs.202102689
|
[20] |
Han Y, Yue S, Cui B B 2021 Low-dimensional metal halide perovskite crystal materials: structure strategies and luminescence applications Adv. Sci. 8 e2004805 doi: 10.1002/advs.202004805
|
[21] |
CastroMndez A F, Hidalgo J, CorreaBaena J P 2019 The role of grain boundaries in perovskite solar cells Adv. Energy Mater. 9 149-60 doi: 10.1002/aenm.201901489
|
[22] |
Chen P, Bai Y, Lyu M, Yun J-H, Hao M, Wang L 2018 Progress and perspective in low-dimensional metal halide perovskites for optoelectronic applications Sol. RRL 2 1700186 doi: 10.1002/solr.201700186
|
[23] |
Zhu P, Zhu J 2020 Lowdimensional metal halide perovskites and related optoelectronic applications InfoMat 2 341-78 doi: 10.1002/inf2.12086
|
[24] |
Yang S, Wang Y, Liu P, Cheng Y-B, Zhao H J, Yang H G 2016 Functionalization of perovskite thin films with moisture-tolerant molecules Nat. Energy 1 1-7 doi: 10.1038/nenergy.2015.16
|
[25] |
Etgar L 2018 The merit of perovskite’s dimensionality; can this replace the 3D halide perovskite? Energy Environ. Sci. 11 234-42 doi: 10.1039/C7EE03397D
|
[26] |
Zhang F, Kim D H, Zhu K 2018 3D/2D multidimensional perovskites: balance of high performance and stability for perovskite solar cells Curr. Opin. Electrochem. 11 105-13 doi: 10.1016/j.coelec.2018.10.001
|
[27] |
Yoo J J, et al 2019 An interface stabilized perovskite solar cell with high stabilized efficiency and low voltage loss Energy Environ. Sci. 12 2192-9 doi: 10.1039/C9EE00751B
|
[28] |
Bai G, Wu Z, Li J, Bu T, Li W, Li W, Huang F, Zhang Q, Cheng Y-B, Zhong J 2019 High performance perovskite sub-module with sputtered SnO2 electron transport layer Sol. Energy 183 306-14 doi: 10.1016/j.solener.2019.03.026
|
[29] |
Bu T, et al 2017 A novel quadruple-cation absorber for universal hysteresis elimination for high efficiency and stable perovskite solar cells Energy Environ. Sci. 10 2509-15 doi: 10.1039/C7EE02634J
|
[30] |
Bu T, Liu X, Li J, Huang W, Wu Z, Huang F, Zhong J 2020 Dynamic antisolvent engineering for spin coating of 10 10 cm2 perovskite solar module approaching 18% Sol. RRL 4 1900263 doi: 10.1002/solr.201900263
|
[31] |
Bu T, Li J, Zheng F, Chen W, Wen X, Ku Z, Peng Y, Zhong J, Cheng Y-B, Huang F 2018 Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module Nat. Commun. 9 4609 doi: 10.1038/s41467-018-07099-9
|
[32] |
Chiang C-H, Lin J-W, Wu C-G 2016 One-step fabrication of mixed-halide perovskite film for high-efficiency inverted solar cell and module J. Mater. 4 13525-33 doi: 10.1039/C6TA05209F
|
[33] |
Chiang C-H, Nazeeruddin M K, Grtzel M, Wu C-G 2017 The synergistic effect of H2O and DMF towards stable and 20% efficiency inverted perovskite solar cells Energy Environ. Sci. 10 808-17 doi: 10.1039/C6EE03586H
|
[34] |
Cho Y, Soufiani A M, Yun J S, Kim J, Lee D S, Seidel J, Deng X, Green M A, Huang S, Ho-Baillie A W Y 2018 Mixed 3D-2D passivation treatment for mixed-cation lead mixed-halide perovskite solar cells for higher efficiency and better stability Adv. Energy Mater. 8 1703392 doi: 10.1002/aenm.201703392
|
[35] |
Dai X, Deng Y, Van Brackle C H, Chen S, Rudd P N, Xiao X, Lin Y, Chen B, Huang J 2019 Scalable fabrication of efficient perovskite solar modules on flexible glass substrates Adv. Energy Mater. 10 1903108 doi: 10.1002/aenm.201903108
|
[36] |
