Volume 3 Issue 1
March  2024
Turn off MathJax
Article Contents
Shi Xiao-Lei, Sun Shuai, Wu Ting, Tu Jian, Zhou Zhiming, Liu Qingfeng, Chen Zhi-Gang. Weavable thermoelectrics: advances, controversies, and future developments[J]. Materials Futures, 2024, 3(1): 012103. doi: 10.1088/2752-5724/ad0ca9
Citation: Shi Xiao-Lei, Sun Shuai, Wu Ting, Tu Jian, Zhou Zhiming, Liu Qingfeng, Chen Zhi-Gang. Weavable thermoelectrics: advances, controversies, and future developments[J]. Materials Futures, 2024, 3(1): 012103. doi: 10.1088/2752-5724/ad0ca9
Topical Review •
OPEN ACCESS

Weavable thermoelectrics: advances, controversies, and future developments

© 2024 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory
Materials Futures, Volume 3, Number 1
  • Received Date: 2023-10-11
  • Accepted Date: 2023-11-13
  • Rev Recd Date: 2023-10-29
  • Publish Date: 2024-01-03
  • Owing to the capability of the conversion between thermal energy and electrical energy and their advantages of light weight, compactness, noise-free operation, and precision reliability, wearable thermoelectrics show great potential for diverse applications. Among them, weavable thermoelectrics, a subclass with inherent flexibility, wearability, and operability, find utility in harnessing waste heat from irregular heat sources. Given the rapid advancements in this field, a timely review is essential to consolidate the progress and challenge. Here, we provide an overview of the state of weavable thermoelectric materials and devices in wearable smart textiles, encompassing mechanisms, materials, fabrications, device structures, and applications from recent advancements, challenges, and prospects. This review can serve as a valuable reference for researchers in the field of flexible wearable thermoelectric materials and devices and their applications.
  • loading
  • [1]
    Shi X-L, Zou J, Chen Z-G 2020 Advanced thermoelectric design: from materials and structures to devices Chem. Rev. 120 7399-515 doi: 10.1021/acs.chemrev.0c00026
    [2]
    Zheng X F, Liu C X, Yan Y Y, Wang Q 2014 A review of thermoelectrics researchrecent developments and potentials for sustainable and renewable energy applications Renew. Sustain. Energy Rev. 32 486-503 doi: 10.1016/j.rser.2013.12.053
    [3]
    Chen W-Y, Shi X-L, Zou J, Chen Z-G 2022 Thermoelectric coolers: progress, challenges, and opportunities Small Methods 6 2101235 doi: 10.1002/smtd.202101235
    [4]
    Xiao Y, Zhao L-D 2020 Seeking new, highly effective thermoelectrics Science 367 1196 doi: 10.1126/science.aaz9426
    [5]
    Yang Q, Yang S, Qiu P, Peng L, Wei T-R, Zhang Z, Shi X, Chen L 2022 Flexible thermoelectrics based on ductile semiconductors Science 377 854-8 doi: 10.1126/science.abq0682
    [6]
    Jiang B, et al 2021 High-entropy-stabilized chalcogenides with high thermoelectric performance Science 371 830-4 doi: 10.1126/science.abe1292
    [7]
    Zheng Y, Slade T J, Hu L, Tan X Y, Luo Y, Luo Z-Z, Xu J, Yan Q, Kanatzidis M G 2021 Defect engineering in thermoelectric materials: what have we learned? Chem. Soc. Rev. 50 9022-54 doi: 10.1039/D1CS00347J
    [8]
    Tan G, Zhao L D, Kanatzidis M G 2016 Rationally designing high-performance bulk thermoelectric materials Chem. Rev. 116 12123-49 doi: 10.1021/acs.chemrev.6b00255
    [9]
    Shi X-L, Chen W-Y, Tao X, Zou J, Chen Z-G 2020 Rational structure design and manipulation advance SnSe thermoelectrics Mater. Horiz. 7 3065-96 doi: 10.1039/D0MH00954G
    [10]
    Hooshmand Zaferani S, Ghomashchi R, Vashaee D 2019 Strategies for engineering phonon transport in Heusler thermoelectric compounds Renew. Sustain. Energy Rev. 112 158-69 doi: 10.1016/j.rser.2019.05.051
    [11]
    He J, Tritt T M 2017 Advances in thermoelectric materials research: looking back and moving forward Science 357 eaak9997 doi: 10.1126/science.aak9997
    [12]
    Hong M, Li M, Wang Y, Shi X-L, Chen Z-G 2023 Advances in versatile GeTe thermoelectrics from materials to devices Adv. Mater. 35 2208272 doi: 10.1002/adma.202208272
    [13]
    Chen W-Y, Shi X-L, Zou J, Chen Z-G 2022 Thermoelectric coolers for on-chip thermal management: materials, design, and optimization Mater. Sci. Eng. R 151 100700 doi: 10.1016/j.mser.2022.100700
    [14]
    He R, Schierning G, Nielsch K 2018 Thermoelectric devices: a review of devices, architectures, and contact optimization Adv. Mater. Technol. 3 1700256 doi: 10.1002/admt.201700256
    [15]
    Zoui M A, Bentouba S, Stocholm J G, Bourouis M 2020 A review on thermoelectric generators: progress and applications Energies 13 3606 doi: 10.3390/en13143606
    [16]
    Patil P, Patil A 2013 Review on thermoelectric devices Int. J. Emerg. Technol. Adv. Eng. 3 681-8
    [17]
    Jaziri N, Boughamoura A, Mller J, Mezghani B, Tounsi F, Ismail M 2020 A comprehensive review of thermoelectric generators: technologies and common applications Energy Rep. 6 264-87 doi: 10.1016/j.egyr.2019.12.011
    [18]
    Biswas K, Ren Z, Grin Y, Lee K H, Mori T, Chen L 2022 Thermoelectric materials science and technology toward applications Appl. Phys. Lett. 121 070401 doi: 10.1063/5.0115322
    [19]
    Mukherjee M, Srivastava A, Singh A K 2022 Recent advances in designing thermoelectric materials J. Mater. Chem. C 10 12524-55 doi: 10.1039/D2TC02448A
    [20]
    Zhou X, Yan Y, Lu X, Zhu H, Han X, Chen G, Ren Z 2018 Routes for high-performance thermoelectric materials Mater. Today 21 974-88 doi: 10.1016/j.mattod.2018.03.039
    [21]
    Luo Y, Li M, Yuan H, Liu H, Fang Y 2023 Predicting lattice thermal conductivity via machine learning: a mini review npj Comput. Mater. 9 4 doi: 10.1038/s41524-023-00964-2
    [22]
    Wang Y, Hu Y-J, Bocklund B, Shang S-L, Zhou B-C, Liu Z-K, Chen L-Q 2018 First-principles thermodynamic theory of Seebeck coefficients Phys. Rev. B 98 224101 doi: 10.1103/PhysRevB.98.224101
    [23]
    Cao T, Shi X-L, Li M, Hu B, Chen W, Liu W-D, Lyu W, MacLeod J, Chen Z-G 2023 Advances in bismuth-telluride-based thermoelectric devices: progress and challenges eScience 3 100122 doi: 10.1016/j.esci.2023.100122
    [24]
    Du Y, Shen S Z, Cai K, Casey P S 2012 Research progress on polymer-inorganic thermoelectric nanocomposite materials Prog. Polym. Sci. 37 820-41 doi: 10.1016/j.progpolymsci.2011.11.003
    [25]
