Volume 3 Issue 1
March  2024
Turn off MathJax
Article Contents
Jakob Asenbauer, Dominik Horny, Mayokun Olutogun, Katrin Schulz, Dominic Bresser. Towards an enhanced understanding of the particle size effect on conversion/alloying lithium-ion anodes[J]. Materials Futures, 2024, 3(1): 015101. doi: 10.1088/2752-5724/ad1115
Citation: Jakob Asenbauer, Dominik Horny, Mayokun Olutogun, Katrin Schulz, Dominic Bresser. Towards an enhanced understanding of the particle size effect on conversion/alloying lithium-ion anodes[J]. Materials Futures, 2024, 3(1): 015101. doi: 10.1088/2752-5724/ad1115
Paper •

Towards an enhanced understanding of the particle size effect on conversion/alloying lithium-ion anodes

© 2024 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory
Materials Futures, Volume 3, Number 1
  • Received Date: 2023-09-29
  • Accepted Date: 2023-11-20
  • Rev Recd Date: 2023-11-12
  • Publish Date: 2024-01-03
  • Conversion/alloying materials (CAMs) represent a potential alternative to graphite as a Li-ion anode active material, especially for high-power applications. So far, however, essentially all studies on CAMs have been dealing with nano-sized particles, leaving the question of how the performance (and the de-/lithiation mechanism in general) is affected by the particle size. Herein, we comparatively investigate four different samples of Zn0.9Co0.1O with a particle size ranging from about 30 nm to a few micrometers. The results show that electrodes made of larger particles are more susceptible to fading due to particle displacement and particle cracking. The results also show that the conversion-type reaction in particular is affected by an increasing particle size, becoming less reversible due to the formation of relatively large transition metal (TM) and alloying metal nanograins upon lithiation, thus hindering an efficient electron transport within the initial particle, while the alloying contribution remains essentially unaffected. The generality of these findings is confirmed by also investigating Sn0.9Fe0.1O2 as a second CAM with a substantially greater contribution of the alloying reaction and employing Fe instead of Co as a TM dopant.
  • loading
  • Conflict of interest

    The authors declare that they have no known competing financial interests.

  • [1]
    Ding Y, Cano Z P, Yu A, Lu J, Chen Z 2019 Automotive Li-ion batteries: current status and future perspectives Electrochem. Energy Rev. 2 1-28 doi: 10.1007/s41918-018-0022-z
    Marinaro M, Bresser D, Beyer E, Faguy P, Hosoi K, Li H, Sakovica J, Amine K, Wohlfahrt-Mehrens M, Passerini S 2020 Bringing forward the development of battery cells for automotive applications: perspective of R&D activities in China, Japan, the EU and the USA J. Power Sources 459 228073 doi: 10.1016/j.jpowsour.2020.228073
    Scrosati B, Hassoun J, Sun Y-K 2011 Lithium-ion batteries. A look into the future Energy Environ. Sci. 4 3287-95 doi: 10.1039/c1ee01388b
    Bresser D, Hosoi K, Howell D, Li H, Zeisel H, Amine K, Passerini S 2018 Perspectives of automotive battery R&D in China, Germany, Japan, and the USA J. Power Sources 382 176-8 doi: 10.1016/j.jpowsour.2018.02.039
