Volume 1 Issue 4
December  2022
Turn off MathJax
Article Contents
Chenxi Zheng, Shijun Tang, Fangmei Wen, Jinxue Peng, Wu Yang, Zhongwei Lv, Yongmin Wu, Weiping Tang, Zhengliang Gong, Yong Yang. Reinforced cathode-garnet interface for high-capacity all-solid-state batteries[J]. Materials Futures, 2022, 1(4): 045103. doi: 10.1088/2752-5724/aca110
Citation: Chenxi Zheng, Shijun Tang, Fangmei Wen, Jinxue Peng, Wu Yang, Zhongwei Lv, Yongmin Wu, Weiping Tang, Zhengliang Gong, Yong Yang. Reinforced cathode-garnet interface for high-capacity all-solid-state batteries[J]. Materials Futures, 2022, 1(4): 045103. doi: 10.1088/2752-5724/aca110
Paper •
OPEN ACCESS

Reinforced cathode-garnet interface for high-capacity all-solid-state batteries

© 2022 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory
Materials Futures, Volume 1, Number 4
  • Received Date: 2022-10-24
  • Accepted Date: 2022-11-08
  • Rev Recd Date: 2022-11-04
  • Publish Date: 2022-12-09
  • Garnet-type solid-state electrolytes (SSEs) are particularly attractive in the construction of all-solid-state lithium (Li) batteries due to their high ionic conductivity, wide electrochemical window and remarkable (electro)chemical stability. However, the intractable issues of poor cathode/garnet interface and general low cathode loading hinder their practical application. Herein, we demonstrate the construction of a reinforced cathode/garnet interface by spark plasma sintering, via co-sintering Li6.5La3Zr1.5Ta0.5O12 (LLZTO) electrolyte powder and LiCoO2/LLZTO composite cathode powder directly into a dense dual-layer with 5 wt% Li3BO3 as sintering additive. The bulk composite cathode with LiCoO2/LLZTO cross-linked structure is firmly welded to the LLZTO layer, which optimizes both Li-ion and electron transport. Therefore, the one-step integrated sintering process implements an ultra-low cathode/garnet interfacial resistance of 3.9 cm2 (100 C) and a high cathode loading up to 2.02 mAh cm-2. Moreover, the Li3BO3 reinforced LiCoO2/LLZTO interface also effectively mitigates the strain/stress of LiCoO2, which facilitates the achieving of superior cycling stability. The bulk-type Li|LLZTO|LiCoO2-LLZTO full cell with areal capacity of 0.73 mAh cm-2 delivers capacity retention of 81.7% after 50 cycles at 100 A cm-2. Furthermore, we reveal that non-uniform Li plating/stripping leads to the formation of gaps and finally results in the separation of Li and LLZTO electrolyte during long-term cycling, which becomes the dominant capacity decay mechanism in high-capacity full cells. This work provides insight into the degradation of Li/SSE interface and a strategy to radically improve the electrochemical performance of garnet-based all-solid-state Li batteries.
  • loading
  • Conflict of interest

    The authors declare no conflict of interest.

