Volume 1 Issue 4
December  2022
Turn off MathJax
Article Contents
Yanqing Zhu, Min Hu, Mi Xu, Bo Zhang, Fuzhi Huang, Yi-Bing Cheng, Jianfeng Lu. Bilayer metal halide perovskite for efficient and stable solar cells and modules[J]. Materials Futures, 2022, 1(4): 042102. doi: 10.1088/2752-5724/ac9248
Citation: Yanqing Zhu, Min Hu, Mi Xu, Bo Zhang, Fuzhi Huang, Yi-Bing Cheng, Jianfeng Lu. Bilayer metal halide perovskite for efficient and stable solar cells and modules[J]. Materials Futures, 2022, 1(4): 042102. doi: 10.1088/2752-5724/ac9248
Topical Review •
OPEN ACCESS

Bilayer metal halide perovskite for efficient and stable solar cells and modules

© 2022 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory
Materials Futures, Volume 1, Number 4
  • Received Date: 2022-07-21
  • Accepted Date: 2022-09-14
  • Rev Recd Date: 2022-08-29
  • Publish Date: 2022-10-25
  • To reach the target of carbon neutral, a transition from fossil energy to renewable energy is unavoidable. Photovoltaic technology is considered one of the most prominent sources of renewable energy. Recently, metal halide perovskite materials have attracted tremendous interest in the areas of optoelectronic devices due to their ease of processing and outstanding performance. To date, perovskite solar cells (PSCs) have shown high power conversion efficiency up to 25.7% and 31.3% for the perovskite-silicon tandem solar cells, which promises to revolutionize the PV landscape. However, the stability of PSCs under operating conditions has yet to match state-of-the-art silicon-based solar cell technology, in which the stability of the absorbing layer and relevant interfaces is the primary challenge. These issues become more serious in the larger area solar modules due to the additional interfaces and more defects within the perovskite. Bilayer perovskite film composed of a thin low dimensional perovskite layer and a three-dimensional perovskite layer shows great potential in fabricating solar cells with high efficiency and stability simultaneously. In this review, recent advancements, including composition design and processing methods for constructing bilayer perovskite films are discussed. We then analyze the challenges and resolutions in deposition bilayer perovskite films with scalable techniques. After summarizing the beneficial effect of the bilayer structure, we propose our thinking of feasible strategies to fabricate high efficiency perovskite solar modules with a long lifetime. Finally, we outline the directions for future work that will push the perovskite PV technology toward commercialization.
  • loading
  • Conflict of interest

    The authors declare no competing financial interest.

  • [1]
    Green M A, Dunlop E D, HohlEbinger J, Yoshita M, Kopidakis N, Hao X 2020 Solar cell efficiency tables (version 56) Prog. Photovolt., Res. Appl. 28 629-38 doi: 10.1002/pip.3303
    [2]
    Cao Q, Li P, Chen W, Zang S, Han L, Zhang Y, Song Y 2022 Two-dimensional perovskites: impacts of species, components, and properties of organic spacers on solar cells Nano Today 43 101394 doi: 10.1016/j.nantod.2022.101394
    [3]
    Bai Y, Dong Q, Shao Y, Deng Y, Wang Q, Shen L, Wang D, Wei W, Huang J 2016 Enhancing stability and efficiency of perovskite solar cells with crosslinkable silane-functionalized and doped fullerene Nat. Commun. 7 1-9 doi: 10.1038/ncomms12806
    [4]
    Mo Y, et al 2022 Nitrogen-doped tin oxide electron transport layer for stable perovskite solar cells with efficiency over 23% Interdiscip. Mater. 1 309-15 doi: 10.1002/idm2.12022
    [5]
    Xie Y-M, Yao Q, Xue Q, Zeng Z, Niu T, Zhou Y, Zhuo M-P, Tsang S-W, Yip H-L, Cao Y 2022 Subtle side chain modification of triphenylamine-based polymer hole-transport layer materials produces efficient and stable inverted perovskite solar cells Interdiscip. Mater. 1 281-93 doi: 10.1002/idm2.12023
    [6]
    Bi D, Yi C, Luo J, Dcoppet J-D, Zhang F, Zakeeruddin Shaik M, Li X, Hagfeldt A, Grtzel M 2016 Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21% Nat. Energy 1 1-5 doi: 10.1038/nenergy.2016.142
    [7]
    Kanda H, et al 2022 Three-terminal perovskite/integrated back contact silicon tandem solar cells under low light intensity conditions Interdiscip. Mater. 1 148-56 doi: 10.1002/idm2.12006