    Winter M, Besenhard J O, Spahr M E, Novk P 1998 Insertion electrode materials for rechargeable lithium batteries Adv. Mater. 10 725-63 doi: 10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z
    Manthiram A 2020 A reflection on lithium-ion battery cathode chemistry Nat. Commun. 11 1-9 doi: 10.1038/s41467-020-15355-0
    Armand M, Axmann P, Bresser D, Copley M, Edstrm K, Ekberg C, Guyomard D, Lestriez B, Novk P, Petranikova M 2020 Lithium-ion batteries-current state of the art and anticipated developments J. Power Sources 479 228708 doi: 10.1016/j.jpowsour.2020.228708
    Asenbauer J, Eisenmann T, Kuenzel M, Kazzazi A, Chen Z, Bresser D 2020 The success story of graphite as a lithium-ion anode materialfundamentals, remaining challenges, and recent developments including silicon (oxide) composites Sustain. Energy Fuels 4 5387-416 doi: 10.1039/D0SE00175A
    Bresser D, Passerini S, Scrosati B 2016 Leveraging valuable synergies by combining alloying and conversion for lithium-ion anodes Energy Environ. Sci. 9 3348-67 doi: 10.1039/C6EE02346K
    Cabana J, Monconduit L, Larcher D, Palacn M R 2010 Beyond intercalation-based Li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions Adv. Mater. 22 E170-92 doi: 10.1002/adma.201000717
    Obrovac M N, Chevrier V L 2014 Alloy negative electrodes for Li-ion batteries Chem. Rev. 114 11444-502 doi: 10.1021/cr500207g
    Fang S, Bresser D, Passerini S 2020 Transition metal oxide anodes for electrochemical energy storage in lithiumand sodiumion batteries Adv. Energy Mater. 10 1902485 doi: 10.1002/aenm.201902485
    Lu Y, Yu L, Lou X W 2018 Nanostructured conversion-type anode materials for advanced lithium-ion batteries Chem 4 972-96 doi: 10.1016/j.chempr.2018.01.003
    Asenbauer J, Kuenzel M, Eisenmann T, Birrozzi A, Chang J-K, Passerini S, Bresser D 2020 Determination of the volume changes occurring for conversion/alloying-type Li-ion anodes upon lithiation/delithiation J. Phys. Chem. Lett. 11 8238-45 doi: 10.1021/acs.jpclett.0c02198
    Asenbauer J, Varzi A, Passerini S, Bresser D 2020 Revisiting the energy efficiency and (potential) full-cell performance of lithium-ion batteries employing conversion/alloying-type negative electrodes J. Power Sources 473 228583 doi: 10.1016/j.jpowsour.2020.228583
    Bresser D, Mueller F, Fiedler M, Krueger S, Kloepsch R, Baither D, Winter M, Paillard E, Passerini S 2013 Transition-metal-doped zinc oxide nanoparticles as a new lithium-ion anode material Chem. Mater. 25 4977-85 doi: 10.1021/cm403443t
    Ulissi U, Elia G A, Jeong S, Mueller F, Reiter J, Tsiouvaras N, Sun Y-K, Scrosati B, Passerini S, Hassoun J 2018 Low-polarization lithium-oxygen battery using [DEME][TFSI] ionic liquid electrolyte ChemSusChem 11 229-36 doi: 10.1002/cssc.201701696
    Mueller F, Gutsche A, Nirschl H, Geiger D, Kaiser U, Bresser D, Passerini S 2017 Iron-doped ZnO for lithium-ion anodes: impact of the dopant ratio and carbon coating content J. Electrochem. Soc. 164 A6123-30 doi: 10.1149/2.0171701jes
    Giuli G, Trapananti A, Mueller F, Bresser D, D’Acapito F, Passerini S 2015 Insights into the effect of iron and cobalt doping on the structure of nanosized ZnO Inorg. Chem. 54 9393-400 doi: 10.1021/acs.inorgchem.5b00493