    Elsaid K, Sayed E T, Yousef B A A, Rabaia M K H, Abdelkareem M A, Olabi A G 2020 Recent progress on the utilization of waste heat for desalination: a review Energy Convers. Manage. 221 113105 doi: 10.1016/j.enconman.2020.113105
    [26]
    Zhang D, Lim W Y S, Duran S S F, Loh X J, Suwardi A 2022 Additive manufacturing of thermoelectrics: emerging trends and outlook ACS Energy Lett. 7 720-35 doi: 10.1021/acsenergylett.1c02553
    [27]
    Hu B, Shi X-L, Zou J, Chen Z-G 2022 Thermoelectrics for medical applications: progress, challenges, and perspectives Chem. Eng. J. 437 135268 doi: 10.1016/j.cej.2022.135268
    [28]
    Zhang Q, Deng K, Wilkens L, Reith H, Nielsch K 2022 Micro-thermoelectric devices Nat. Electron. 5 333-47 doi: 10.1038/s41928-022-00776-0
    [29]
    Pecunia V, Silva S R P, Phillips J D, Artegiani E, Romeo A, Shim H, Park J, Kim J H, Yun J S, Welch G C 2023 Roadmap on energy harvesting materials J. Phys. Mater. 6 042501 doi: 10.1088/2515-7639/acc550
    [30]
    Liu W-D, Wang D-Z, Liu Q, Zhou W, Shao Z, Chen Z-G 2020 High-performance GeTe-based thermoelectrics: from materials to devices Adv. Energy Mater. 10 2000367 doi: 10.1002/aenm.202000367
    [31]
    Zhang X, Bu Z, Lin S, Chen Z, Li W, Pei Y 2020 GeTe thermoelectrics Joule 4 986-1003 doi: 10.1016/j.joule.2020.03.004
    [32]
    Chen Z-G, Shi X, Zhao L-D, Zou J 2018 High-performance SnSe thermoelectric materials: progress and future challenge Prog. Mater. Sci. 97 283-346 doi: 10.1016/j.pmatsci.2018.04.005
    [33]
    Zhou C, et al 2021 Polycrystalline SnSe with a thermoelectric figure of merit greater than the single crystal Nat. Mater. 20 1378-84 doi: 10.1038/s41563-021-01064-6
    [34]
    Liu D, et al 2023 Lattice plainification advances highly effective SnSe crystalline thermoelectrics Science 380 841-6 doi: 10.1126/science.adg7196
    [35]
    Shi X-L, Liu W-D, Li M, Sun Q, Xu S-D, Du D, Zou J, Chen Z-G 2022 A solvothermal synthetic environmental design for high-performance SnSe-based thermoelectric materials Adv. Energy Mater. 12 2200670 doi: 10.1002/aenm.202200670
    [36]
    Shi X-L, Tao X, Zou J, Chen Z-G 2020 High-performance thermoelectric SnSe: aqueous synthesis, innovations, and challenges Adv. Sci. 7 1902923 doi: 10.1002/advs.201902923
    [37]
    Liu W-D, Yang L, Chen Z-G 2020 Cu2Se thermoelectrics: property, methodology, and device Nano Today 35 100938 doi: 10.1016/j.nantod.2020.100938
    [38]
    Long Z, Wang Y, Sun X, Li Y, Zeng Z, Zhang L, Chen H 2023 Band engineering of the second phase to reach high thermoelectric performance in Cu2Se-based composite material Adv. Mater. 35 2210345 doi: 10.1002/adma.202210345
    [39]
    Zhou Z, et al 2023 Compositing effects for high thermoelectric performance of Cu2Se-based materials Nat. Commun. 14 2410 doi: 10.1038/s41467-023-38054-y
    [40]
    Shittu S, Li G, Zhao X, Ma X 2020 Review of thermoelectric geometry and structure optimization for performance enhancement Appl. Energy 268 115075 doi: 10.1016/j.apenergy.2020.115075
    [41]
    Lee G, Kim C S, Kim S, Kim Y J, Choi H, Cho B J 2019 Flexible heatsink based on a phase-change material for a wearable thermoelectric generator Energy 179 12-18 doi: 10.1016/j.energy.2019.05.018
    [42]
    Sun T, Zhou B, Zheng Q, Wang L, Jiang W, Snyder G J 2020 Stretchable fabric generates electric power from woven thermoelectric fibers Nat. Commun. 11 572 doi: 10.1038/s41467-020-14399-6
    [43]
    Ding T, Chan K H, Zhou Y, Wang X-Q, Cheng Y, Li T, Ho G W 2020 Scalable thermoelectric fibers for multifunctional textile-electronics Nat. Commun. 11 6006 doi: 10.1038/s41467-020-19867-7
    [44]
    Kim M-K, Kim M-S, Lee S, Kim C, Kim Y-J 2014 Wearable thermoelectric generator for harvesting human body heat energy Smart Mater. Struct. 23 105002 doi: 10.1088/0964-1726/23/10/105002
    [45]
    Chen G, Li Y, Bick M, Chen J 2020 Smart textiles for electricity generation Chem. Rev. 120 3668-720 doi: 10.1021/acs.chemrev.9b00821
    [46]
    Weng W, Yang J, Zhang Y, Li Y, Yang S, Zhu L, Zhu M 2020 A route toward smart system integration: from fiber design to device construction Adv. Mater. 32 1902301 doi: 10.1002/adma.201902301
    [47]
    Peng Y, Cui Y 2020 Advanced textiles for personal thermal management and energy Joule 4 724-42 doi: 10.1016/j.joule.2020.02.011
    [48]
    Seshadri D R, Drummond C, Craker J, Rowbottom J R, Voos J E 2017 Wearable devices for sports: new integrated technologies allow coaches, physicians, and trainers to better understand the physical demands of athletes in real time IEEE Pulse 8 38-43 doi: 10.1109/MPUL.2016.2627240
    [49]
    Tian R, Liu Y, Koumoto K, Chen J 2019 Body heat powers future electronic skins Joule 3 1399-403 doi: 10.1016/j.joule.2019.03.011
    [50]
    Hu R, et al 2020 Emerging materials and strategies for personal thermal management Adv. Energy Mater. 10 1903921 doi: 10.1002/aenm.201903921
    [51]
    Patel S, Park H, Bonato P, Chan L, Rodgers M 2012 A review of wearable sensors and systems with application in rehabilitation J. Neuroeng. Rehabil. 9 21 doi: 10.1186/1743-0003-9-21
    [52]
    Cao T, Shi X-L, Chen Z-G 2023 Advances in the design and assembly of flexible thermoelectric device Prog. Mater. Sci. 131 101003 doi: 10.1016/j.pmatsci.2022.101003
    [53]
    Jia Y, et al 2021 Wearable thermoelectric materials and devices for self-powered electronic systems Adv. Mater. 33 2102990 doi: 10.1002/adma.202102990
    [54]
    Zeng W, Shu L, Li Q, Chen S, Wang F, Tao X-M 2014 Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications Adv. Mater. 26 5310-36 doi: 10.1002/adma.201400633
    [55]
    Dong K, Peng X, Wang Z L 2020 Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence Adv. Mater. 32 1902549 doi: 10.1002/adma.201902549
    [56]
    Gao M, Wang P, Jiang L, Wang B, Yao Y, Liu S, Chu D, Cheng W, Lu Y 2021 Power generation for wearable systems Energy Environ. Sci. 14 2114-57 doi: 10.1039/D0EE03911J
    [57]
    Liu R, Wang Z L, Fukuda K, Someya T 2022 Flexible self-charging power sources Nat. Rev. Mater. 7 870-86 doi: 10.1038/s41578-022-00441-0
    [58]
    Nozariasbmarz A, et al 2020 Review of wearable thermoelectric energy harvesting: from body temperature to electronic systems Appl. Energy 258 114069 doi: 10.1016/j.apenergy.2019.114069
    [59]
    Wang Y, Yang L, Shi X, Shi X, Chen L, Dargusch M, Zou J, Chen Z-G 2019 Flexible thermoelectric materials and generators: challenges and innovations Adv. Mater. 31 1807916 doi: 10.1002/adma.201807916