    [8]
    Zheng X, Chen B, Dai J, Fang Y, Bai Y, Lin Y, Wei H, Zeng X, Huang J 2017 Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations Nat. Energy 2 1-9 doi: 10.1038/nenergy.2017.102
    [9]
    Li Z, Yang M, Park J-S, Wei S-H, Berry J J, Zhu K 2015 Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys Chem. Mater. 28 284-92 doi: 10.1021/acs.chemmater.5b04107
    [10]
    Lin Y, Bai Y, Fang Y, Chen Z, Yang S, Zheng X, Tang S, Liu Y, Zhao J, Huang J 2018 Enhanced thermal stability in perovskite solar cells by assembling 2D/3D stacking structures J. Phys. Chem. Lett. 9 654-8 doi: 10.1021/acs.jpclett.7b02679
    [11]
    Wang Z, Lin Q, Chmiel F P, Sakai N, Herz L M, Snaith H J 2017 Efficient ambient-air-stable solar cells with 2D-3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites Nat. Energy 2 1-10 doi: 10.1038/nenergy.2017.135
    [12]
    Wu Y-H, Ding Y, Liu X-Y, Ding X-H, Liu X-P, Pan X, Dai S-Y 2019 Ambient stable FAPbI3-based perovskite solar cells with a 2D-EDAPbI4 thin capping layer Sci. China Mater. 63 47-54 doi: 10.1007/s40843-019-1174-3
    [13]
    Stoumpos C C, Kanatzidis M G 2016 Halide perovskites: poor man’s high-performance semiconductors Adv. Mater. 28 5778-93 doi: 10.1002/adma.201600265
    [14]
    Lin L, Jones T W, Yang T C J, Duffy N W, Li J, Zhao L, Chi B, Wang X, Wilson G J 2020 Inorganic electron transport materials in perovskite solar cells Adv. Funct. 31 2008300 doi: 10.1002/adfm.202008300
    [15]
    Zhao X, Liu T, Loo Y L 2022 Advancing 2D perovskites for efficient and stable solar cells: challenges and opportunities Adv. Mater. 34 e2105849 doi: 10.1002/adma.202105849
    [16]
    Dou L, et al 2015 Atomically thin two-dimensional organic-inorganic hybrid perovskites Science 349 1518-21 doi: 10.1126/science.aac7660
    [17]
    Quan L N, et al 2016 Ligand-stabilized reduced-dimensionality perovskites J. Am. Chem. Soc. 138 2649-55 doi: 10.1021/jacs.5b11740
    [18]
    Lin H, Zhou C, Tian Y, Siegrist T, Ma B 2017 Low-dimensional organometal halide perovskites ACS Energy Lett. 3 54-62 doi: 10.1021/acsenergylett.7b00926
    [19]
    Sun S, Lu M, Gao X, Shi Z, Bai X, Yu W W, Zhang Y 2021 0D perovskites: unique properties, synthesis, and their applications Adv. Sci. 8 e2102689 doi: 10.1002/advs.202102689
    [20]
    Han Y, Yue S, Cui B B 2021 Low-dimensional metal halide perovskite crystal materials: structure strategies and luminescence applications Adv. Sci. 8 e2004805 doi: 10.1002/advs.202004805
    [21]
    CastroMndez A F, Hidalgo J, CorreaBaena J P 2019 The role of grain boundaries in perovskite solar cells Adv. Energy Mater. 9 149-60 doi: 10.1002/aenm.201901489
    [22]
    Chen P, Bai Y, Lyu M, Yun J-H, Hao M, Wang L 2018 Progress and perspective in low-dimensional metal halide perovskites for optoelectronic applications Sol. RRL 2 1700186 doi: 10.1002/solr.201700186
    [23]
    Zhu P, Zhu J 2020 Lowdimensional metal halide perovskites and related optoelectronic applications InfoMat 2 341-78 doi: 10.1002/inf2.12086
    [24]
    Yang S, Wang Y, Liu P, Cheng Y-B, Zhao H J, Yang H G 2016 Functionalization of perovskite thin films with moisture-tolerant molecules Nat. Energy 1 1-7 doi: 10.1038/nenergy.2015.16
    [25]
    Etgar L 2018 The merit of perovskite’s dimensionality; can this replace the 3D halide perovskite? Energy Environ. Sci. 11 234-42 doi: 10.1039/C7EE03397D
    [26]
    Zhang F, Kim D H, Zhu K 2018 3D/2D multidimensional perovskites: balance of high performance and stability for perovskite solar cells Curr. Opin. Electrochem. 11 105-13 doi: 10.1016/j.coelec.2018.10.001
    [27]
    Yoo J J, et al 2019 An interface stabilized perovskite solar cell with high stabilized efficiency and low voltage loss Energy Environ. Sci. 12 2192-9 doi: 10.1039/C9EE00751B
    [28]
    Bai G, Wu Z, Li J, Bu T, Li W, Li W, Huang F, Zhang Q, Cheng Y-B, Zhong J 2019 High performance perovskite sub-module with sputtered SnO2 electron transport layer Sol. Energy 183 306-14 doi: 10.1016/j.solener.2019.03.026
    [29]
    Bu T, et al 2017 A novel quadruple-cation absorber for universal hysteresis elimination for high efficiency and stable perovskite solar cells Energy Environ. Sci. 10 2509-15 doi: 10.1039/C7EE02634J
    [30]