Deng Y, Van Brackle C H, Dai X, Zhao J, Chen B, Huang J 2019 Tailoring solvent coordination for high-speed, room-temperature blading of perovskite photovoltaic films Sci. Adv. 5 eaax7537 doi: 10.1126/sciadv.aax7537
|
[37] |
Fakharuddin A D G F, et al 2015 Vertical TiO2 nanorods as a medium for durable and high efficiency perovskite solar modules ACS Nano 9 8420-9 doi: 10.1021/acsnano.5b03265
|
[38] |
Zhang F, et al 2022 Metastable Dion-Jacobson 2D structure enables efficient and stable perovskite solar cells Science 375 71-76 doi: 10.1126/science.abj2637
|
[39] |
Gotanda T, Oooka H, Mori S, Nakao H, Amano A, Todori K, Nakai Y, Mizuguchi K 2019 Facile and scalable fabrication of low-hysteresis perovskite solar cells and modules using a three-step process for the perovskite layer J. Power Sources 430 145-9 doi: 10.1016/j.jpowsour.2019.05.012
|
[40] |
Green M A, Dunlop E D, HohlEbinger J, Yoshita M, Kopidakis N, Hao X 2021 Solar cell efficiency tables (Version 58) Prog. Photovolt., Res. Appl. 29 657-67 doi: 10.1002/pip.3444
|
[41] |
Green M A, Dunlop E D, Levi D H, HohlEbinger J, Yoshita M, HoBaillie A W Y 2019 Solar cell efficiency tables (version 54) Prog. Photovolt., Res. Appl. 27 565-75 doi: 10.1002/pip.3171
|
[42] |
Heo J H, Han H J, Kim D, Ahn T K, Im S H 2015 Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency Energy Environ. Sci. 8 1602-8 doi: 10.1039/C5EE00120J
|
[43] |
Heo J H, Lee M H, Jang M H, Im S H 2016 Highly efficient CH3NH3PbI3-xClx mixed halide perovskite solar cells prepared by re-dissolution and crystal grain growth via spray coating J. Mater. 4 17636-42 doi: 10.1039/C6TA06718B
|
[44] |
Jeong J, et al 2021 Pseudo-halide anion engineering for -FAPbI3 perovskite solar cells Nature 592 381-5 doi: 10.1038/s41586-021-03406-5
|
[45] |
Jeong M, et al 2020 Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss Science 369 1615-20 doi: 10.1126/science.abb7167
|
[46] |
Jiang Y, Leyden M R, Qiu L, Wang S, Ono L K, Wu Z, Juarez-Perez E J, Qi Y 2018 Combination of hybrid CVD and cation exchange for upscaling cs-substituted mixed cation perovskite solar cells with high efficiency and stability Adv. Funct. 28 1703835 doi: 10.1002/adfm.201703835
|
[47] |
Jiang Y, et al 2019 NegligiblePbwaste and upscalable perovskite deposition technology for highoperationalstability perovskite solar modules Adv. Energy Mater. 9 1803047 doi: 10.1002/aenm.201803047
|
[48] |
Jung E H, Jeon N J, Park E Y, Moon C S, Shin T J, Yang T Y, Noh J H, Seo J 2019 Efficient, stable and scalable perovskite solar cells using poly (3-hexylthiophene) Nature 567 511-5 doi: 10.1038/s41586-019-1036-3
|
[49] |
Kim M, et al 2022 Conformal quantum dot-SnO2 layers as electron transporters for efficient perovskite solar cells Science 375 302-6 doi: 10.1126/science.abh1885
|
[50] |
Kim M, et al 2019 Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells Joule 3 2179-92 doi: 10.1016/j.joule.2019.06.014
|
[51] |
Kwon H-C, Ma S, Yun S-C, Jang G, Yang H, Moon J 2020 A nanopillar-structured perovskite-based efficient semitransparent solar module for power-generating window applications J. Mater. 8 1457-68 doi: 10.1039/C9TA11892F
|
[52] |
Liao H-C, et al 2017 Enhanced efficiency of hotcast largearea planar perovskite solar cells/modules having controlled chloride incorporation Adv. Energy Mater. 7 1601660 doi: 10.1002/aenm.201601660
|
[53] |