    [60]
    Li C, Jiang F, Liu C, Liu P, Xu J 2019 Present and future thermoelectric materials toward wearable energy harvesting Appl. Mater. Today 15 543-57 doi: 10.1016/j.apmt.2019.04.007
    [61]
    Ding J, Zhao W, Jin W, Di C-A, Zhu D 2021 Advanced thermoelectric materials for flexible cooling application Adv. Funct. Mater. 31 2010695 doi: 10.1002/adfm.202010695
    [62]
    Sun T, Wang L, Jiang W 2022 Pushing thermoelectric generators toward energy harvesting from the human body: challenges and strategies Mater. Today 57 121-45 doi: 10.1016/j.mattod.2022.06.001
    [63]
    Wang Y, Yang L, Zheng Y, Wang D, Deng Y 2023 Flexible thermoelectrics: from energy harvesting to human-machine interaction J. Appl. Phys. 133 110901 doi: 10.1063/5.0135663
    [64]
    Yang S, Qiu P, Chen L, Shi X 2021 Recent developments in flexible thermoelectric devices Small Sci. 1 2100005 doi: 10.1002/smsc.202100005
    [65]
    Liu X, Wang Z 2019 Printable thermoelectric materials and applications Front. Mater. 6 88 doi: 10.3389/fmats.2019.00088
    [66]
    Li X, Cai K, Gao M, Du Y, Shen S 2021 Recent advances in flexible thermoelectric films and devices Nano Energy 89 106309 doi: 10.1016/j.nanoen.2021.106309
    [67]
    Zhang L, Shi X-L, Yang Y-L, Chen Z-G 2021 Flexible thermoelectric materials and devices: from materials to applications Mater. Today 46 62-108 doi: 10.1016/j.mattod.2021.02.016
    [68]
    Bahk J-H, Fang H, Yazawa K, Shakouri A 2015 Flexible thermoelectric materials and device optimization for wearable energy harvesting J. Mater. Chem. C 3 10362-74 doi: 10.1039/C5TC01644D
    [69]
    Chen Y, Zhao Y, Liang Z 2015 Solution processed organic thermoelectrics: towards flexible thermoelectric modules Energy Environ. Sci. 8 401-22 doi: 10.1039/C4EE03297G
    [70]
    Wu H, Huang Y, Xu F, Duan Y, Yin Z 2016 Energy harvesters for wearable and stretchable electronics: from flexibility to stretchability Adv. Mater. 28 9881-919 doi: 10.1002/adma.201602251
    [71]
    Xu S, Shi X-L, Dargusch M, Di C, Zou J, Chen Z-G 2021 Conducting polymer-based flexible thermoelectric materials and devices: from mechanisms to applications Prog. Mater. Sci. 121 100840 doi: 10.1016/j.pmatsci.2021.100840
    [72]
    Russ B, Glaudell A, Urban J J, Chabinyc M L, Segalman R A 2016 Organic thermoelectric materials for energy harvesting and temperature control Nat. Rev. Mater. 1 16050 doi: 10.1038/natrevmats.2016.50
    [73]
    Bharti M, Singh A, Samanta S, Aswal D K 2018 Conductive polymers for thermoelectric power generation Prog. Mater. Sci. 93 270-310 doi: 10.1016/j.pmatsci.2017.09.004
    [74]
    Wang H, Yu C 2019 Organic thermoelectrics: materials preparation, performance optimization, and device integration Joule 3 53-80
    [75]
    Xu X, Zhou J, Chen J 2020 Thermal transport in conductive polymer-based materials Adv. Funct. Mater. 30 1904704 doi: 10.1002/adfm.201904704
    [76]
    Xu Y, Jia Y, Liu P, Jiang Q, Hu D, Ma Y 2021 Poly(3,4-ethylenedioxythiophene) (PEDOT) as promising thermoelectric materials and devices Chem. Eng. J. 404 126552 doi: 10.1016/j.cej.2020.126552
    [77]
    Prunet G, Pawula F, Fleury G, Cloutet E, Robinson A J, Hadziioannou G, Pakdel A 2021 A review on conductive polymers and their hybrids for flexible and wearable thermoelectric applications Mater. Today Phys. 18 100402 doi: 10.1016/j.mtphys.2021.100402
    [78]
    Deng L, Chen G 2021 Recent progress in tuning polymer oriented microstructures for enhanced thermoelectric performance Nano Energy 80 105448 doi: 10.1016/j.nanoen.2020.105448
    [79]
    Han S, Chen S, Jiao F 2021 Insulating polymers for flexible thermoelectric composites: a multi-perspective review Compos. Commun. 28 100914 doi: 10.1016/j.coco.2021.100914
    [80]
    Li M, Bai Z, Chen X, Liu C-C, Xu J-K, Lan X-Q, Jiang F-X 2022 Thermoelectric transport in conductive poly(3,4-ethylenedioxythiophene) Chin. Phys. B 31 027201 doi: 10.1088/1674-1056/ac4230
    [81]
    Masoumi S, O’Shaughnessy S, Pakdel A 2022 Organic-based flexible thermoelectric generators: from materials to devices Nano Energy 92 106774 doi: 10.1016/j.nanoen.2021.106774
    [82]
    Liu Z, Chen G 2020 Advancing flexible thermoelectric devices with polymer composites Adv. Mater. Technol. 5 2000049 doi: 10.1002/admt.202000049
    [83]
    Liu W-D, Yu Y, Dargusch M, Liu Q, Chen Z-G 2021 Carbon allotrope hybrids advance thermoelectric development and applications Renew. Sustain. Energy Rev. 141 110800 doi: 10.1016/j.rser.2021.110800
    [84]
    Blackburn J L, Ferguson A J, Cho C, Grunlan J C 2018 Carbon-nanotube-based thermoelectric materials and devices Adv. Mater. 30 1704386 doi: 10.1002/adma.201704386
    [85]
    Zong P-A, Liang J, Zhang P, Wan C, Wang Y, Koumoto K 2020 Graphene-based thermoelectrics ACS Appl. Energy Mater. 3 2224-39 doi: 10.1021/acsaem.9b02187
    [86]
    Massetti M, Jiao F, Ferguson A J, Zhao D, Wijeratne K, Wrger A, Blackburn J L, Crispin X, Fabiano S 2021 Unconventional thermoelectric materials for energy harvesting and sensing applications Chem. Rev. 121 12465-547 doi: 10.1021/acs.chemrev.1c00218
    [87]
    Zhang Y, Zhang Q, Chen G 2020 Carbon and carbon composites for thermoelectric applications Carbon Energy 2 408-36 doi: 10.1002/cey2.68
    [88]
    Hu B, Shi X-L, Cao T, Li M, Chen W, Liu W-D, Lyu W, Tesfamichael T, Chen Z-G 2023 Advances in flexible thermoelectric materials and devices fabricated by magnetron sputtering Small Sci. 2300061 doi: 10.1002/smsc.202300061
    [89]
    Yan W, et al 2020 Thermally drawn advanced functional fibers: new frontier of flexible electronics Mater. Today 35 168-94 doi: 10.1016/j.mattod.2019.11.006
    [90]
    Kanahashi K, Pu J, Takenobu T 2020 2D materials for large-area flexible thermoelectric devices Adv. Energy Mater. 10 1902842 doi: 10.1002/aenm.201902842
    [91]
    Ding D, Sun F, Xia F, Tang Z 2021 Design of flexible inorganic thermoelectric devices for decrease of heat loss Nano Res. 14 2090-104 doi: 10.1007/s12274-020-3195-9
    [92]
    Liu E, Negm A, Howlader M M R 2021 Thermoelectric generation via tellurene for wearable applications: recent advances, research challenges, and future perspectives Mater. Today Energy 20 100625 doi: 10.1016/j.mtener.2020.100625
    [93]
    Wang Y, Lin P, Lou Q, Zhang Z, Huang S, Lu Y, He J 2021 Design guidelines for chalcogenide-based flexible thermoelectric materials Mater. Adv. 2 2584-93 doi: 10.1039/D0MA01018A