    Bu T, Liu X, Li J, Huang W, Wu Z, Huang F, Zhong J 2020 Dynamic antisolvent engineering for spin coating of 10 10 cm2 perovskite solar module approaching 18% Sol. RRL 4 1900263 doi: 10.1002/solr.201900263
    [31]
    Bu T, Li J, Zheng F, Chen W, Wen X, Ku Z, Peng Y, Zhong J, Cheng Y-B, Huang F 2018 Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module Nat. Commun. 9 4609 doi: 10.1038/s41467-018-07099-9
    [32]
    Chiang C-H, Lin J-W, Wu C-G 2016 One-step fabrication of mixed-halide perovskite film for high-efficiency inverted solar cell and module J. Mater. 4 13525-33 doi: 10.1039/C6TA05209F
    [33]
    Chiang C-H, Nazeeruddin M K, Grtzel M, Wu C-G 2017 The synergistic effect of H2O and DMF towards stable and 20% efficiency inverted perovskite solar cells Energy Environ. Sci. 10 808-17 doi: 10.1039/C6EE03586H
    [34]
    Cho Y, Soufiani A M, Yun J S, Kim J, Lee D S, Seidel J, Deng X, Green M A, Huang S, Ho-Baillie A W Y 2018 Mixed 3D-2D passivation treatment for mixed-cation lead mixed-halide perovskite solar cells for higher efficiency and better stability Adv. Energy Mater. 8 1703392 doi: 10.1002/aenm.201703392
    [35]
    Dai X, Deng Y, Van Brackle C H, Chen S, Rudd P N, Xiao X, Lin Y, Chen B, Huang J 2019 Scalable fabrication of efficient perovskite solar modules on flexible glass substrates Adv. Energy Mater. 10 1903108 doi: 10.1002/aenm.201903108
    [36]
    Deng Y, Van Brackle C H, Dai X, Zhao J, Chen B, Huang J 2019 Tailoring solvent coordination for high-speed, room-temperature blading of perovskite photovoltaic films Sci. Adv. 5 eaax7537 doi: 10.1126/sciadv.aax7537
    [37]
    Fakharuddin A D G F, et al 2015 Vertical TiO2 nanorods as a medium for durable and high efficiency perovskite solar modules ACS Nano 9 8420-9 doi: 10.1021/acsnano.5b03265
    [38]
    Zhang F, et al 2022 Metastable Dion-Jacobson 2D structure enables efficient and stable perovskite solar cells Science 375 71-76 doi: 10.1126/science.abj2637
    [39]
    Gotanda T, Oooka H, Mori S, Nakao H, Amano A, Todori K, Nakai Y, Mizuguchi K 2019 Facile and scalable fabrication of low-hysteresis perovskite solar cells and modules using a three-step process for the perovskite layer J. Power Sources 430 145-9 doi: 10.1016/j.jpowsour.2019.05.012
    [40]
    Green M A, Dunlop E D, HohlEbinger J, Yoshita M, Kopidakis N, Hao X 2021 Solar cell efficiency tables (Version 58) Prog. Photovolt., Res. Appl. 29 657-67 doi: 10.1002/pip.3444
    [41]
    Green M A, Dunlop E D, Levi D H, HohlEbinger J, Yoshita M, HoBaillie A W Y 2019 Solar cell efficiency tables (version 54) Prog. Photovolt., Res. Appl. 27 565-75 doi: 10.1002/pip.3171
    [42]
    Heo J H, Han H J, Kim D, Ahn T K, Im S H 2015 Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency Energy Environ. Sci. 8 1602-8 doi: 10.1039/C5EE00120J
    [43]
    Heo J H, Lee M H, Jang M H, Im S H 2016 Highly efficient CH3NH3PbI3-xClx mixed halide perovskite solar cells prepared by re-dissolution and crystal grain growth via spray coating J. Mater. 4 17636-42 doi: 10.1039/C6TA06718B
    [44]
    Jeong J, et al 2021 Pseudo-halide anion engineering for -FAPbI3 perovskite solar cells Nature 592 381-5 doi: 10.1038/s41586-021-03406-5
    [45]
    Jeong M, et al 2020 Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss Science 369 1615-20 doi: 10.1126/science.abb7167
    [46]
    Jiang Y, Leyden M R, Qiu L, Wang S, Ono L K, Wu Z, Juarez-Perez E J, Qi Y 2018 Combination of hybrid CVD and cation exchange for upscaling cs-substituted mixed cation perovskite solar cells with high efficiency and stability Adv. Funct. 28 1703835 doi: 10.1002/adfm.201703835
    [47]
    Jiang Y, et al 2019 NegligiblePbwaste and upscalable perovskite deposition technology for highoperationalstability perovskite solar modules Adv. Energy Mater. 9 1803047 doi: 10.1002/aenm.201803047
    [48]
    Jung E H, Jeon N J, Park E Y, Moon C S, Shin T J, Yang T Y, Noh J H, Seo J 2019 Efficient, stable and scalable perovskite solar cells using poly (3-hexylthiophene) Nature 567 511-5 doi: 10.1038/s41586-019-1036-3
    [49]
    Kim M, et al 2022 Conformal quantum dot-SnO2 layers as electron transporters for efficient perovskite solar cells Science 375 302-6 doi: 10.1126/science.abh1885
    [50]
    Kim M, et al 2019 Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells Joule 3 2179-92 doi: 10.1016/j.joule.2019.06.014