Liu Z, et al 2020 A holistic approach to interface stabilization for efficient perovskite solar modules with over 2000-hour operational stability Nat. Energy 5 596-604 doi: 10.1038/s41560-020-0653-2
|
[54] |
Lou L, Liu T, Xiao J, Xiao S, Long X, Zheng S, Yang S 2019 Controlling apparent coordinated solvent number in the perovskite intermediate phase film for developing largearea perovskite solar modules Energy Technol. 8 1900972 doi: 10.1002/ente.201900972
|
[55] |
NREL 2022 Best Research-Cell Efficiency Chart (available at: https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies-rev220630.pdf)(Accessed October 2022)
|
[56] |
Priyadarshi A, Haur L J, Murray P, Fu D, Kulkarni S, Xing G, Sum T C, Mathews N, Mhaisalkar S G 2016 A large area (70 cm2 monolithic perovskite solar module with a high efficiency and stability Energy Environ. Sci. 9 3687-92 doi: 10.1039/C6EE02693A
|
[57] |
Ren A, et al 2020 Efficient perovskite solar modules with minimized nonradiative recombination and local carrier transport losses Joule 4 1263-77 doi: 10.1016/j.joule.2020.04.013
|
[58] |
Seo J, Park S, Chan Kim Y, Jeon N J, Noh J H, Yoon S C, Seok S I 2014 Benefits of very thin PCBM and LiF layers for solution-processed p-i-n perovskite solar cells Energy Environ. Sci. 7 2642-6 doi: 10.1039/C4EE01216J
|
[59] |
Smith I C, Hoke E T, Solis-Ibarra D, McGehee M D, Karunadasa H I 2014 A layered hybrid perovskite solar-cell absorber with enhanced moisture stability Angew. Chem., Int. Ed. Engl. 53 11232-5 doi: 10.1002/anie.201406466
|
[60] |
Thi Kim C M, Atourki L, Ouafi M, Hashmi S G 2021 A synopsis of progressive transition in precursor inks development for metal halide perovskites-based photovoltaic technology J. Mater. 9 26650-68 doi: 10.1039/D1TA06556D
|
[61] |
Wang F, Geng W, Zhou Y, Fang H H, Tong C J, Loi M A, Liu L-M, Zhao N 2016 Phenylalkylamine passivation of organolead halide perovskites enabling high-efficiency and air-stable photovoltaic cells Adv. Mater. 28 9986-92 doi: 10.1002/adma.201603062
|
[62] |
Yang M, et al 2017 Perovskite ink with wide processing window for scalable high-efficiency solar cells Nat. Energy 2 1-9 doi: 10.1038/nenergy.2017.38
|
[63] |
Yao K, Wang X, Xu Y-X, Li F 2015 A general fabrication procedure for efficient and stable planar perovskite solar cells: morphological and interfacial control by in-situ-generated layered perovskite Nano Energy 18 165-75 doi: 10.1016/j.nanoen.2015.10.010
|
[64] |
Zhou Y, Wang F, Cao Y, Wang J-P, Fang H-H, Loi M A, Zhao N, Wong C-P 2017 Benzylamine-treated wide-bandgap perovskite with high thermal-photostability and photovoltaic performance Adv. Energy Mater. 7 1701048 doi: 10.1002/aenm.201701048
|
[65] |
Agresti A, Pescetelli S, Palma A L, Martn-Garca B, Najafi L, Bellani S, Moreels I, Prato M, Bonaccorso F, Di Carlo A 2019 Two-dimensional material interface engineering for efficient perovskite large-area modules ACS Energy Lett. 4 1862-71 doi: 10.1021/acsenergylett.9b01151
|
[66] |
Bi E, et al 2019 Efficient perovskite solar cell modules with high stability enabled by iodide diffusion barriers Joule 3 2748-60 doi: 10.1016/j.joule.2019.07.030
|
[67] |
Bu T, et al 2022 Modulating crystal growth of formamidinium-caesium perovskites for over 200 cm2 photovoltaic sub-modules Nat. Energy 7 528-36 doi: 10.1038/s41560-022-01039-0
|
[68] |