    [94]
    Chen H, Wei T-R, Zhao K, Qiu P, Chen L, He J, Shi X 2021 Room-temperature plastic inorganic semiconductors for flexible and deformable electronics InfoMat 3 22-35 doi: 10.1002/inf2.12149
    [95]
    Chen K, Wang L, Luo Z, Xu X, Li Y, Liu S, Zhao Q 2023 Flexible thermoelectrics based on plastic inorganic semiconductors Adv. Mater. Technol. 8 2300189 doi: 10.1002/admt.202300189
    [96]
    Loke G, Yan W, Khudiyev T, Noel G, Fink Y 2020 Recent progress and perspectives of thermally drawn multimaterial fiber electronics Adv. Mater. 32 1904911 doi: 10.1002/adma.201904911
    [97]
    Peterson K A, Thomas E M, Chabinyc M L 2020 Thermoelectric properties of semiconducting polymers Ann. Rev. Mater. Res. 50 551-74 doi: 10.1146/annurev-matsci-082219-024716
    [98]
    Lee S, Kim S, Pathak A, Tripathi A, Qiao T, Lee Y, Lee H, Woo H Y 2020 Recent progress in organic thermoelectric materials and devices Macromol. Res. 28 531-52 doi: 10.1007/s13233-020-8116-y
    [99]
    Sun K, Zhang S, Li P, Xia Y, Zhang X, Du D, Isikgor F H, Ouyang J 2015 Review on application of PEDOTs and PEDOT:PSS in energy conversion and storage devices J. Mater. Sci. 26 4438-62 doi: 10.1007/s10854-015-2895-5
    [100]
    Zhao W, Ding J, Zou Y, Di C-A, Zhu D 2020 Chemical doping of organic semiconductors for thermoelectric applications Chem. Soc. Rev. 49 7210-28 doi: 10.1039/D0CS00204F
    [101]
    Cao T, Shi X-L, Zou J, Chen Z-G 2021 Advances in conducting polymer-based thermoelectric materials and devices Microstructures 1 2021007 doi: 10.20517/microstructures.2021.06
    [102]
    Chen J, et al 2012 Superlow thermal conductivity 3D carbon nanotube network for thermoelectric applications ACS Appl. Mater. Interfaces 4 81-86 doi: 10.1021/am201330f
    [103]
    Zheng Z-H, et al 2023 Harvesting waste heat with flexible Bi2Te3 thermoelectric thin film Nat. Sustain. 6 180-91 doi: 10.1038/s41893-022-01003-6
    [104]
    Lu Y, et al 2023 Staggered-layer-boosted flexible Bi2Te3 films with high thermoelectric performance Nat. Nanotechnol. 18 1281-8 doi: 10.1038/s41565-023-01457-5
    [105]
    Zhu M, Shi X-L, Wu H, Liu Q, Chen Z-G 2023 Advances in Ag2S-based thermoelectrics for wearable electronics: progress and perspective Chem. Eng. J. 475 146194 doi: 10.1016/j.cej.2023.146194
    [106]
    Wu H, Shi X-L, Duan J, Liu Q, Chen Z-G 2023 Advances in Ag2Se-based thermoelectrics from materials to applications Energy Environ. Sci. 16 1870-906 doi: 10.1039/D3EE00378G
    [107]
    Wei T-R, Qiu P, Zhao K, Shi X, Chen L 2023 Ag2Q-based (Q = S, Se, Te) silver chalcogenide thermoelectric materials Adv. Mater. 35 2110236 doi: 10.1002/adma.202110236
    [108]
    Wu H, et al 2023 Optimized thermoelectric performance and plasticity of ductile semiconductor Ag2S0.5Se0.5via dual-phase engineering Adv. Energy Mater. 13 2302551 doi: 10.1002/aenm.202302551
    [109]
    Tang X, Li Z, Liu W, Zhang Q, Uher C 2022 A comprehensive review on Bi2Te3-based thin films: thermoelectrics and beyond Interdiscip. Mater. 1 88-115 doi: 10.1002/idm2.12009
    [110]
    Min H, Shuai S, Wanyu L, Meng L, Weidi L, Xiao-Lei S, Zhi-Gang C 2023 Advances in printing techniques for thermoelectric materials and devices Soft Sci. 3 29 doi: 10.20517/ss.2023.20
    [111]
    Zeng M, Zavanelli D, Chen J, Saeidi-Javash M, Du Y, LeBlanc S, Snyder G J, Zhang Y 2022 Printing thermoelectric inks toward next-generation energy and thermal devices Chem. Soc. Rev. 51 485-512 doi: 10.1039/D1CS00490E
    [112]
    Wang L, Fu X, He J, Shi X, Chen T, Chen P, Wang B, Peng H 2020 Application challenges in fiber and textile electronics Adv. Mater. 32 1901971 doi: 10.1002/adma.201901971
    [113]
    Lee J, Llerena Zambrano B, Woo J, Yoon K, Lee T 2020 Recent advances in 1D stretchable electrodes and devices for textile and wearable electronics: materials, fabrications, and applications Adv. Mater. 32 1902532 doi: 10.1002/adma.201902532
    [114]
    Shi X-L, Chen W-Y, Zhang T, Zou J, Chen Z-G 2021 Fiber-based thermoelectrics for solid, portable, and wearable electronics Energy Environ. Sci. 14 729-64 doi: 10.1039/D0EE03520C
    [115]
    Chen W-Y, Shi X-L, Zou J, Chen Z-G 2020 Wearable fiber-based thermoelectrics from materials to applications Nano Energy 81 105684 doi: 10.1016/j.nanoen.2020.105684
    [116]
    Zhang L, Lin S, Hua T, Huang B, Liu S, Tao X 2018 Fiber-based thermoelectric generators: materials, device structures, fabrication, characterization, and applications Adv. Energy Mater. 8 1700524 doi: 10.1002/aenm.201700524
    [117]
    Huang L, Lin S, Xu Z, Zhou H, Duan J, Hu B, Zhou J 2020 Fiber-based energy conversion devices for human-body energy harvesting Adv. Mater. 32 1902034 doi: 10.1002/adma.201902034
    [118]
    Zhang P, Deng B, Sun W, Zheng Z, Liu W 2021 Fiber-based thermoelectric materials and devices for wearable electronics Micromachines 12 869 doi: 10.3390/mi12080869
    [119]
    Wang L, Zhang K 2020 Textile-based thermoelectric generators and their applications Energy Environ. Mater. 3 67-79 doi: 10.1002/eem2.12045
    [120]
    Shi J, et al 2020 Smart textile-integrated microelectronic systems for wearable applications Adv. Mater. 32 1901958 doi: 10.1002/adma.201901958
    [121]
    Fang Y, Chen G, Bick M, Chen J 2021 Smart textiles for personalized thermoregulation Chem. Soc. Rev. 50 9357-74 doi: 10.1039/D1CS00003A
    [122]
    Park K T, Lee T, Ko Y, Cho Y S, Park C R, Kim H 2021 High-performance thermoelectric fabric based on a stitched carbon nanotube fiber ACS Appl. Mater. Interfaces 13 6257-64 doi: 10.1021/acsami.0c20252
    [123]
    Park K T, et al 2022 Highly integrated, wearable carbon-nanotube-yarn-based thermoelectric generators achieved by selective inkjet-printed chemical doping Adv. Energy Mater. 12 2200256 doi: 10.1002/aenm.202200256
    [124]
    Zheng Y, et al 2020 Carbon nanotube yarn based thermoelectric textiles for harvesting thermal energy and powering electronics J. Mater. Chem. A 8 2984-94 doi: 10.1039/C9TA12494B
    [125]
    Culebras M, Ren G, O’Connell S, Vilatela J J, Collins M N 2020 Lignin doped carbon nanotube yarns for improved thermoelectric efficiency Adv. Sustain. Syst. 4 2000147 doi: 10.1002/adsu.202000147
    [126]