    [51]
    Kwon H-C, Ma S, Yun S-C, Jang G, Yang H, Moon J 2020 A nanopillar-structured perovskite-based efficient semitransparent solar module for power-generating window applications J. Mater. 8 1457-68 doi: 10.1039/C9TA11892F
    [52]
    Liao H-C, et al 2017 Enhanced efficiency of hotcast largearea planar perovskite solar cells/modules having controlled chloride incorporation Adv. Energy Mater. 7 1601660 doi: 10.1002/aenm.201601660
    [53]
    Liu Z, et al 2020 A holistic approach to interface stabilization for efficient perovskite solar modules with over 2000-hour operational stability Nat. Energy 5 596-604 doi: 10.1038/s41560-020-0653-2
    [54]
    Lou L, Liu T, Xiao J, Xiao S, Long X, Zheng S, Yang S 2019 Controlling apparent coordinated solvent number in the perovskite intermediate phase film for developing largearea perovskite solar modules Energy Technol. 8 1900972 doi: 10.1002/ente.201900972
    [55]
    NREL 2022 Best Research-Cell Efficiency Chart (available at: https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies-rev220630.pdf)(Accessed October 2022)
    [56]
    Priyadarshi A, Haur L J, Murray P, Fu D, Kulkarni S, Xing G, Sum T C, Mathews N, Mhaisalkar S G 2016 A large area (70 cm2 monolithic perovskite solar module with a high efficiency and stability Energy Environ. Sci. 9 3687-92 doi: 10.1039/C6EE02693A
    [57]
    Ren A, et al 2020 Efficient perovskite solar modules with minimized nonradiative recombination and local carrier transport losses Joule 4 1263-77 doi: 10.1016/j.joule.2020.04.013
    [58]
    Seo J, Park S, Chan Kim Y, Jeon N J, Noh J H, Yoon S C, Seok S I 2014 Benefits of very thin PCBM and LiF layers for solution-processed p-i-n perovskite solar cells Energy Environ. Sci. 7 2642-6 doi: 10.1039/C4EE01216J
    [59]
    Smith I C, Hoke E T, Solis-Ibarra D, McGehee M D, Karunadasa H I 2014 A layered hybrid perovskite solar-cell absorber with enhanced moisture stability Angew. Chem., Int. Ed. Engl. 53 11232-5 doi: 10.1002/anie.201406466
    [60]
    Thi Kim C M, Atourki L, Ouafi M, Hashmi S G 2021 A synopsis of progressive transition in precursor inks development for metal halide perovskites-based photovoltaic technology J. Mater. 9 26650-68 doi: 10.1039/D1TA06556D
    [61]
    Wang F, Geng W, Zhou Y, Fang H H, Tong C J, Loi M A, Liu L-M, Zhao N 2016 Phenylalkylamine passivation of organolead halide perovskites enabling high-efficiency and air-stable photovoltaic cells Adv. Mater. 28 9986-92 doi: 10.1002/adma.201603062
    [62]
    Yang M, et al 2017 Perovskite ink with wide processing window for scalable high-efficiency solar cells Nat. Energy 2 1-9 doi: 10.1038/nenergy.2017.38
    [63]
    Yao K, Wang X, Xu Y-X, Li F 2015 A general fabrication procedure for efficient and stable planar perovskite solar cells: morphological and interfacial control by in-situ-generated layered perovskite Nano Energy 18 165-75 doi: 10.1016/j.nanoen.2015.10.010
    [64]
    Zhou Y, Wang F, Cao Y, Wang J-P, Fang H-H, Loi M A, Zhao N, Wong C-P 2017 Benzylamine-treated wide-bandgap perovskite with high thermal-photostability and photovoltaic performance Adv. Energy Mater. 7 1701048 doi: 10.1002/aenm.201701048
    [65]
    Agresti A, Pescetelli S, Palma A L, Martn-Garca B, Najafi L, Bellani S, Moreels I, Prato M, Bonaccorso F, Di Carlo A 2019 Two-dimensional material interface engineering for efficient perovskite large-area modules ACS Energy Lett. 4 1862-71 doi: 10.1021/acsenergylett.9b01151
    [66]
    Bi E, et al 2019 Efficient perovskite solar cell modules with high stability enabled by iodide diffusion barriers Joule 3 2748-60 doi: 10.1016/j.joule.2019.07.030
    [67]
    Bu T, et al 2022 Modulating crystal growth of formamidinium-caesium perovskites for over 200 cm2 photovoltaic sub-modules Nat. Energy 7 528-36 doi: 10.1038/s41560-022-01039-0
    [68]
    Castriotta L A, Fuentes Pineda R, Babu V, Spinelli P, Taheri B, Matteocci F, Brunetti F, Wojciechowski K, Di Carlo A 2021 Light-stable methylammonium-free inverted flexible perovskite solar modules on PET exceeding 10.5% on a 15.7 cm2 active area ACS Appl. Mater. 13 29576-84 doi: 10.1021/acsami.1c05506
    [69]