Castriotta L A, Fuentes Pineda R, Babu V, Spinelli P, Taheri B, Matteocci F, Brunetti F, Wojciechowski K, Di Carlo A 2021 Light-stable methylammonium-free inverted flexible perovskite solar modules on PET exceeding 10.5% on a 15.7 cm2 active area ACS Appl. Mater. 13 29576-84 doi: 10.1021/acsami.1c05506
|
[69] |
Gao W, Chao L, Li M, Xia Y, Ran C, Chen Y 2022 Ternary halogen doping for efficient and stable air-processed all-inorganic perovskite solar cells Sol. RRL 6 2200457 doi: 10.1002/solr.202200457
|
[70] |
Grancini G, et al 2017 One-year stable perovskite solar cells by 2D/3D interface engineering Nat. Commun. 8 1-8 doi: 10.1038/ncomms15684
|
[71] |
Huang Z, et al 2021 Releasing nanocapsules for highthroughput printing of stable perovskite solar cells Adv. Energy Mater. 11 2101291 doi: 10.1002/aenm.202101291
|
[72] |
Liu Y, Cao H, Liu X, Zhu R, Tao T, Sun J 2021 Fabricating efficient and stable quasi-3D and 3D/2D perovskite solar cells with 2D-sheets connected by inorganic type ionic-bond Nanotechnology 32 355201 doi: 10.1088/1361-6528/ac0028
|
[73] |
Mei A, et al 2020 Stabilizing perovskite solar cells to IEC61215:2016 standards with over 9 000-h operational tracking Joule 4 2646-60 doi: 10.1016/j.joule.2020.09.010
|
[74] |
Paek S, et al 2020 Molecular design and operational stability: toward stable 3D/2D perovskite interlayers Adv. Sci. 7 2001014 doi: 10.1002/advs.202001014
|
[75] |
Qiu L, Liu Z, Ono L K, Jiang Y, Son D Y, Hawash Z, He S, Qi Y 2018 Scalable fabrication of stable high efficiency perovskite solar cells and modules utilizing room temperature sputtered SnO2 electron transport layer Adv. Funct. 29 1806779 doi: 10.1002/adfm.201806779
|
[76] |
Ro M, et al 2021 Coevaporated formamidinium lead iodide based perovskites with 1000 h constant stability for fully textured monolithic perovskite/silicon tandem solar cells Adv. Energy Mater. 11 2101460 doi: 10.1002/aenm.202101460
|
[77] |
Snchez S, et al 2022 Thermally controlled growth of photoactive fapbi3 films for highly stable perovskite solar cells Energy Environ. Sci. 15 3862-76 doi: 10.1039/D2EE01196D
|
[78] |
Xiao K, et al 2020 All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1cm2 using surface-anchoring zwitterionic antioxidant Nat. Energy 5 870-80 doi: 10.1038/s41560-020-00705-5
|
[79] |
Yang N, et al 2020 An in situ cross-linked 1D/3D perovskite heterostructure improves the stability of hybrid perovskite solar cells for over 3000 h operation Energy Environ. Sci. 13 4344-52 doi: 10.1039/D0EE01736A
|
[80] |
Yang Z, et al 2021 Slot-die coating large-area formamidinium-cesium perovskite film for efficient and stable parallel solar module Sci. Adv. 7 eabg3749 doi: 10.1126/sciadv.abg3749
|
[81] |
Zhang Y, et al 2020 The synergism of DMSO and diethyl ether for highly reproducible and efficient MA0.5FA0.5PbI3 perovskite solar cells Adv. Energy Mater. 10 2001300 doi: 10.1002/aenm.202001300
|
[82] |
Deng Y, Xu S, Chen S, Xiao X, Zhao J, Huang J 2021 Defect compensation in formamidinium-caesium perovskites for highly efficient solar mini-modules with improved photostability Nat. Energy 6 633-41 doi: 10.1038/s41560-021-00831-8
|
[83] |
Chen H, et al 2022 Quantum-size-tuned heterostructures enable efficient and stable inverted perovskite solar cells Nat. Photon. 16 352-8 doi: 10.1038/s41566-022-00985-1
|
[84] |
Bu T, et al 2021 Lead halide-templated crystallization of methylamine-free perovskite for efficient photovoltaic modules Science 372 1327-32 doi: 10.1126/science.abh1035
|
[85] |