    Heriyanto A D M, Cho Y, Okamoto N, Abe R, Pandey M, Benten H, Nakamura M 2023 Influence of halogen elements in organic salts on n-type doping of CNT yarn for thermoelectric applications RSC Adv. 13 22226-33 doi: 10.1039/D3RA03755J
    [127]
    Xia X, Zhang Q, Zhou W, Mei J, Xiao Z, Xi W, Wang Y, Xie S, Zhou W 2021 Integrated, highly flexible, and tailorable thermoelectric type temperature detectors based on a continuous carbon nanotube fiber Small 17 2102825 doi: 10.1002/smll.202102825
    [128]
    Xiao-Gang X, Qiang Z, Wen-Bin Z, Zhuo-Jian X, Wei X, Yan-Chun W, Wei-Ya Z 2021 Highly flexible and excellent performance continuous carbon nanotube fibrous thermoelectric modules for diversified applications Chin. Phys. B 30 078801 doi: 10.1088/1674-1056/abff33
    [129]
    Komatsu N, Ichinose Y, Dewey O S, Taylor L W, Trafford M A, Yomogida Y, Wehmeyer G, Pasquali M, Yanagi K, Kono J 2021 Macroscopic weavable fibers of carbon nanotubes with giant thermoelectric power factor Nat. Commun. 12 4931 doi: 10.1038/s41467-021-25208-z
    [130]
    Sun T, Chen S, Sun H, Li J, Wu X, Jin L, Wang L, Jiang W 2021 Wavy-structured thermoelectric device integrated with high-performance n-type carbon nanotube fiber prepared by multistep treatment for energy harvesting Compos. Commun. 27 100871 doi: 10.1016/j.coco.2021.100871
    [131]
    Wen N, et al 2020 Highly conductive, ultra-flexible and continuously processable PEDOT:PSS fibers with high thermoelectric properties for wearable energy harvesting Nano Energy 78 105361 doi: 10.1016/j.nanoen.2020.105361
    [132]
    Wen N, Fan Z, Yang S, Zhao Y, Li C, Cong T, Huang H, Zhang J, Guan X, Pan L 2021 High-performance stretchable thermoelectric fibers for wearable electronics Chem. Eng. J. 426 130816 doi: 10.1016/j.cej.2021.130816
    [133]
    Pan Y, Song Y, Jiang Q, Jia Y, Liu P, Song H, Liu G 2022 Solvent treatment of wet-spinning PEDOT:PSS fiber towards wearable thermoelectric energy harvesting Synth. Met. 283 116969 doi: 10.1016/j.synthmet.2021.116969
    [134]
    Liu L, Chen J, Liang L, Deng L, Chen G 2022 A PEDOT:PSS thermoelectric fiber generator Nano Energy 102 107678 doi: 10.1016/j.nanoen.2022.107678
    [135]
    Gao Q, Wang M, Kang X, Zhu C, Ge M 2020 Continuous wet-spinning of flexible and water-stable conductive PEDOT: PSS/PVA composite fibers for wearable sensors Compos. Commun. 17 134-40 doi: 10.1016/j.coco.2019.12.001
    [136]
    Lund A, Tian Y, Darabi S, Mller C 2020 A polymer-based textile thermoelectric generator for wearable energy harvesting J. Power Sources 480 228836 doi: 10.1016/j.jpowsour.2020.228836
    [137]
    Reid D O, Smith R E, Garcia-Torres J, Watts J F, Crean C 2019 Solvent treatment of wet-spun PEDOT: PSS fibers for fiber-based wearable pH sensing Sensors 19 4213 doi: 10.3390/s19194213
    [138]
    Kim Y, Lund A, Noh H, Hofmann A I, Craighero M, Darabi S, Zokaei S, Park J I, Yoon M-H, Mller C 2020 Robust PEDOT:PSS wet-spun fibers for thermoelectric textiles Macromol. Mater. Eng. 305 1900749 doi: 10.1002/mame.201900749
    [139]
    Wang X-Y, Feng G-Y, Li M-J, Ge M-Q 2019 Effect of PEDOT:PSS content on structure and properties of PEDOT:PSS/poly(vinyl alcohol) composite fiber Polym. Bull. 76 2097-111 doi: 10.1007/s00289-018-2459-y
    [140]
    Feng D, Wang P, Wang M, Zhu C, Gao Q, Shen M 2021 A facile route toward continuous wet-spinning of PEDOT: PSS fibers with enhanced strength and electroconductivity Fiber Polym. 22 1491-5 doi: 10.1007/s12221-021-0172-1
    [141]
    Yuk H, Lu B, Lin S, Qu K, Xu J, Luo J, Zhao X 2020 3D printing of conducting polymers Nat. Commun. 11 1604 doi: 10.1038/s41467-020-15316-7
    [142]
    Ruan L, Zhao Y, Chen Z, Zeng W, Wang S, Liang D, Zhao J 2020 A self-powered flexible thermoelectric sensor and its application on the basis of the hollow PEDOT:PSS fiber Polymers 12 553 doi: 10.3390/polym12030553
    [143]
    Sarabia-Riquelme R, Shahi M, Brill J W, Weisenberger M C 2019 Effect of drawing on the electrical, thermoelectrical, and mechanical properties of wet-spun PEDOT:PSS fibers ACS Appl. Polym. Mater. 1 2157-67 doi: 10.1021/acsapm.9b00425
    [144]
    Ge R, Dong X, Sun L, Hu L, Liu T, Zeng W, Luo B, Jiang X, Jiang Y, Zhou Y 2020 Meters-long, sewable, wearable conductive polymer wires for thermoelectric applications J. Mater. Chem. C 8 1571-6 doi: 10.1039/C9TC06079K
    [145]
    Chen Z, Guan X, Wen N, Pan L, Fan Z 2023 Construction of flexible, self-supporting, and in-plane anisotropic PEDOT:PSS thermoelectric films via the wet-winding approach ACS Appl. Polym. Mater. 5 2905-16 doi: 10.1021/acsapm.3c00122
    [146]
    Sarabia-Riquelme R, Andrews R, Anthony J E, Weisenberger M C 2020 Highly conductive wet-spun PEDOT:PSS fibers for applications in electronic textiles J. Mater. Chem. C 8 11618-30 doi: 10.1039/D0TC02558E
    [147]
    Wang Y, Gao C, Zhao C, Chen Z, Ye H, Shen M, Gao Q, Zhu J, Chen T 2023 Engineering PEDOT:PSS/PEG fibers with a textured surface toward comprehensive personal thermal management ACS Appl. Mater. Interfaces 15 17175-87 doi: 10.1021/acsami.2c23269
    [148]
    Fu Y, Kang S, Gu H, Tan L, Gao C, Fang Z, Dai S, Lin C 2023 Superflexible inorganic Ag2Te0.6S0.4 fiber with high thermoelectric performance Adv. Sci. 10 2207642 doi: 10.1002/advs.202207642
    [149]
    Kruppa K, Maor I I, Steinbach F, Beilin V, Mann-Lahav M, Wolf M, Grader G S, Feldhoff A 2023 Electrospun Ca3Co4xO9+ nanofibers and nanoribbons: microstructure and thermoelectric properties J. Am. Ceram. Soc. 106 1170-81 doi: 10.1111/jace.18842
    [150]
    Zheng Y, et al 2022 Durable, stretchable and washable inorganic-based woven thermoelectric textiles for power generation and solid-state cooling Energy Environ. Sci. 15 2374-85 doi: 10.1039/D1EE03633E
    [151]
    Zhang J, et al 2020 Single-crystal SnSe thermoelectric fibers via laser-induced directional crystallization: from 1D fibers to multidimensional fabrics Adv. Mater. 32 2002702 doi: 10.1002/adma.202002702
    [152]
    He X, Li B, Cai J, Zhang H, Li C, Li X, Yu J, Wang L, Qin X 2023 A waterproof, environment-friendly, multifunctional, and stretchable thermoelectric fabric for continuous self-powered personal health signal collection at high humidity SusMat 3 709-20 doi: 10.1002/sus2.155
    [153]
    Meng C, Qian Y, He J, Dong X 2020 Wet-spinning fabrication of multi-walled carbon nanotubes reinforced poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) hybrid fibers for high-performance fiber-shaped supercapacitor J. Mater. Sci. 31 19293-308 doi: 10.1007/s10854-020-04464-7