    Gao W, Chao L, Li M, Xia Y, Ran C, Chen Y 2022 Ternary halogen doping for efficient and stable air-processed all-inorganic perovskite solar cells Sol. RRL 6 2200457 doi: 10.1002/solr.202200457
    [70]
    Grancini G, et al 2017 One-year stable perovskite solar cells by 2D/3D interface engineering Nat. Commun. 8 1-8 doi: 10.1038/ncomms15684
    [71]
    Huang Z, et al 2021 Releasing nanocapsules for highthroughput printing of stable perovskite solar cells Adv. Energy Mater. 11 2101291 doi: 10.1002/aenm.202101291
    [72]
    Liu Y, Cao H, Liu X, Zhu R, Tao T, Sun J 2021 Fabricating efficient and stable quasi-3D and 3D/2D perovskite solar cells with 2D-sheets connected by inorganic type ionic-bond Nanotechnology 32 355201 doi: 10.1088/1361-6528/ac0028
    [73]
    Mei A, et al 2020 Stabilizing perovskite solar cells to IEC61215:2016 standards with over 9 000-h operational tracking Joule 4 2646-60 doi: 10.1016/j.joule.2020.09.010
    [74]
    Paek S, et al 2020 Molecular design and operational stability: toward stable 3D/2D perovskite interlayers Adv. Sci. 7 2001014 doi: 10.1002/advs.202001014
    [75]
    Qiu L, Liu Z, Ono L K, Jiang Y, Son D Y, Hawash Z, He S, Qi Y 2018 Scalable fabrication of stable high efficiency perovskite solar cells and modules utilizing room temperature sputtered SnO2 electron transport layer Adv. Funct. 29 1806779 doi: 10.1002/adfm.201806779
    [76]
    Ro M, et al 2021 Coevaporated formamidinium lead iodide based perovskites with 1000 h constant stability for fully textured monolithic perovskite/silicon tandem solar cells Adv. Energy Mater. 11 2101460 doi: 10.1002/aenm.202101460
    [77]
    Snchez S, et al 2022 Thermally controlled growth of photoactive fapbi3 films for highly stable perovskite solar cells Energy Environ. Sci. 15 3862-76 doi: 10.1039/D2EE01196D
    [78]
    Xiao K, et al 2020 All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1cm2 using surface-anchoring zwitterionic antioxidant Nat. Energy 5 870-80 doi: 10.1038/s41560-020-00705-5
    [79]
    Yang N, et al 2020 An in situ cross-linked 1D/3D perovskite heterostructure improves the stability of hybrid perovskite solar cells for over 3000 h operation Energy Environ. Sci. 13 4344-52 doi: 10.1039/D0EE01736A
    [80]
    Yang Z, et al 2021 Slot-die coating large-area formamidinium-cesium perovskite film for efficient and stable parallel solar module Sci. Adv. 7 eabg3749 doi: 10.1126/sciadv.abg3749
    [81]
    Zhang Y, et al 2020 The synergism of DMSO and diethyl ether for highly reproducible and efficient MA0.5FA0.5PbI3 perovskite solar cells Adv. Energy Mater. 10 2001300 doi: 10.1002/aenm.202001300
    [82]
    Deng Y, Xu S, Chen S, Xiao X, Zhao J, Huang J 2021 Defect compensation in formamidinium-caesium perovskites for highly efficient solar mini-modules with improved photostability Nat. Energy 6 633-41 doi: 10.1038/s41560-021-00831-8
    [83]
    Chen H, et al 2022 Quantum-size-tuned heterostructures enable efficient and stable inverted perovskite solar cells Nat. Photon. 16 352-8 doi: 10.1038/s41566-022-00985-1
    [84]
    Bu T, et al 2021 Lead halide-templated crystallization of methylamine-free perovskite for efficient photovoltaic modules Science 372 1327-32 doi: 10.1126/science.abh1035
    [85]
    Azmi R, et al 2022 Damp heat-stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions Science 376 73-77 doi: 10.1126/science.abm5784
    [86]
    Zhan Y, Yang F, Chen W, Chen H, Shen Y, Li Y, Li Y 2021 Elastic lattice and excess charge carrier manipulation in 1D-3D perovskite solar cells for exceptionally long-term operational stability Adv. Mater. 33 e2105170 doi: 10.1002/adma.202105170
    [87]
    Mahmud M A, et al 2019 Doublesided surface passivation of 3D perovskite film for highefficiency mixeddimensional perovskite solar cells Adv. Funct. 30 1907962 doi: 10.1002/adfm.201907962
    [88]
    He M, Liang J, Zhang Z, Qiu Y, Deng Z, Xu H, Chen C C 2020 Compositional optimization of a 2D-3D heterojunction interface for 22.6% efficient and stable planar perovskite solar cells J. Mater. 8 25831-41 doi: 10.1039/D0TA09209F
    [89]
    Kaneko R, Kanda H, Shibayama N, Sugawa K, Otsuki J, Islam A, Nazeeruddin M K 2021 Gradient 1D/3D perovskite bilayer using 4tertbutylpyridinium cation for efficient and stable perovskite solar cells Sol. RRL 5 2000791 doi: 10.1002/solr.202000791
    [90]