  • [1]
    Zhao N, Khokhar W, Bi Z, Shi C, Guo X, Fan L Z, Nan C W 2019 Solid garnet batteries Joule 3 1190-9 doi: 10.1016/j.joule.2019.03.019
    [2]
    Manthiram A, Yu X, Wang S 2017 Lithium battery chemistries enabled by solid-state electrolytes Nat. Rev. Mater. 2 16103 doi: 10.1038/natrevmats.2016.103
    [3]
    Gao Y, Sun S, Zhang X, Liu Y, Hu J, Huang Z, Gao M, Pan H 2021 Amorphous duallayer coating: enabling high Liion conductivity of nonsintered garnettype solid electrolyte Adv. Funct. Mater. 31 2009692 doi: 10.1002/adfm.202009692
    [4]
    Xu W, Wang J, Ding F, Chen X, Nasybulin E, Zhang Y, Zhang J G 2014 Lithium metal anodes for rechargeable batteries Energy Environ. Sci. 7 513-37 doi: 10.1039/C3EE40795K
    [5]
    Murugan R, Thangadurai V, Weppner W 2007 Fast lithium ion conduction in garnet-type Li7La3Zr2O12 Angew. Chem., Int. Ed. 46 7778-81 doi: 10.1002/anie.200701144
    [6]
    Shao Y, et al 2018 Drawing a soft interface: an effective interfacial modification strategy for garnet-type solid-state Li batteries ACS Energy Lett. 3 1212-8 doi: 10.1021/acsenergylett.8b00453
    [7]
    Fu K K, Gong Y, Fu Z, Xie H, Yao Y, Liu B, Carter M, Wachsman E, Hu L 2017 Transient behavior of the metal interface in lithium metal-garnet batteries Angew. Chem., Int. Ed. 56 14942-7 doi: 10.1002/anie.201708637
    [8]
    Han X, et al 2017 Negating interfacial impedance in garnet-based solid-state Li metal batteries Nat. Mater. 16 572-9 doi: 10.1038/nmat4821
    [9]
    Huang Y, Chen B, Duan J, Yang F, Wang T, Wang Z, Yang W, Hu C, Luo W, Huang Y 2020 Graphitic carbon nitride (g-C3N4): an interface enabler for solid-state lithium metal batteries Angew. Chem., Int. Ed. 59 3699-704 doi: 10.1002/anie.201914417
    [10]
    Tang S, Chen G, Ren F, Wang H, Yang W, Zheng C, Gong Z, Yang Y 2021 Modifying an ultrathin insulating layer to suppress lithium dendrite formation within garnet solid electrolytes J. Mater. Chem. A 9 3576-83 doi: 10.1039/D0TA11311E
    [11]
    Lee S, Lee K S, Kim S, Yoon K, Han S, Lee M H, Ko Y, Noh J H, Kim W, Kang K 2022 Design of a lithiophilic and electron-blocking interlayer for dendrite-free lithium-metal solid-state batteries Sci. Adv. 8 eabg0153 doi: 10.1126/sciadv.abq0153
    [12]
    Huo H, Chen Y, Li R, Zhao N, Luo J, Pereira da Silva J G, Mcke R, Kaghazchi P, Guo X, Sun X 2020 Design of a mixed conductive garnet/Li interface for dendrite-free solid lithium metal batteries Energy Environ. Sci. 13 127-34 doi: 10.1039/C9EE01903K
    [13]
    Huo H, Chen Y, Zhao N, Lin X, Luo J, Yang X, Liu Y, Guo X, Sun X 2019 In-situ formed Li2CO3-free garnet/Li interface by rapid acid treatment for dendrite-free solid-state batteries Nano Energy 61 119-25 doi: 10.1016/j.nanoen.2019.04.058
    [14]
    Ruan Y, Lu Y, Huang X, Su J, Sun C, Jin J, Wen Z 2019 Acid induced conversion towards a robust and lithiophilic interface for Li-Li7La3Zr2O12 solid-state batteries J. Mater. Chem. A 7 14565-74 doi: 10.1039/C9TA01911A
    [15]
    Duan H, et al 2020 Building an air stable and lithium deposition regulable garnet interface from moderate-temperature conversion chemistry Angew. Chem., Int. Ed. 59 12069-75 doi: 10.1002/anie.202003177
    [16]
    Cai M, Jin J, Xiu T, Song Z, Badding M E, Wen Z 2022 In-situ constructed lithium-salt lithiophilic layer inducing bi-functional interphase for stable LLZO/Li interface Energy Storage Mater. 47 61-69 doi: 10.1016/j.ensm.2022.01.046
    [17]
    Park K, Yu B C, Jung J W, Li Y, Zhou W, Gao H, Son S, Goodenough J B 2016 Electrochemical nature of the cathode interface for a solid-state lithium-ion battery: interface between LiCoO2 and garnet-Li7La3Zr2O12 Chem. Mater. 28 8051-9 doi: 10.1021/acs.chemmater.6b03870
    [18]