Azmi R, et al 2022 Damp heat-stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions Science 376 73-77 doi: 10.1126/science.abm5784
|
[86] |
Zhan Y, Yang F, Chen W, Chen H, Shen Y, Li Y, Li Y 2021 Elastic lattice and excess charge carrier manipulation in 1D-3D perovskite solar cells for exceptionally long-term operational stability Adv. Mater. 33 e2105170 doi: 10.1002/adma.202105170
|
[87] |
Mahmud M A, et al 2019 Doublesided surface passivation of 3D perovskite film for highefficiency mixeddimensional perovskite solar cells Adv. Funct. 30 1907962 doi: 10.1002/adfm.201907962
|
[88] |
He M, Liang J, Zhang Z, Qiu Y, Deng Z, Xu H, Chen C C 2020 Compositional optimization of a 2D-3D heterojunction interface for 22.6% efficient and stable planar perovskite solar cells J. Mater. 8 25831-41 doi: 10.1039/D0TA09209F
|
[89] |
Kaneko R, Kanda H, Shibayama N, Sugawa K, Otsuki J, Islam A, Nazeeruddin M K 2021 Gradient 1D/3D perovskite bilayer using 4tertbutylpyridinium cation for efficient and stable perovskite solar cells Sol. RRL 5 2000791 doi: 10.1002/solr.202000791
|
[90] |
Ma C, et al 2016 2D/3D perovskite hybrids as moisture-tolerant and efficient light absorbers for solar cells Nanoscale 8 18309-14 doi: 10.1039/C6NR04741F
|
[91] |
Cho K T, et al 2018 Selective growth of layered perovskites for stable and efficient photovoltaics Energy Environ. Sci. 11 952-9 doi: 10.1039/C7EE03513F
|
[92] |
Bai Y, Xiao S, Hu C, Zhang T, Meng X, Lin H, Yang Y, Yang S 2017 Dimensional engineering of a graded 3D-2D halide perovskite interface enables ultrahigh voc enhanced stability in the p-i-n photovoltaics Adv. Energy Mater. 7 1701038 doi: 10.1002/aenm.201701038
|
[93] |
Wei M, et al 2020 Combining efficiency and stability in mixed tin-lead perovskite solar cells by capping grains with an ultrathin 2D layer Adv. Mater. 32 e1907058 doi: 10.1002/adma.201907058
|
[94] |
Li M H, et al 2018 Highly efficient 2D/3D hybrid perovskite solar cells via low-pressure vapor-assisted solution process Adv. Mater. 30 e1801401 doi: 10.1002/adma.201801401
|
[95] |
Lin D, et al 2019 Stable and scalable 3D-2D planar heterojunction perovskite solar cells via vapor deposition Nano Energy 59 619-25 doi: 10.1016/j.nanoen.2019.03.014
|
[96] |
La-Placa M-G, Gil-Escrig L, Guo D, Palazon F, Savenije T J, Sessolo M, Bolink H J 2019 Vacuum-deposited 2D/3D perovskite heterojunctions ACS Energy Lett. 4 2893-901 doi: 10.1021/acsenergylett.9b02224
|
[97] |
Jang Y-W, Lee S, Yeom K M, Jeong K, Choi K, Choi M, Noh J H 2021 Intact 2D/3D halide junction perovskite solar cells via solid-phase in-plane growth Nat. Energy 6 63-71 doi: 10.1038/s41560-020-00749-7
|
[98] |
Zhao D, et al 2022 Efficient and stable 3D/2D perovskite solar cells through vertical heterostructures with (BA)4AgBiBr8 nanosheets Adv. Mater. 34 2204661 doi: 10.1002/adma.202204661
|
[99] |
Zheng Y, Yang X, Su R, Wu P, Gong Q, Zhu R 2020 Highperformance CsPbIxBr3-x allinorganic perovskite solar cells with efficiency over 18% via spontaneous interfacial manipulation Adv. Funct. 30 2000457 doi: 10.1002/adfm.202000457
|
[100] |
Xu X, Qian W, Wang J, Yang J, Chen J, Xiao S, Ge Y, Yang S 2021 Sequential growth of 2D/3D double-layer perovskite films with superior x-ray detection performance Adv. Sci. 8 e2102730 doi: 10.1002/advs.202102730
|
[101] |