    [154]
    Liu J, Zhu Z, Zhou W, Liu P, Liu P, Liu G, Xu J, Jiang Q, Jiang F 2020 Flexible metal-free hybrid hydrogel thermoelectric fibers J. Mater. Sci. 55 8376-87 doi: 10.1007/s10853-020-04382-3
    [155]
    He X, Gu J, Hao Y, Zheng M, Wang L, Yu J, Qin X 2022 Continuous manufacture of stretchable and integratable thermoelectric nanofiber yarn for human body energy harvesting and self-powered motion detection Chem. Eng. J. 450 137937 doi: 10.1016/j.cej.2022.137937
    [156]
    Zheng Y, Liu H, Chen X, Qiu Y, Zhang K 2022 Wearable thermoelectric-powered textile-based temperature and pressure dual-mode sensor arrays Org. Electron. 106 106535 doi: 10.1016/j.orgel.2022.106535
    [157]
    Wu B, Wei W, Guo Y, Hou Yip W, Kang Tay B, Hou C, Zhang Q, Li Y, Wang H 2023 Stretchable thermoelectric generators with enhanced output by infrared reflection for wearable application Chem. Eng. J. 453 139749 doi: 10.1016/j.cej.2022.139749
    [158]
    Zhang C, et al 2021 Highly stretchable carbon nanotubes/polymer thermoelectric fibers Nano Lett. 21 1047-55 doi: 10.1021/acs.nanolett.0c04252
    [159]
    Jang D, Park K T, Lee S-S, Kim H 2022 Highly stretchable three-dimensional thermoelectric fabrics exploiting woven structure deformability and passivation-induced fiber elasticity Nano Energy 97 107143 doi: 10.1016/j.nanoen.2022.107143
    [160]
    Xu C, Yang S, Li P, Wang H, Li H, Liu Z 2022 Wet-spun PEDOT:PSS/CNT composite fibers for wearable thermoelectric energy harvesting Compos. Commun. 32 101179 doi: 10.1016/j.coco.2022.101179
    [161]
    Li H, Liu Y, Liu S, Li P, Zhang C, He C 2023 Wet-spun flexible carbon nanotubes/polyaniline fibers for wearable thermoelectric energy harvesting Composites A 166 107386 doi: 10.1016/j.compositesa.2022.107386
    [162]
    Lee T, Lee J W, Park K T, Kim J-S, Park C R, Kim H 2021 Nanostructured inorganic chalcogenide-carbon nanotube yarn having a high thermoelectric power factor at low temperature ACS Nano 15 13118-28 doi: 10.1021/acsnano.1c02508
    [163]
    Liu Y, Liu P, Jiang Q, Jiang F, Liu J, Liu G, Liu C, Du Y, Xu J 2021 Organic/inorganic hybrid for flexible thermoelectric fibers Chem. Eng. J. 405 126510 doi: 10.1016/j.cej.2020.126510
    [164]
    Xu H, Guo Y, Wu B, Hou C, Zhang Q, Li Y, Wang H 2020 Highly integrable thermoelectric fiber ACS Appl. Mater. Interfaces 12 33297-304 doi: 10.1021/acsami.0c09446
    [165]
    Akram R, Khan J S, Qamar Z, Rafique S, Hussain M, Kayani F B 2022 Ultra-low thermal conductivity and thermoelectric properties of polymer-mixed Bi2Te3 nanofibers by electrospinning J. Mater. Sci. 57 3309-21 doi: 10.1007/s10853-021-06750-z
    [166]
    Yang J, Jia Y, Liu Y, Liu P, Wang Y, Li M, Jiang F, Lan X, Xu J 2021 PEDOT:PSS/PVA/Te ternary composite fibers toward flexible thermoelectric generator Compos. Commun. 27 100855 doi: 10.1016/j.coco.2021.100855
    [167]
    Yang L, et al 2021 High thermoelectric figure of merit of porous Si nanowires from 300 to 700K Nat. Commun. 12 3926 doi: 10.1038/s41467-021-24208-3
    [168]
    Park D, Kim M, Kim J 2021 High-performance PANI-coated Ag2Se nanowire and PVDF thermoelectric composite film for flexible energy harvesting J. Alloys Compd. 884 161098 doi: 10.1016/j.jallcom.2021.161098
    [169]
    Lv H, Liang L, Zhang Y, Deng L, Chen Z, Liu Z, Wang H, Chen G 2021 A flexible spring-shaped architecture with optimized thermal design for wearable thermoelectric energy harvesting Nano Energy 88 106260 doi: 10.1016/j.nanoen.2021.106260
    [170]
    Wang K, Hou C, Zhang Q, Li Y, Wang H 2022 Highly integrated fiber-shaped thermoelectric generators with radially heterogeneous interlayers Nano Energy 95 107055 doi: 10.1016/j.nanoen.2022.107055
    [171]
    Mytafides C K, Tzounis L, Karalis G, Formanek P, Paipetis A S 2021 High-power all-carbon fully printed and wearable SWCNT-based organic thermoelectric generator ACS Appl. Mater. Interfaces 13 11151-65 doi: 10.1021/acsami.1c00414
    [172]
    Hasan M N, Nayan N, Nafea M, Muthalif A G A, Ali M M S 2022 Novel structural design of wearable thermoelectric generator with vertically oriented thermoelements Energy 259 125032 doi: 10.1016/j.energy.2022.125032
    [173]
    Hou Y, Yang Y, Wang Z, Li Z, Zhang X, Bethers B, Xiong R, Guo H, Yu H 2022 Whole fabric-assisted thermoelectric devices for wearable electronics Adv. Sci. 9 2103574 doi: 10.1002/advs.202103574
    [174]
    Jing Y, et al 2023 Scalable manufacturing of a durable, tailorable, and recyclable multifunctional woven thermoelectric textile system Energy Environ. Sci. 16 4334-44 doi: 10.1039/D3EE01031G
    [175]
    Kim W-G, Kim D, Lee H M, Choi Y-K 2022 Wearable fabric-based hybrid energy harvester from body motion and body heat Nano Energy 100 107485 doi: 10.1016/j.nanoen.2022.107485
    [176]
    He X, Zhang X, Zhang H, Li C, Luo Q, Li X, Wang L, Qin X 2022 Facile fabrication of stretchable and multifunctional thermoelectric composite fabrics with strain-enhanced self-powered sensing performance Compos. Commun. 35 101275 doi: 10.1016/j.coco.2022.101275
    [177]
    Rousti A M, Maji T, Drew C, Kumar J, Christodouleas D C 2021 High-performance thermoelectric fabric based on PEDOT:tosylate/CuI Appl. Mater. Today 25 101180 doi: 10.1016/j.apmt.2021.101180
    [178]
    Vinodhini J, Shalini V, Harish S, Ikeda H, Archana J, Navaneethan M 2023 Solvent-assisted synthesis of Ag2Se and Ag2S nanoparticles on carbon fabric for enhanced thermoelectric performance J. Colloid Interface Sci. 651 436-47 doi: 10.1016/j.jcis.2023.07.090
    [179]
    Liu S, Zhang M, Kong J, Li H, He C 2023 Flexible, durable, green thermoelectric composite fabrics for textile-based wearable energy harvesting and self-powered sensing Compos. Sci. Technol. 243 110245 doi: 10.1016/j.compscitech.2023.110245
    [180]
    Serrano-Claumarchirant J F, Nasiri M A, Cho C, Cantarero A, Culebras M, Gmez C M 2023 Textile-based thermoelectric generator produced via electrochemical polymerization Adv. Mater. Interfaces 10 2202105 doi: 10.1002/admi.202202105
    [181]
    Liu Y, Wang X, Hou S, Wu Z, Wang J, Mao J, Zhang Q, Liu Z, Cao F 2023 Scalable-produced 3D elastic thermoelectric network for body heat harvesting Nat. Commun. 14 3058 doi: 10.1038/s41467-023-38852-4
    [182]