    Ren Y, Liu T, Shen Y, Lin Y, Nan C W 2016 Chemical compatibility between garnet-like solid state electrolyte Li6.75La3Zr1.75Ta0.25O12 and major commercial lithium battery cathode materials J. Materiomics 2 256-64 doi: 10.1016/j.jmat.2016.04.003
    [19]
    Yu C Y, Choi J, Han J, Lee E, Kim J-H 2022 Phase stability of garnet solid-electrolyte interfacing with various cathodes in all solid-state batteries J. Electrochem. Soc. 169 020520 doi: 10.1149/1945-7111/ac4e5b
    [20]
    Zhang L, Zhuang Q, Zheng R, Wang Z, Sun H, Arandiyan H, Wang Y, Liu Y, Shao Z 2022 Recent advances of Li7La3Zr2O12-based solid-state lithium batteries towards high energy density Energy Storage Mater. 49 299-338 doi: 10.1016/j.ensm.2022.04.026
    [21]
    Mcke R, Finsterbusch M, Kaghazchi P, Fattakhova-Rohlfing D, Guillon O 2021 Modelling electro-chemical induced stresses in all-solid-state batteries: anisotropy effects in cathodes and cell design optimisation J. Power Sources 489 229430 doi: 10.1016/j.jpowsour.2020.229430
    [22]
    Ihrig M, et al 2022 Study of LiCoO2/Li7La3Zr2O12: taInterface degradation in all-solid-state lithium batteries ACS Appl. Mater. Interfaces 14 11288-99 doi: 10.1021/acsami.1c22246
    [23]
    Zhu Y, He X, Mo Y 2016 First principles study on electrochemical and chemical stability of solid electrolyte-electrode interfaces in all-solid-state Li-ion batteries J. Mater. Chem. A 4 3253-66 doi: 10.1039/C5TA08574H
    [24]
    Menetrier M, Saadoune I, Levasseur S, Delmas C 1999 The insulator-metal transition upon lithium deintercalation from LiCoO2: electronic properties and 7Li NMR study J. Mater. Chem. 9 1135-40 doi: 10.1039/a900016j
    [25]
    Antolini E, Ferretti M 1995 Synthesis and thermal stability of LiCoO2 J. Solid State Chem. 117 1-7 doi: 10.1006/jssc.1995.1238
    [26]
    Hubaud A A, Schroeder D J, Ingram B J, Okasinski J S, Vaughey J T 2015 Thermal expansion in the garnet-type solid electrolyte (Li7-xAlx/3)La3Zr2O12 as a function of Al content J. Alloys Compd. 644 804-7 doi: 10.1016/j.jallcom.2015.05.067
    [27]
    Cheng E J, Taylor N J, Wolfenstine J, Sakamoto J 2018 Elastic properties of lithium cobalt oxide (LiCoO2) J. Asian Ceram. Soc. 5 113-7 doi: 10.1016/j.jascer.2017.03.001
    [28]
    Sastre J, Chen X, Aribia A, Tiwari A N, Romanyuk Y E 2020 Fast charge transfer across the Li7La3Zr2O12 solid electrolyte/LiCoO2 cathode interface enabled by an interphase-engineered all-thin-film architecture ACS Appl. Mater. Interfaces 12 36196-207 doi: 10.1021/acsami.0c09777
    [29]
    Ren Y, Wachsman E D 2022 All solid-state Li/LLZO/LCO battery enabled by alumina interfacial coating J. Electrochem. Soc. 169 040529 doi: 10.1149/1945-7111/ac644f
    [30]
    Kato T, Hamanaka T, Yamamoto K, Hirayama T, Sagane F, Motoyama M, Iriyama Y 2014 In-situ Li7La3Zr2O12/LiCoO2 interface modification for advanced all-solid-state battery J. Power Sources 260 292-8 doi: 10.1016/j.jpowsour.2014.02.102
    [31]
    Han F, Yue J, Chen C, Zhao N, Fan X, Ma Z, Gao T, Wang F, Guo X, Wang C 2018 Interphase engineering enabled all-ceramic lithium battery Joule 2 497-508 doi: 10.1016/j.joule.2018.02.007
    [32]
    Guo H, Shen F, Guo W, Zeng D, Yin Y, Han X 2021 LiCoO2/Li6.75La3Zr1.75Nb0.25O12 interface modification enables all-solid-state battery Mater. Lett. 301 130302 doi: 10.1016/j.matlet.2021.130302
    [33]
    Balasubramaniam R, Nam C W, Aravindan V, Eum D, Kang K, Lee Y S 2021 Interfacial engineering in a cathode composite based on garnettype solidstate LiIon battery with high voltage cycling ChemElectroChem 8 570-6 doi: 10.1002/celc.202001116
    [34]
    Tsai C-L, et al 2019 A garnet structure-based all-solid-state Li battery without interface modification: resolving incompatibility issues on positive electrodes Sustain. Energy Fuels 3 280-91 doi: 10.1039/C8SE00436F