Liu C, et al 2021 Tuning structural isomers of phenylenediammonium to afford efficient and stable perovskite solar cells and modules Nat. Commun. 12 6394 doi: 10.1038/s41467-021-26754-2
|
[102] |
Wang Y, Duan C, Lv P, Ku Z, Lu J, Huang F, Cheng Y-B 2021 Printing strategies for scaling-up perovskite solar cells Natl Sci. Rev. 8 nwab075 doi: 10.1093/nsr/nwab075
|
[103] |
Jung M, Ji S G, Kim G, Seok S I 2019 Perovskite precursor solution chemistry: from fundamentals to photovoltaic applications Chem. Soc. Rev. 48 2011-38 doi: 10.1039/C8CS00656C
|
[104] |
Patidar R, Burkitt D, Hooper K, Richards D, Watson T 2020 Slot-die coating of perovskite solar cells: an overview Mater. Today Commun. 22 100808 doi: 10.1016/j.mtcomm.2019.100808
|
[105] |
Eggers H, Schackmar F, Abzieher T, Sun Q, Lemmer U, Vaynzof Y, Richards B S, HernandezSosa G, Paetzold U W 2019 Inkjetprinted micrometerthick perovskite solar cells with large columnar grains Adv. Energy Mater. 10 1903184 doi: 10.1002/aenm.201903184
|
[106] |
Li Z, Klein T R, Kim D H, Yang M, Berry J J, van Hest M F A M, Zhu K 2018 Scalable fabrication of perovskite solar cells Nat. Rev. Mater. 3 1-20 doi: 10.1038/natrevmats.2018.17
|
[107] |
Tavakoli M M, Gu L, Gao Y, Reckmeier C, He J, Rogach A L, Yao Y, Fan Z 2015 Fabrication of efficient planar perovskite solar cells using a one-step chemical vapor deposition method Sci. Rep. 5 1-9 doi: 10.1038/srep14083
|
[108] |
Leyden M R, Lee M V, Raga S R, Qi Y 2015 Large formamidinium lead trihalide perovskite solar cells using chemical vapor deposition with high reproducibility and tunable chlorine concentrations J. Mater. 3 16097-103 doi: 10.1039/C5TA03577E
|
[109] |
Luo P, Liu Z, Xia W, Yuan C, Cheng J, Lu Y 2015 Uniform, stable, and efficient planar-heterojunction perovskite solar cells by facile low-pressure chemical vapor deposition under fully open-air conditions ACS Appl. Mater. 7 2708-14 doi: 10.1021/am5077588
|
[110] |
Zendehdel M, Yaghoobi Nia N, Paci B, Generosi A, Di Carlo A 2022 Zerowaste scalable blade-spin coating as universal approach for layerbylayer deposition of 3D/2D perovskite films in highefficiency perovskite solar modules Sol. RRL 6 2100637 doi: 10.1002/solr.202100637
|
[111] |
Liu Y, et al 2019 Ultrahydrophobic 3D/2D fluoroarene bilayer-based water-resistant perovskite solar cells with efficiencies exceeding 22% Sci. Adv. 5 eaaw2543 doi: 10.1126/sciadv.aaw2543
|
[112] |
Cheng Q, Xia H, Li X, Wang B, Li Y, Zhang X, Zhang H, Zhang Y, Zhou H 2022 High-efficiency and stable perovskite solar cells enabled by low-dimensional perovskite surface modifiers Sol. RRL 6 2100805 doi: 10.1002/solr.202100805
|
[113] |
Pham N D, Yang Y, Hoang M T, Wang T, Tiong V T, Wilson G J, Wang H 2020 1D pyrrolidinium lead iodide for efficient and stable perovskite solar cells Energy Technol. 8 1900918 doi: 10.1002/ente.201900918
|
[114] |
Kim N K, et al 2017 Investigation of thermally induced degradation in CH3NH3PbI3 perovskite solar cells using in-situ synchrotron radiation analysis Sci. Rep. 7 4645 doi: 10.1038/s41598-017-04690-w
|
[115] |
Sutanto A A, Szostak R, Drigo N, Queloz V I E, Marchezi P E, Germino J C, Tolentino H C N, Nazeeruddin M K, Nogueira A F, Grancini G 2020 In situ analysis reveals the role of 2D perovskite in preventing thermal-induced degradation in 2D/3D perovskite interfaces Nano Lett. 20 3992-8 doi: 10.1021/acs.nanolett.0c01271
|
[116] |