    Ma C, et al 2016 2D/3D perovskite hybrids as moisture-tolerant and efficient light absorbers for solar cells Nanoscale 8 18309-14 doi: 10.1039/C6NR04741F
    [91]
    Cho K T, et al 2018 Selective growth of layered perovskites for stable and efficient photovoltaics Energy Environ. Sci. 11 952-9 doi: 10.1039/C7EE03513F
    [92]
    Bai Y, Xiao S, Hu C, Zhang T, Meng X, Lin H, Yang Y, Yang S 2017 Dimensional engineering of a graded 3D-2D halide perovskite interface enables ultrahigh voc enhanced stability in the p-i-n photovoltaics Adv. Energy Mater. 7 1701038 doi: 10.1002/aenm.201701038
    [93]
    Wei M, et al 2020 Combining efficiency and stability in mixed tin-lead perovskite solar cells by capping grains with an ultrathin 2D layer Adv. Mater. 32 e1907058 doi: 10.1002/adma.201907058
    [94]
    Li M H, et al 2018 Highly efficient 2D/3D hybrid perovskite solar cells via low-pressure vapor-assisted solution process Adv. Mater. 30 e1801401 doi: 10.1002/adma.201801401
    [95]
    Lin D, et al 2019 Stable and scalable 3D-2D planar heterojunction perovskite solar cells via vapor deposition Nano Energy 59 619-25 doi: 10.1016/j.nanoen.2019.03.014
    [96]
    La-Placa M-G, Gil-Escrig L, Guo D, Palazon F, Savenije T J, Sessolo M, Bolink H J 2019 Vacuum-deposited 2D/3D perovskite heterojunctions ACS Energy Lett. 4 2893-901 doi: 10.1021/acsenergylett.9b02224
    [97]
    Jang Y-W, Lee S, Yeom K M, Jeong K, Choi K, Choi M, Noh J H 2021 Intact 2D/3D halide junction perovskite solar cells via solid-phase in-plane growth Nat. Energy 6 63-71 doi: 10.1038/s41560-020-00749-7
    [98]
    Zhao D, et al 2022 Efficient and stable 3D/2D perovskite solar cells through vertical heterostructures with (BA)4AgBiBr8 nanosheets Adv. Mater. 34 2204661 doi: 10.1002/adma.202204661
    [99]
    Zheng Y, Yang X, Su R, Wu P, Gong Q, Zhu R 2020 Highperformance CsPbIxBr3-x allinorganic perovskite solar cells with efficiency over 18% via spontaneous interfacial manipulation Adv. Funct. 30 2000457 doi: 10.1002/adfm.202000457
    [100]
    Xu X, Qian W, Wang J, Yang J, Chen J, Xiao S, Ge Y, Yang S 2021 Sequential growth of 2D/3D double-layer perovskite films with superior x-ray detection performance Adv. Sci. 8 e2102730 doi: 10.1002/advs.202102730
    [101]
    Liu C, et al 2021 Tuning structural isomers of phenylenediammonium to afford efficient and stable perovskite solar cells and modules Nat. Commun. 12 6394 doi: 10.1038/s41467-021-26754-2
    [102]
    Wang Y, Duan C, Lv P, Ku Z, Lu J, Huang F, Cheng Y-B 2021 Printing strategies for scaling-up perovskite solar cells Natl Sci. Rev. 8 nwab075 doi: 10.1093/nsr/nwab075
    [103]
    Jung M, Ji S G, Kim G, Seok S I 2019 Perovskite precursor solution chemistry: from fundamentals to photovoltaic applications Chem. Soc. Rev. 48 2011-38 doi: 10.1039/C8CS00656C
    [104]
    Patidar R, Burkitt D, Hooper K, Richards D, Watson T 2020 Slot-die coating of perovskite solar cells: an overview Mater. Today Commun. 22 100808 doi: 10.1016/j.mtcomm.2019.100808
    [105]
    Eggers H, Schackmar F, Abzieher T, Sun Q, Lemmer U, Vaynzof Y, Richards B S, HernandezSosa G, Paetzold U W 2019 Inkjetprinted micrometerthick perovskite solar cells with large columnar grains Adv. Energy Mater. 10 1903184 doi: 10.1002/aenm.201903184
    [106]
    Li Z, Klein T R, Kim D H, Yang M, Berry J J, van Hest M F A M, Zhu K 2018 Scalable fabrication of perovskite solar cells Nat. Rev. Mater. 3 1-20 doi: 10.1038/natrevmats.2018.17
    [107]
    Tavakoli M M, Gu L, Gao Y, Reckmeier C, He J, Rogach A L, Yao Y, Fan Z 2015 Fabrication of efficient planar perovskite solar cells using a one-step chemical vapor deposition method Sci. Rep. 5 1-9 doi: 10.1038/srep14083
    [108]
    Leyden M R, Lee M V, Raga S R, Qi Y 2015 Large formamidinium lead trihalide perovskite solar cells using chemical vapor deposition with high reproducibility and tunable chlorine concentrations J. Mater. 3 16097-103 doi: 10.1039/C5TA03577E
    [109]
    Luo P, Liu Z, Xia W, Yuan C, Cheng J, Lu Y 2015 Uniform, stable, and efficient planar-heterojunction perovskite solar cells by facile low-pressure chemical vapor deposition under fully open-air conditions ACS Appl. Mater. 7 2708-14 doi: 10.1021/am5077588
    [110]