    Cabo-Fernandez L, Bresser D, Braga F, Passerini S, Hardwick L J 2019 In-situ electrochemical SHINERS investigation of SEI composition on carbon-coated Zn0.9Fe0.1O anode for lithium-ion batteries Batter. Supercaps 2 168-77 doi: 10.1002/batt.201800063
    Giuli G, Eisenmann T, Bresser D, Trapananti A, Asenbauer J, Mueller F, Passerini S 2017 Structural and electrochemical characterization of Zn1-xFexOEffect of aliovalent doping on the Li+ storage mechanism Materials 11 49 doi: 10.3390/ma11010049
    Mueller F, Bresser D, Chakravadhanula V S K, Passerini S 2015 Fe-doped SnO2 nanoparticles as new high capacity anode material for secondary lithium-ion batteries J. Power Sources 299 398-402 doi: 10.1016/j.jpowsour.2015.08.018
    Lbke M, Ning D, Armer C F, Howard D, Brett D J L, Liu Z, Darr J A 2017 Evaluating the potential benefits of metal ion doping in SnO2 negative electrodes for lithium ion batteries Electrochim. Acta 242 400-7 doi: 10.1016/j.electacta.2017.05.029
    Wang J, Wang L, Zhang S, Liang S, Liang X, Huang H, Zhou W, Guo J 2018 Facile synthesis of iron-doped SnO2/reduced graphene oxide composite as high-performance anode material for lithium-ion batteries J. Alloys Compd. 748 1013-21 doi: 10.1016/j.jallcom.2018.03.155
    Zhang X, Huang X, Zhang X, Xia L, Zhong B, Zhang T, Wen G 2016 Flexible carbonized cotton covered by graphene/Co-doped SnO2 as free-standing and binder-free anode material for lithium-ions batteries Electrochim. Acta 222 518-27 doi: 10.1016/j.electacta.2016.11.004
    Ma Y, Ma Y, Ulissi U, Ji Y, Streb C, Bresser D, Passerini S 2018 Influence of the doping ratio and the carbon coating content on the electrochemical performance of Co-doped SnO2 for lithium-ion anodes Electrochim. Acta 277 100-9 doi: 10.1016/j.electacta.2018.04.209
    Ma Y, Ma Y, Giuli G, Diemant T, Behm R J, Geiger D, Kaiser U, Ulissi U, Passerini S, Bresser D 2018 Conversion/alloying lithium-ion anodesenhancing the energy density by transition metal doping Sustain. Energy Fuels 2 2601-8 doi: 10.1039/C8SE00424B
    Birrozzi A, Asenbauer J, Ashton T E, Groves A R, Geiger D, Kaiser U, Darr J A, Bresser D 2020 Tailoring the charge/discharge potentials and electrochemical performance of SnO2 lithiumion anodes by transition metal codoping Batter. Supercaps 3 284-92 doi: 10.1002/batt.201900154
    Liang B, Wang J, Zhang S, Liang X, Huang H, Huang D, Zhou W, Guo J 2020 Hybrid of co-doped SnO2 and graphene sheets as anode material with enhanced lithium storage properties Appl. Surf. Sci. 533 147447 doi: 10.1016/j.apsusc.2020.147447
    Mueller F, Geiger D, Kaiser U, Passerini S, Bresser D 2016 Elucidating the impact of cobalt doping on the lithium storage mechanism in conversion/alloying-type zinc oxide anodes ChemElectroChem 3 1311-9 doi: 10.1002/celc.201600179
    Asenbauer J, Hoefling A, Indris S, Tbke J, Passerini S, Bresser D 2020 Mechanistic insights into the lithiation and delithiation of iron-doped zinc oxide: the nucleation site model ACS Appl. Mater. Interfaces 12 8206-18 doi: 10.1021/acsami.9b19958
    Trapananti A, Eisenmann T, Giuli G, Mueller F, Moretti A, Passerini S, Bresser D 2021 Isovalent vs. aliovalent transition metal doping of zinc oxide lithium-ion battery anodesin-depth investigation by ex situ and operando x-ray absorption spectroscopy Mater. Today Chem. 20 100478 doi: 10.1016/j.mtchem.2021.100478