Heo S, et al 2019 Origins of high performance and degradation in the mixed perovskite solar cells Adv. Mater. 31 e1805438 doi: 10.1002/adma.201805438
|
[117] |
Wang J, Liu L, Chen S, Qi L, Zhao M, Zhao C, Tang J, Cai X, Lu F, Jiu T 2022 Growth of 1D nanorod perovskite for surface passivation in FAPbI3 perovskite solar cells Small 18 e2104100 doi: 10.1002/smll.202104100
|
[118] |
Mahapatra A, Runjhun R, Nawrocki J, Lewinski J, Kalam A, Kumar P, Trivedi S, Tavakoli M M, Prochowicz D, Yadav P 2020 Elucidation of the role of guanidinium incorporation in single-crystalline MAPbI3 perovskite on ion migration and activation energy Phys. Chem. Chem. Phys. 22 11467-73 doi: 10.1039/D0CP01119C
|
[119] |
Hoke E T, Slotcavage D J, Dohner E R, Bowring A R, Karunadasa H I, McGehee M D 2015 Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics Chem. Sci. 6 613-7 doi: 10.1039/C4SC03141E
|
[120] |
Rong Y, Hu Y, Mei A, Tan H, Saidaminov M I, Seok S I, McGehee M D, Sargent E H, Han H 2018 Challenges for commercializing perovskite solar cells Science 361 eaat8235 doi: 10.1126/science.aat8235
|
[121] |
Li N, et al 2019 Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells Nat. Energy 4 408-15 doi: 10.1038/s41560-019-0382-6
|
[122] |
Shao Y, et al 2016 Grain boundary dominated ion migration in polycrystalline organic-inorganic halide perovskite films Energy Environ. Sci. 9 1752-9 doi: 10.1039/C6EE00413J
|
[123] |
Fu X, et al 2021 Halogen-halogen bonds enable improved long-term operational stability of mixed-halide perovskite photovoltaics Chem 7 3131-43 doi: 10.1016/j.chempr.2021.08.009
|
[124] |
He Y, Pan W, Guo C, Zhang H, Wei H, Yang B 2021 3D/2D perovskite single crystals heterojunction for suppressed ions migration in hard xray detection Adv. Funct. 31 2104880 doi: 10.1002/adfm.202104880
|
[125] |
Ye X, Cai H, Sun Q, Xu T, Ni J, Li J, Zhang J 2022 Organic spacer engineering in 2D/3D hybrid perovskites for efficient and stable solar cells New J. Chem. 46 2837-45 doi: 10.1039/D1NJ05232B
|
[126] |
Niu T, et al 2019 Interfacial engineering at the 2D/3D heterojunction for high-performance perovskite solar cells Nano Lett. 19 7181-90 doi: 10.1021/acs.nanolett.9b02781
|
[127] |
Lv Y, Shi Y, Song X, Liu J, Wang M, Wang S, Feng Y, Jin S, Hao C 2018 Bromine doping as an efficient strategy to reduce the interfacial defects in hybrid two-dimensional/three-dimensional stacking perovskite solar cells ACS Appl. Mater. 10 31755-64 doi: 10.1021/acsami.8b09461
|
[128] |
Elsenety M M, Antoniadou M, Balis N, Kaltzoglou A, Sygellou L, Stergiou A, Tagmatarchis N, Falaras P 2020 Stability improvement and performance reproducibility enhancement of perovskite solar cells following (FA/MA/Cs)PbI3-xBrx/(CH33SPbI3 dimensionality engineering ACS Appl. Energy Mater. 3 2465-77 doi: 10.1021/acsaem.9b02117
|
[129] |
Ono L K, Liu S F, Qi Y 2020 Reducing detrimental defects for high-performance metal halide perovskite solar cells Angew. Chem., Int. Ed. Engl. 59 6676-98 doi: 10.1002/anie.201905521
|
[130] |
Zhou L, Su J, Lin Z, Guo X, Ma J, Li T, Zhang J, Chang J, Hao Y 2021 Synergistic interface layer optimization and surface passivation with fluorocarbon molecules toward efficient and stable inverted planar perovskite solar cells Research 2021 1-11 doi: 10.34133/2021/9836752
|
[131] |