    Zhang X, Li T-T, Jiang Q, Wu L, Ren H-T, Peng H-K, Shiu B-C, Wang Y, Lou C-W, Lin J-H 2020 Worm-like PEDOT:Tos coated polypropylene fabrics via low-temperature interfacial polymerization for high-efficiency thermoelectric textile Prog. Org. Coat. 149 105919 doi: 10.1016/j.porgcoat.2020.105919
    [183]
    He X, Shi J, Hao Y, He M, Cai J, Qin X, Wang L, Yu J 2022 Highly stretchable, durable, and breathable thermoelectric fabrics for human body energy harvesting and sensing Carbon Energy 4 621-32 doi: 10.1002/cey2.186
    [184]
    Zhang D, et al 2023 3D-printed porous thermoelectrics for in situ energy harvesting ACS Energy Lett. 8 332-8 doi: 10.1021/acsenergylett.2c02425
    [185]
    Selestina A, Sudha L, Vijay V, Karunagaran N, Navaneethan M 2023 Enhanced thermoelectric power factor of Se-doped SnS nanostructures for flexible thermoelectric applications J. Mater. Sci. 34 255 doi: 10.1007/s10854-022-09489-8
    [186]
    Shi T, et al 2023 Modifying carbon fiber fabric for flexible thermoelectric energy conversion Appl. Surf. Sci. 610 155479 doi: 10.1016/j.apsusc.2022.155479
    [187]
    Xing S-C, Yu C, Gao C-F 2021 Analysis of a hollow fiber in thermoelectric materials considering interfacial thermal resistance J. Appl. Math. Mech. 101 e202000158 doi: 10.1002/zamm.202000158
    [188]
    Zhang L-S, Yang B, Lin S-P, Hua T, Tao X-M 2020 Predicting performance of fiber thermoelectric generator arrays in wearable electronic applications Nano Energy 76 105117 doi: 10.1016/j.nanoen.2020.105117
    [189]
    Zhu P, Wang Y, Wang Y, Mao H, Zhang Q, Deng Y 2020 Flexible 3D architectured piezo/thermoelectric bimodal tactile sensor array for E-skin application Adv. Energy Mater. 10 2001945 doi: 10.1002/aenm.202001945
    [190]
    Sun S, Shi X-L, Li M, Wu T, Yin L, Wang D, Liu Q, Chen Z-G 2023 Ultrafast and cost-effective fabrication of high-performance carbon-based flexible thermoelectric hybrid films and their devices ACS Appl. Mater. Interfaces 15 25650-60 doi: 10.1021/acsami.3c05226
    [191]
    Sun S, Shi X-L, Liu W-D, Wu T, Wang D, Wu H, Zhang X, Wang Y, Liu Q, Chen Z-G 2022 Cheap, large-scale, and high-performance graphite-based flexible thermoelectric materials and devices with supernormal industry feasibility ACS Appl. Mater. Interfaces 14 8066-75 doi: 10.1021/acsami.1c24649
    [192]
    Zheng Z-H, et al 2022 Achieving ultrahigh power factor in n-type Ag2Se thin films by carrier engineering Mater. Today Energy 24 100933 doi: 10.1016/j.mtener.2021.100933
    [193]
    Zheng Z-H, et al 2021 In-situ growth of high-performance (Ag, Sn) co-doped CoSb3 thermoelectric thin films J. Mater. Sci. Technol. 92 178-85 doi: 10.1016/j.jmst.2021.04.007
    [194]
    Sun M, Qian Q, Tang G, Liu W, Qian G, Shi Z, Huang K, Chen D, Xu S, Yang Z 2018 Enhanced thermoelectric properties of polycrystalline Bi2Te3 core fibers with preferentially oriented nanosheets APL Mater. 6 036103 doi: 10.1063/1.5018621
    [195]
    Liu X, Shi X-L, Zhang L, Liu W-D, Yang Y, Chen Z-G 2023 One-step post-treatment boosts thermoelectric properties of PEDOT:PSS flexible thin films J. Mater. Sci. Technol. 132 81-89 doi: 10.1016/j.jmst.2022.05.047
    [196]
    Wu T, Shi X-L, Liu W-D, Sun S, Liu Q, Chen Z-G 2022 Dual post-treatments boost thermoelectric performance of PEDOT:PSS films and their devices Macromol. Mater. Eng. 307 2200411 doi: 10.1002/mame.202200411
    [197]
    Wang X, Feng G-Y, Ge M-Q 2017 Influence of ethylene glycol vapor annealing on structure and property of wet-spun PVA/PEDOT:PSS blend fiber J. Mater. Sci. 52 6917-27 doi: 10.1007/s10853-017-0756-8
    [198]
    Xu S, Hong M, Shi X-L, Wang Y, Ge L, Bai Y, Wang L, Dargusch M, Zou J, Chen Z-G 2019 High-performance PEDOT:PSS flexible thermoelectric materials and their devices by triple post-treatments Chem. Mater. 31 5238-44 doi: 10.1021/acs.chemmater.9b01500
    [199]
    Hu Q-X, Liu W-D, Zhang L, Sun W, Gao H, Shi X-L, Yang Y-L, Liu Q, Chen Z-G 2023 SWCNTs/Ag2Se film with superior bending resistance and enhanced thermoelectric performance via in situ compositing Chem. Eng. J. 457 141024 doi: 10.1016/j.cej.2022.141024
    [200]
    Zhang L, Xia B, Shi X-L, Liu W-D, Yang Y, Hou X, Ye X, Suo G, Chen Z-G 2022 Achieving high thermoelectric properties in PEDOT:PSS/SWCNTs composite films by a combination of dimethyl sulfoxide doping and NaBH4 dedoping Carbon 196 718-26 doi: 10.1016/j.carbon.2022.05.043
    [201]
    Wang Y, Hong M, Liu W-D, Shi X-L, Xu S-D, Sun Q, Gao H, Lu S, Zou J, Chen Z-G 2020 Bi0.5Sb1.5Te3/PEDOT:PSS-based flexible thermoelectric film and device Chem. Eng. J. 397 125360 doi: 10.1016/j.cej.2020.125360
    [202]
    Chen R, Lee J, Lee W, Li D 2019 Thermoelectrics of nanowires Chem. Rev. 119 9260-302 doi: 10.1021/acs.chemrev.8b00627
    [203]
    Zheng Y, Shi X-L, Yuan H, Lu S, Qu X, Liu W, Wang L, Zheng K, Zou J, Chen Z-G 2020 A synergy of strain loading and laser radiation in determining the high-performing electrical transports in the single Cu-doped SnSe microbelt Mater. Today Phys. 13 100198 doi: 10.1016/j.mtphys.2020.100198
    [204]
    Yang W, Gong W, Hou C, Su Y, Guo Y, Zhang W, Li Y, Zhang Q, Wang H 2019 All-fiber tribo-ferroelectric synergistic electronics with high thermal-moisture stability and comfortability Nat. Commun. 10 5541 doi: 10.1038/s41467-019-13569-5
    [205]
    El Chaar L, Lamont L A, El Zein N 2011 Review of photovoltaic technologies Renew. Sustain. Energy Rev. 15 2165-75 doi: 10.1016/j.rser.2011.01.004
    [206]
    Shen D, Duley W W, Peng P, Xiao M, Feng J, Liu L, Zou G, Zhou Y N 2020 Moisture-enabled electricity generation: from physics and materials to self-powered applications Adv. Mater. 32 2003722 doi: 10.1002/adma.202003722
    [207]
    Maiti T, Saxena M, Roy P 2019 Double perovskite (Sr2BBO6) oxides for high-temperature thermoelectric power generationa review J. Mater. Res. 34 107-25 doi: 10.1557/jmr.2018.376
    [208]
    Lin R, Kim H-J, Achavananthadith S, Kurt S A, Tan S C C, Yao H, Tee B C K, Lee J K W, Ho J S 2020 Wireless battery-free body sensor networks using near-field-enabled clothing Nat. Commun. 11 444 doi: 10.1038/s41467-020-14311-2
    [209]
    Wu Y, Mechael S S, Lerma C, Carmichael R S, Carmichael T B 2020 Stretchable ultrasheer fabrics as semitransparent electrodes for wearable light-emitting e-textiles with changeable display patterns Matter 2 882-95 doi: 10.1016/j.matt.2020.01.017
    [210]