    Zendehdel M, Yaghoobi Nia N, Paci B, Generosi A, Di Carlo A 2022 Zerowaste scalable blade-spin coating as universal approach for layerbylayer deposition of 3D/2D perovskite films in highefficiency perovskite solar modules Sol. RRL 6 2100637 doi: 10.1002/solr.202100637
    [111]
    Liu Y, et al 2019 Ultrahydrophobic 3D/2D fluoroarene bilayer-based water-resistant perovskite solar cells with efficiencies exceeding 22% Sci. Adv. 5 eaaw2543 doi: 10.1126/sciadv.aaw2543
    [112]
    Cheng Q, Xia H, Li X, Wang B, Li Y, Zhang X, Zhang H, Zhang Y, Zhou H 2022 High-efficiency and stable perovskite solar cells enabled by low-dimensional perovskite surface modifiers Sol. RRL 6 2100805 doi: 10.1002/solr.202100805
    [113]
    Pham N D, Yang Y, Hoang M T, Wang T, Tiong V T, Wilson G J, Wang H 2020 1D pyrrolidinium lead iodide for efficient and stable perovskite solar cells Energy Technol. 8 1900918 doi: 10.1002/ente.201900918
    [114]
    Kim N K, et al 2017 Investigation of thermally induced degradation in CH3NH3PbI3 perovskite solar cells using in-situ synchrotron radiation analysis Sci. Rep. 7 4645 doi: 10.1038/s41598-017-04690-w
    [115]
    Sutanto A A, Szostak R, Drigo N, Queloz V I E, Marchezi P E, Germino J C, Tolentino H C N, Nazeeruddin M K, Nogueira A F, Grancini G 2020 In situ analysis reveals the role of 2D perovskite in preventing thermal-induced degradation in 2D/3D perovskite interfaces Nano Lett. 20 3992-8 doi: 10.1021/acs.nanolett.0c01271
    [116]
    Heo S, et al 2019 Origins of high performance and degradation in the mixed perovskite solar cells Adv. Mater. 31 e1805438 doi: 10.1002/adma.201805438
    [117]
    Wang J, Liu L, Chen S, Qi L, Zhao M, Zhao C, Tang J, Cai X, Lu F, Jiu T 2022 Growth of 1D nanorod perovskite for surface passivation in FAPbI3 perovskite solar cells Small 18 e2104100 doi: 10.1002/smll.202104100
    [118]
    Mahapatra A, Runjhun R, Nawrocki J, Lewinski J, Kalam A, Kumar P, Trivedi S, Tavakoli M M, Prochowicz D, Yadav P 2020 Elucidation of the role of guanidinium incorporation in single-crystalline MAPbI3 perovskite on ion migration and activation energy Phys. Chem. Chem. Phys. 22 11467-73 doi: 10.1039/D0CP01119C
    [119]
    Hoke E T, Slotcavage D J, Dohner E R, Bowring A R, Karunadasa H I, McGehee M D 2015 Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics Chem. Sci. 6 613-7 doi: 10.1039/C4SC03141E
    [120]
    Rong Y, Hu Y, Mei A, Tan H, Saidaminov M I, Seok S I, McGehee M D, Sargent E H, Han H 2018 Challenges for commercializing perovskite solar cells Science 361 eaat8235 doi: 10.1126/science.aat8235
    [121]
    Li N, et al 2019 Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells Nat. Energy 4 408-15 doi: 10.1038/s41560-019-0382-6
    [122]
    Shao Y, et al 2016 Grain boundary dominated ion migration in polycrystalline organic-inorganic halide perovskite films Energy Environ. Sci. 9 1752-9 doi: 10.1039/C6EE00413J
    [123]
    Fu X, et al 2021 Halogen-halogen bonds enable improved long-term operational stability of mixed-halide perovskite photovoltaics Chem 7 3131-43 doi: 10.1016/j.chempr.2021.08.009
    [124]
    He Y, Pan W, Guo C, Zhang H, Wei H, Yang B 2021 3D/2D perovskite single crystals heterojunction for suppressed ions migration in hard xray detection Adv. Funct. 31 2104880 doi: 10.1002/adfm.202104880
    [125]
    Ye X, Cai H, Sun Q, Xu T, Ni J, Li J, Zhang J 2022 Organic spacer engineering in 2D/3D hybrid perovskites for efficient and stable solar cells New J. Chem. 46 2837-45 doi: 10.1039/D1NJ05232B
    [126]
    Niu T, et al 2019 Interfacial engineering at the 2D/3D heterojunction for high-performance perovskite solar cells Nano Lett. 19 7181-90 doi: 10.1021/acs.nanolett.9b02781
    [127]
    Lv Y, Shi Y, Song X, Liu J, Wang M, Wang S, Feng Y, Jin S, Hao C 2018 Bromine doping as an efficient strategy to reduce the interfacial defects in hybrid two-dimensional/three-dimensional stacking perovskite solar cells ACS Appl. Mater. 10 31755-64 doi: 10.1021/acsami.8b09461
    [128]
    Elsenety M M, Antoniadou M, Balis N, Kaltzoglou A, Sygellou L, Stergiou A, Tagmatarchis N, Falaras P 2020 Stability improvement and performance reproducibility enhancement of perovskite solar cells following (FA/MA/Cs)PbI3-xBrx/(CH33SPbI3 dimensionality engineering ACS Appl. Energy Mater. 3 2465-77 doi: 10.1021/acsaem.9b02117