    Asenbauer J, Binder J R, Mueller F, Kuenzel M, Geiger D, Kaiser U, Passerini S, Bresser D 2020 Scalable synthesis of microsized, nanocrystalline Zn0.9Fe0.1OC secondary particles and their use in Zn0.9Fe0.1OC/LiNi0.5Mn1.5O4 lithiumion full cells ChemSusChem 13 3504-13 doi: 10.1002/cssc.202000559
    Wang S, Shi L, Chen G, Ba C, Wang Z, Zhu J, Zhao Y, Zhang M, Yuan S 2017 In situ synthesis of tungsten-doped SnO2 and graphene nanocomposites for high-performance anode materials of lithium-ion batteries ACS Appl. Mater. Interfaces 9 17163-71 doi: 10.1021/acsami.7b03705
    Zoller F, Peters K, Zehetmaier P M, Zeller P, Dblinger M, Bein T, Sofer Z, FattakhovaRohlfing D 2018 Making ultrafast highcapacity anodes for lithiumion batteries via antimony doping of nanosized tin oxide/graphene composites Adv. Funct. Mater. 28 1706529 doi: 10.1002/adfm.201706529
    Wang Y, Li H, He P, Hosono E, Zhou H 2010 Nano active materials for lithium-ion batteries Nanoscale 2 1294-305 doi: 10.1039/c0nr00068j
    Bresser D, Paillard E, Copley M, Bishop P, Winter M, Passerini S 2012 The importance of going nano for high power battery materials J. Power Sources 219 217-22 doi: 10.1016/j.jpowsour.2012.07.035
    Bruce P G, Scrosati B, Tarascon J 2008 Nanomaterials for rechargeable lithium batteries Angew. Chem., Int. Ed. 47 2930-46 doi: 10.1002/anie.200702505
    Oberdrster G, Stone V, Donaldson K, Oberdorster G, Stone V, Donaldson K 2007 Toxicology of nanoparticles: a historical perspective Nanotoxicology 1 2-25 doi: 10.1080/17435390701314761
    Stern S T, McNeil S E 2008 Nanotechnology safety concerns revisited Toxicol. Sci. 101 4-21 doi: 10.1093/toxsci/kfm169
    Groso A, Petri-Fink A, Magrez A, Riediker M, Meyer T 2010 Management of nanomaterials safety in research environment Part. Fibre Toxicol. 7 40 doi: 10.1186/1743-8977-7-40
    Grugeon S, Laruelle S, Dupont L, Tarascon J-M 2003 An update on the reactivity of nanoparticles Co-based compounds towards Li Solid State Sci. 5 895-904 doi: 10.1016/S1293-2558(03)00114-6
    Ponrouch A, Taberna P L, Simon P, Palacn M R 2012 On the origin of the extra capacity at low potential in materials for Li batteries reacting through conversion reaction Electrochim. Acta 61 13-18 doi: 10.1016/j.electacta.2011.11.029
    Sun Y, Oh S, Park H, Scrosati B 2011 Micrometersized, nanoporous, highvolumetriccapacity LiMn0.85Fe0.15PO4 cathode material for rechargeable lithiumion batteries Adv. Mater. 23 5050-4 doi: 10.1002/adma.201102497
    Yan P, Zheng J, Liu J, Wang B, Cheng X, Zhang Y, Sun X, Wang C, Zhang J-G 2018 Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries Nat. Energy 3 600-5 doi: 10.1038/s41560-018-0191-3
    Sun Y-K, Chen Z, Noh H-J, Lee D-J, Jung H-G, Ren Y, Wang S, Yoon C S, Myung S-T, Amine K 2012 Nanostructured high-energy cathode materials for advanced lithium batteries Nat. Mater. 11 942-7 doi: 10.1038/nmat3435
    Li H, Li J, Ma X, Dahn J R 2018 Synthesis of single crystal LiNi0.6Mn0.2Co0.2O2 with enhanced electrochemical performance for lithium ion batteries J. Electrochem. Soc. 165 A1038 doi: 10.1149/2.0951805jes