    Homayounfar S Z, Rostaminia S, Kiaghadi A, Chen X, Alexander E T, Ganesan D, Andrew T L 2020 Multimodal smart eyewear for longitudinal eye movement tracking Matter 3 1275-93 doi: 10.1016/j.matt.2020.07.030
    [211]
    Zhu M, Sun Z, Zhang Z, Shi Q, He T, Liu H, Chen T, Lee C 2020 Haptic-feedback smart glove as a creative human-machine interface (HMI) for virtual/augmented reality applications Sci. Adv. 6 eaaz8693 doi: 10.1126/sciadv.aaz8693
    [212]
    Zhou Z, et al 2020 Single-layered ultra-soft washable smart textiles for all-around ballistocardiograph, respiration, and posture monitoring during sleep Biosens. Bioelectron. 155 112064 doi: 10.1016/j.bios.2020.112064
    [213]
    Meng K, et al 2020 A wireless textile-based sensor system for self-powered personalized health care Matter 2 896-907 doi: 10.1016/j.matt.2019.12.025
    [214]
    Wicaksono I, Tucker C I, Sun T, Guerrero C A, Liu C, Woo W M, Pence E J, Dagdeviren C 2020 A tailored, electronic textile conformable suit for large-scale spatiotemporal physiological sensing in vivo npj Flex. Electron. 4 5 doi: 10.1038/s41528-020-0068-y
    [215]
    Li D, Shi X-L, Zhu J, Li M, Wang J, Liu W-D, Zhao Q, Zhong H, Li S, Chen Z-G 2023 Ce-filled Ni1.5Co2.5Sb12 skutterudite thin films with record-high figure of merit and device performance Adv. Energy Mater. 13 2301525 doi: 10.1002/aenm.202301525
    [216]
    Tan M, Shi X-L, Liu W-D, Li M, Wang Y, Li H, Deng Y, Chen Z-G 2021 Synergistic texturing and Bi/Sb-Te antisite doping secure high thermoelectric performance in Bi0.5Sb1.5Te3-based thin films Adv. Energy Mater. 11 2102578 doi: 10.1002/aenm.202102578
    [217]
    Wei M, et al 2022 Directional thermal diffusion realizing inorganic Sb2Te3/Te hybrid thin films with high thermoelectric performance and flexibility Adv. Funct. Mater. 32 2207903 doi: 10.1002/adfm.202207903
    [218]
    Zheng Z-H, et al 2021 Rational band engineering and structural manipulations inducing high thermoelectric performance in n-type CoSb3 thin films Nano Energy 81 105683 doi: 10.1016/j.nanoen.2020.105683
    [219]
    Tan M, Liu W-D, Shi X-L, Shang J, Li H, Liu X, Kou L, Dargusch M, Deng Y, Chen Z-G 2020 In situ crystal-amorphous compositing inducing ultrahigh thermoelectric performance of p-type Bi0.5Sb1.5Te3 hybrid thin films Nano Energy 78 105379 doi: 10.1016/j.nanoen.2020.105379
    [220]
    Tan M, Liu W D, Shi X L, Gao H, Li H, Li C, Liu X B, Deng Y, Chen Z G 2019 Anisotropy control-induced unique anisotropic thermoelectric performance in the n-type Bi2Te2.7Se0.3 thin films Small Methods 3 1900582 doi: 10.1002/smtd.201900582
    [221]
    Ao D-W, et al 2022 Novel thermal diffusion temperature engineering leading to high thermoelectric performance in Bi2Te3-based flexible thin-films Adv. Sci. 9 2103547 doi: 10.1002/advs.202103547
    [222]
    Shi X-L, Chen Z-G 2023 Quasi-one-dimensional bulk thermoelectrics Joule 7 1108-10 doi: 10.1016/j.joule.2023.05.008
    [223]
    Shi X-L, Wu H, Liu Q, Zhou W, Lu S, Shao Z, Dargusch M, Chen Z-G 2020 SrTiO3-based thermoelectrics: progress and challenges Nano Energy 78 105195 doi: 10.1016/j.nanoen.2020.105195
    [224]
    Xu S, Hong M, Li M, Sun Q, Yin Y, Liu W, Shi X, Dargusch M, Zou J, Chen Z-G 2021 Two-dimensional flexible thermoelectric devices: using modeling to deliver optimal capability Appl. Phys. Rev. 8 041404 doi: 10.1063/5.0067930
    [225]
    Cao R, et al 2018 Screen-printed washable electronic textiles as self-powered touch/gesture tribo-sensors for intelligent human-machine interaction ACS Nano 12 5190-6 doi: 10.1021/acsnano.8b02477
    [226]
    Satharasinghe A, Hughes-Riley T, Dias T 2020 An investigation of a wash-durable solar energy harvesting textile Prog. Photovolt. 28 578-92 doi: 10.1002/pip.3229
    [227]
    Choi J, Dun C, Forsythe C, Gordon M P, Urban J J 2021 Lightweight wearable thermoelectric cooler with rationally designed flexible heatsink consisting of phase-change material/graphite/silicone elastomer J. Mater. Chem. A 9 15696-703 doi: 10.1039/D1TA01911B
    [228]
    Huo W, Xia Z, Gao Y, Guo R, Huang X 2023 Flexible thermoelectric devices with flexible heatsinks of phase-change materials and stretchable interconnectors of semi-liquid metals ACS Appl. Mater. Interfaces 15 29330-40 doi: 10.1021/acsami.3c05418
    [229]
    Mu X, Shi X-L, Zhou J, Chen H, Yang T, Wang Y, Miao L, Chen Z-G 2023 Self-hygroscopic and smart color-changing hydrogels as coolers for improving energy conversion efficiency of electronics Nano Energy 108 108177 doi: 10.1016/j.nanoen.2023.108177
    [230]
    Sun S, Li M, Shi X-L, Chen Z-G 2023 Advances in ionic thermoelectrics: from materials to devices Adv. Energy Mater. 13 2203692 doi: 10.1002/aenm.202203692
    [231]
    Tan M, Liu W-D, Shi X-L, Sun Q, Chen Z-G 2023 Minimization of the electrical contact resistance in thin-film thermoelectric device Appl. Phys. Rev. 10 021404 doi: 10.1063/5.0141075
    [232]
    Ao D-W, Liu W-D, Zheng Z-H, Shi X-L, Wei M, Zhong Y-M, Li M, Liang G-X, Fan P, Chen Z-G 2022 Assembly-free fabrication of high-performance flexible inorganic thin-film thermoelectric device prepared by a thermal diffusion Adv. Energy Mater. 12 2202731 doi: 10.1002/aenm.202202731
    [233]
    Xu S, Hong M, Shi X, Li M, Sun Q, Chen Q, Dargusch M, Zou J, Chen Z-G 2020 Computation-guided design of high-performance flexible thermoelectric modules for sunlight-to-electricity conversion Energy Environ. Sci. 13 3480-8 doi: 10.1039/D0EE01895C
    [234]
    Sun W, Liu W-D, Li L, Wang D-Z, Yin L-C, Li M, Shi X-L, Liu Q, Chen Z-G 2023 Performance optimization of a dual-thermoelectric-liquid hybrid system for central processing unit cooling Energy Convers. Manage. 290 117222 doi: 10.1016/j.enconman.2023.117222
    [235]
    Li L, Liu W-D, Sun W, Wang D-Z, Yin L-C, Li M, Shi X-L, Liu Q, Chen Z-G 2023 Performance optimization of a thermoelectric-water hybrid cooling garment Adv. Mater. Technol. 2301069 doi: 10.1002/admt.202301069
    [236]
    Liang L, Lv H, Shi X-L, Liu Z, Chen G, Chen Z-G, Sun G 2021 A flexible quasi-solid-state thermoelectrochemical cell with high stretchability as an energy-autonomous strain sensor Mater. Horiz. 8 2750-60 doi: 10.1039/D1MH00775K
  • 加载中

Catalog

    Figures(15)

    Article Metrics

    Article Views(344) PDF downloads(122)
    Article Statistics
    Related articles from

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return