    [129]
    Ono L K, Liu S F, Qi Y 2020 Reducing detrimental defects for high-performance metal halide perovskite solar cells Angew. Chem., Int. Ed. Engl. 59 6676-98 doi: 10.1002/anie.201905521
    [130]
    Zhou L, Su J, Lin Z, Guo X, Ma J, Li T, Zhang J, Chang J, Hao Y 2021 Synergistic interface layer optimization and surface passivation with fluorocarbon molecules toward efficient and stable inverted planar perovskite solar cells Research 2021 1-11 doi: 10.34133/2021/9836752
    [131]
    Long M, Zhang T, Liu M, Chen Z, Wang C, Xie W, Xie F, Chen J, Li G, Xu J 2018 Abnormal synergetic effect of organic and halide ions on the stability and optoelectronic properties of a mixed perovskite via in situ characterizations Adv. Mater. 30 e1801562 doi: 10.1002/adma.201801562
    [132]
    Jiang Q, Zhao Y, Zhang X, Yang X, Chen Y, Chu Z, Ye Q, Li X, Yin Z, You J 2019 Surface passivation of perovskite film for efficient solar cells Nat. Photon. 13 460-6 doi: 10.1038/s41566-019-0398-2
    [133]
    Galagan Y, Di Giacomo F, Gorter H, Kirchner G, de Vries I, Andriessen R, Groen P 2018 Roll-to-roll slot die coated perovskite for efficient flexible solar cells Adv. Energy Mater. 8 1801935 doi: 10.1002/aenm.201801935
    [134]
    Li J, et al 2018 Phase transition control for high-performance blade-coated perovskite solar cells Joule 2 1313-30 doi: 10.1016/j.joule.2018.04.011
    [135]
    Cheng Y, Ding L 2021 Pushing commercialization of perovskite solar cells by improving their intrinsic stability Energy Environ. Sci. 14 3233-55 doi: 10.1039/D1EE00493J
    [136]
    Park N-G, Zhu K 2020 Scalable fabrication and coating methods for perovskite solar cells and solar modules Nat. Rev. Mater. 5 333-50 doi: 10.1038/s41578-019-0176-2
    [137]
    Gao L, Chen L, Huang S, Li X, Yang G 2019 Series and parallel module design for large-area perovskite solar cells ACS Appl. Energy Mater. 2 3851-9 doi: 10.1021/acsaem.9b00531
    [138]
    Kim D H, Whitaker J B, Li Z, van Hest M F A M, Zhu K 2018 Outlook and challenges of perovskite solar cells toward terawatt-scale photovoltaic module technology Joule 2 1437-51 doi: 10.1016/j.joule.2018.05.011
    [139]
    Moon S-J, Yum J-H, Lofgren L, Walter A, Sansonnens L, Benkhaira M, Nicolay S, Bailat J, Ballif C 2015 Laser-scribing patterning for the production of organometallic halide perovskite solar modules IEEE J. Photovolt. 5 1087-92 doi: 10.1109/JPHOTOV.2015.2416913
    [140]
    Wilkinson B, Chang N L, Green M A, Ho-Baillie A W Y 2018 Scaling limits to large area perovskite solar cell efficiency Prog. Photovolt. 26 659-74 doi: 10.1002/pip.3035
    [141]
    Rakocevic L, Mundt L E, Gehlhaar R, Merckx T, Aernouts T, Schubert M C, Glunz S W, Poortmans J 2019 Loss analysis in perovskite photovoltaic modules Sol. RRL 3 1900338 doi: 10.1002/solr.201900338
    [142]
    Kim J Y, et al 2022 In situ formation of ImidazoleBased 2D interlayer for efficient perovskite solar cells and modules Int. J. Energy Res. 46 15419-27 doi: 10.1002/er.8243
    [143]
    Ma X, Pan J, Wang Y, Gao X, Hu M, Ku Z, Ma Y, Huang F, Cheng Y-B, Lu J 2022 Bromide complimented methylammonium-free wide bandgap perovskite solar modules with high efficiency and stability Chem. Eng. J. 445 136626 doi: 10.1016/j.cej.2022.136626
    [144]
    Xu Z, Chen R, Wu Y, He R, Yin J, Lin W, Zheng N 2019 Br-containing alkyl ammonium salt-enabled scalable fabrication of high-quality perovskite films for efficient and stable perovskite modules J. Mater. 7 26849-57 doi: 10.1039/C9TA09101G
    [145]
    Xiao K, et al 2022 Scalable processing for realizing 21.7%-efficient all-perovskite tandem solar modules Science 376 762-7 doi: 10.1126/science.abn7696
    [146]
    Jiang L, Lu J, Raga S R, Sun J, Lin X, Huang W, Huang F, Bach U, Cheng Y-B 2019 Fatigue stability of CH3NH3PbI3 based perovskite solar cells in day/night cycling Nano Energy 58 687-94 doi: 10.1016/j.nanoen.2019.02.005
    [147]
    Razera R A Z, et al 2020 Instability of p-i-n perovskite solar cells under reverse bias J. Mater. 8 242-50 doi: 10.1039/C9TA12032G
  • 加载中

Catalog

    Figures(14)  / Tables(2)

    Article Metrics

    Article Views(715) PDF downloads(72)
    Article Statistics
    Related articles from

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return