    Li J, Cameron A R, Li H, Glazier S, Xiong D, Chatzidakis M, Allen J, Botton G A, Dahn J R 2017 Comparison of single crystal and polycrystalline LiNi0.5Mn0.3Co0.2O2 positive electrode materials for high voltage Li-ion cells J. Electrochem. Soc. 164 A1534 doi: 10.1149/2.0991707jes
    Prussin S 1961 Generation and distribution of dislocations by solute diffusion J. Appl. Phys. 32 1876-81 doi: 10.1063/1.1728256
    Bresser D, Paillard E, Kloepsch R, Krueger S, Fiedler M, Schmitz R, Baither D, Winter M, Passerini S 2013 Carbon coated ZnFe2O4 nanoparticles for advanced lithium-ion anodes Adv. Energy Mater. 3 513-23 doi: 10.1002/aenm.201200735
    Rahaman M N 2003 Ceramic Processing and SinteringCRC press
    Kang S-J L 2005 Sintering: Densification, Grain Growth, and MicrostructureElsevier Butterworth-Heinemann
    Fang Z Z, Wang H, Kumar V 2017 Coarsening, densification, and grain growth during sintering of nano-sized powdersA perspective Int. J. Refract. Met. Hard Mater. 62 110-7 doi: 10.1016/j.ijrmhm.2016.09.004
    An S J, Li J, Daniel C, Kalnaus S, Wood D L 2017 Design and demonstration of three-electrode pouch cells for lithium-ion batteries J. Electrochem. Soc. 164 A1755-64 doi: 10.1149/2.0031709jes
    Kalhoff J, Eshetu G G, Bresser D, Passerini S 2015 Safer electrolytes for lithium-ion batteries: state of the art and perspectives ChemSusChem 8 2154-75 doi: 10.1002/cssc.201500284
    Xu K 2004 Nonaqueous liquid electrolytes for lithium-based rechargeable batteries Chem. Rev. 104 4303-418 doi: 10.1021/cr030203g
    Vetter J, Novk P, Wagner M R, Veit C, Mller K C, Besenhard J O, Winter M, Wohlfahrt-Mehrens M, Vogler C, Hammouche A 2005 Ageing mechanisms in lithium-ion batteries J. Power Sources 147 269-81 doi: 10.1016/j.jpowsour.2005.01.006
    Ebner M, Marone F, Stampanoni M, Wood V 2013 Visualization and quantification of electrochemical and mechanical degradation in Li ion batteries Science 342 716-20 doi: 10.1126/science.1241882
    Liu X H, Zhong L, Huang S, Mao S X, Zhu T, Huang J Y 2012 Size-dependent fracture of silicon nanoparticles during lithiation ACS Nano 6 1522-31 doi: 10.1021/nn204476h
    Wang F, et al 2011 Conversion reaction mechanisms in lithium ion batteries: study of the binary metal fluoride electrodes J. Am. Chem. Soc. 133 18828-36 doi: 10.1021/ja206268a
    Bresser D, Paillard E, Niehoff P, Krueger S, Mueller F, Winter M, Passerini S 2014 Challenges of going nano: enhanced electrochemical performance of cobalt oxide nanoparticles by carbothermal reduction and in situ carbon coating ChemPhysChem 15 2177-85 doi: 10.1002/cphc.201400092
    Larcher D, Sudant G, Leriche J B, Chabre Y, Tarascon J M 2002 The electrochemical reduction of Co3 O4 in a lithium cell J. Electrochem. Soc. 149 A234 doi: 10.1149/1.1435358
    Mueller F, Bresser D, Paillard E, Winter M, Passerini S 2013 Influence of the carbonaceous conductive network on the electrochemical performance of ZnFe2O4 nanoparticles J. Power Sources 236 87-94 doi: 10.1016/j.jpowsour.2013.02.051
  • mfad1115supp1.docx
  • 加载中



    Article Metrics

    Article Views(335) PDF downloads(68)
    Article Statistics
    Related articles from


    DownLoad:  Full-Size Img  PowerPoint