    [35]
    Liu T, Zhang Y, Zhang X, Wang L, Zhao S X, Lin Y H, Shen Y, Luo J, Li L, Nan C W 2018 Enhanced electrochemical performance of bulk type oxide ceramic lithium batteries enabled by interface modification J. Mater. Chem. A 6 4649-57 doi: 10.1039/C7TA06833F
    [36]
    Liu T, Ren Y, Shen Y, Zhao S X, Lin Y, Nan C W 2016 Achieving high capacity in bulk-type solid-state lithium ion battery based on Li6.75La3Zr1.75Ta0.25O12 electrolyte: interfacial resistance J. Power Sources 324 349-57 doi: 10.1016/j.jpowsour.2016.05.111
    [37]
    Liu T, Zhang Y, Chen R, Zhao S X, Lin Y, Nan C W, Shen Y 2017 Non-successive degradation in bulk-type all-solid-state lithium battery with rigid interfacial contact Electrochem. Commun. 79 1-4 doi: 10.1016/j.elecom.2017.03.016
    [38]
    Kim K J, Rupp J L M 2020 All ceramic cathode composite design and manufacturing towards low interfacial resistance for garnet-based solid-state lithium batteries Energy Environ. Sci. 13 4930-45 doi: 10.1039/D0EE02062A
    [39]
    Ihrig M, et al 2021 Low temperature sintering of fully inorganic all-solid-state batteriesimpact of interfaces on full cell performance J. Power Sources 482 228905 doi: 10.1016/j.jpowsour.2020.228905
    [40]
    Bram M, et al 2020 Application of electric currentassisted sintering techniques for the processing of advanced materials Adv. Eng. Mater. 22 2000051 doi: 10.1002/adem.202000051
    [41]
    Laptev A M, Zheng H, Bram M, Finsterbusch M, Guillon O 2019 High-pressure field assisted sintering of half-cell for all-solid-state battery Mater. Lett. 247 155-8 doi: 10.1016/j.matlet.2019.03.109
    [42]
    Feng W, Lai Z, Dong X, Li P, Wang Y, Xia Y 2020 Garnet-based all-ceramic lithium battery enabled by Li2985B0005OCl solder iScience 23 101071 doi: 10.1016/j.isci.2020.101071
    [43]
    Il’ina E, Pershina S, Antonov B, Pankratov A 2021 Impact of Li3BO3 Addition on solid electrode-solid electrolyte interface in all-solid-state batteries Materials 14 7099 doi: 10.3390/ma14227099
    [44]
    Han X, et al 2021 All solid thick oxide cathodes based on low temperature sintering for high energy solid batteries Energy Environ. Sci. 14 5044-56 doi: 10.1039/D1EE01494C
    [45]
    Kim K H, Iriyama Y, Yamamoto K, Kumazaki S, Asaka T, Tanabe K, Fisher C A J, Hirayama T, Murugan R, Ogumi Z 2011 Characterization of the interface between LiCoO2 and Li7La3Zr2O12 in an all-solid-state rechargeable lithium battery J. Power Sources 196 764-7 doi: 10.1016/j.jpowsour.2010.07.073
    [46]
    Takahara H, Takeuchi T, Tabuchi M, Kageyama H, Kobayashi Y, Kurisu Y, Kondo S, Kanno R 2004 All-solid-state lithium secondary battery using oxysulfide glassaddition and coating of carbon to positive electrode J. Electrochem. Soc. 151 A1539-44 doi: 10.1149/1.1784172
    [47]
    Carson G A, Nassir M H, Langell M A 1996 Epitaxial growth of Co3O4 on CoO (100) J. Vac. Sci. Technol. A 14 1637-42 doi: 10.1116/1.580310
    [48]
    Xu J, Wu J, Luo L, Chen X, Qin H, Dravid V, Mi S, Jia C 2015 Co3O4 nanocubes homogeneously assembled on few-layer graphene for high energy density lithium-ion batteries J. Power Sources 274 816-22 doi: 10.1016/j.jpowsour.2014.10.106
    [49]
    Ohta S, Kobayashi T, Seki J, Asaoka T 2012 Electrochemical performance of an all-solid-state lithium ion battery with garnet-type oxide electrolyte J. Power Sources 202 332-5 doi: 10.1016/j.jpowsour.2011.10.064
  • mfaca110supp1.pdf
  • 加载中

Catalog

    Figures(6)  / Tables(1)

    Article Metrics

    Article Views(307) PDF downloads(84)
    Article Statistics
    Related articles from

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return