Long M, Zhang T, Liu M, Chen Z, Wang C, Xie W, Xie F, Chen J, Li G, Xu J 2018 Abnormal synergetic effect of organic and halide ions on the stability and optoelectronic properties of a mixed perovskite via in situ characterizations Adv. Mater. 30 e1801562 doi: 10.1002/adma.201801562
|
[132] |
Jiang Q, Zhao Y, Zhang X, Yang X, Chen Y, Chu Z, Ye Q, Li X, Yin Z, You J 2019 Surface passivation of perovskite film for efficient solar cells Nat. Photon. 13 460-6 doi: 10.1038/s41566-019-0398-2
|
[133] |
Galagan Y, Di Giacomo F, Gorter H, Kirchner G, de Vries I, Andriessen R, Groen P 2018 Roll-to-roll slot die coated perovskite for efficient flexible solar cells Adv. Energy Mater. 8 1801935 doi: 10.1002/aenm.201801935
|
[134] |
Li J, et al 2018 Phase transition control for high-performance blade-coated perovskite solar cells Joule 2 1313-30 doi: 10.1016/j.joule.2018.04.011
|
[135] |
Cheng Y, Ding L 2021 Pushing commercialization of perovskite solar cells by improving their intrinsic stability Energy Environ. Sci. 14 3233-55 doi: 10.1039/D1EE00493J
|
[136] |
Park N-G, Zhu K 2020 Scalable fabrication and coating methods for perovskite solar cells and solar modules Nat. Rev. Mater. 5 333-50 doi: 10.1038/s41578-019-0176-2
|
[137] |
Gao L, Chen L, Huang S, Li X, Yang G 2019 Series and parallel module design for large-area perovskite solar cells ACS Appl. Energy Mater. 2 3851-9 doi: 10.1021/acsaem.9b00531
|
[138] |
Kim D H, Whitaker J B, Li Z, van Hest M F A M, Zhu K 2018 Outlook and challenges of perovskite solar cells toward terawatt-scale photovoltaic module technology Joule 2 1437-51 doi: 10.1016/j.joule.2018.05.011
|
[139] |
Moon S-J, Yum J-H, Lofgren L, Walter A, Sansonnens L, Benkhaira M, Nicolay S, Bailat J, Ballif C 2015 Laser-scribing patterning for the production of organometallic halide perovskite solar modules IEEE J. Photovolt. 5 1087-92 doi: 10.1109/JPHOTOV.2015.2416913
|
[140] |
Wilkinson B, Chang N L, Green M A, Ho-Baillie A W Y 2018 Scaling limits to large area perovskite solar cell efficiency Prog. Photovolt. 26 659-74 doi: 10.1002/pip.3035
|
[141] |
Rakocevic L, Mundt L E, Gehlhaar R, Merckx T, Aernouts T, Schubert M C, Glunz S W, Poortmans J 2019 Loss analysis in perovskite photovoltaic modules Sol. RRL 3 1900338 doi: 10.1002/solr.201900338
|
[142] |
Kim J Y, et al 2022 In situ formation of ImidazoleBased 2D interlayer for efficient perovskite solar cells and modules Int. J. Energy Res. 46 15419-27 doi: 10.1002/er.8243
|
[143] |
Ma X, Pan J, Wang Y, Gao X, Hu M, Ku Z, Ma Y, Huang F, Cheng Y-B, Lu J 2022 Bromide complimented methylammonium-free wide bandgap perovskite solar modules with high efficiency and stability Chem. Eng. J. 445 136626 doi: 10.1016/j.cej.2022.136626
|
[144] |
Xu Z, Chen R, Wu Y, He R, Yin J, Lin W, Zheng N 2019 Br-containing alkyl ammonium salt-enabled scalable fabrication of high-quality perovskite films for efficient and stable perovskite modules J. Mater. 7 26849-57 doi: 10.1039/C9TA09101G
|
[145] |
Xiao K, et al 2022 Scalable processing for realizing 21.7%-efficient all-perovskite tandem solar modules Science 376 762-7 doi: 10.1126/science.abn7696
|
[146] |
Jiang L, Lu J, Raga S R, Sun J, Lin X, Huang W, Huang F, Bach U, Cheng Y-B 2019 Fatigue stability of CH3NH3PbI3 based perovskite solar cells in day/night cycling Nano Energy 58 687-94 doi: 10.1016/j.nanoen.2019.02.005
|
[147] |
Razera R A Z, et al 2020 Instability of p-i-n perovskite solar cells under reverse bias J. Mater. 8 242-50 doi: 10.1039/C9TA12032G
|