Citation: | Guanghui Cai, Zhendong Cao, Fankai Xie, Huaxian Jia, Wei Liu, Yaxian Wang, Feng Liu, Xinguo Ren, Sheng Meng, Miao Liu. Predicting structure-dependent Hubbard U parameters via machine learning[J]. Materials Futures, 2024, 3(2): 025601. doi: 10.1088/2752-5724/ad19e2 |
Author contributions
M L proposed and led this project. Z C and G C wrote the code. Z C performed the calculations and analyzed the results. X R and S M copiloted the project with important intellectual contributions. F X, H J, and W L provided assistance with the ML algorithm. Z C and M L wrote the manuscript. Y W, F L, X R, and S M reviewed and revised the manuscript. G C and Z C contributed equally to this work.
Conflict of interest
The authors declare no competing interests.
[1] |
Perdew J P, Burke K, Ernzerhof M 1996 Generalized gradient approximation made simple Phys. Rev. Lett. 77 3865-8 doi: 10.1103/PhysRevLett.77.3865
|
[2] |
Becke A D 1988 Density-functional exchange-energy approximation with correct asymptotic behavior Phys. Rev. A 38 3098-100 doi: 10.1103/PhysRevA.38.3098
|
[3] |
Lee C, Yang W, Parr R G 1988 Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density Phys. Rev. B 37 785-9 doi: 10.1103/PhysRevB.37.785
|
[4] |
Anisimov V I, Zaanen J, Andersen O K 1991 Band theory and Mott insulators: Hubbard U instead of Stoner I Phys. Rev. B 44 943-54 doi: 10.1103/PhysRevB.44.943
|
[5] |
Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J, Sutton A P 1998 Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study Phys. Rev. B 57 1505-9 doi: 10.1103/PhysRevB.57.1505
|
[6] |
Han M J, Ozaki T, Yu J O 2006 (N) LDA + U electronic structure calculation method based on the nonorthogonal pseudoatomic orbital basis Phys. Rev. B 73 045110 doi: 10.1103/PhysRevB.73.045110
|
[7] |
Wang L, Maxisch T, Ceder G 2006 Oxidation energies of transition metal oxides within the GGA + U framework Phys. Rev. B 73 195107 doi: 10.1103/PhysRevB.73.195107
|
[8] |
Zhou F, Cococcioni M, Marianetti C A, Morgan D, Ceder G 2004 First-principles prediction of redox potentials in transition-metal compounds with LDA + U Phys. Rev. B 70 235121 doi: 10.1103/PhysRevB.70.235121
|
[9] |
Cococcioni M, de Gironcoli S 2005 Linear response approach to the calculation of the effective interaction parameters in the LDA + U method Phys. Rev. B 71 035105 doi: 10.1103/PhysRevB.71.035105
|
[10] |
Aryasetiawan F, Karlsson K, Jepsen O, Schönberger U 2006 Calculations of Hubbard U from first-principles Phys. Rev. B 74 125106 doi: 10.1103/PhysRevB.74.125106
|
[11] |
Miyake T, Aryasetiawan F 2008 Screened Coulomb interaction in the maximally localized Wannier basis Phys. Rev. B 77 085122 doi: 10.1103/PhysRevB.77.085122
|
[12] |
aolu E, Friedrich C, Blügel S 2011 Effective Coulomb interaction in transition metals from constrained random-phase approximation Phys. Rev. B 83 121101 doi: 10.1103/PhysRevB.83.121101
|
[13] |
Yu M, Yang S, Wu C, Marom N 2020 Machine learning the Hubbard U parameter in DFT+U using Bayesian optimization npj Comput. Mater. 6 180 doi: 10.1038/s41524-020-00446-9
|
[14] |
Yu M, Moayedpour S, Yang S, Dardzinski D, Wu C, Pribiag V S, Marom N 2021 Dependence of the electronic structure of the EuS/InAs interface on the bonding configuration Phys. Rev. Mater. 5 064606 doi: 10.1103/PhysRevMaterials.5.064606
|
[15] |
Yang S, Dardzinski D, Hwang A, Pikulin D I, Winkler G W, Marom N 2021 First-principles feasibility assessment of a topological insulator at the InAs/GaSb interface Phys. Rev. Mater. 5 084204 doi: 10.1103/PhysRevMaterials.5.084204
|
[16] |
Popov M N, Spitaler J, Romaner L, Bedoya-Martínez N, Hammer R 2021 Bayesian optimization of Hubbard U’s for investigating InGaN superlattices Electron. Mater. 2 370-81 doi: 10.3390/electronicmat2030025
|
[17] |
Lu D, Liu P 2014 Rationalization of the Hubbard U parameter in CeOx from first principles: unveiling the role of local structure in screening J. Chem. Phys. 140 084101 doi: 10.1063/1.4865831
|
[18] |
Hsu H, Umemoto K, Cococcioni M, Wentzcovitch R 2009 First-principles study for low-spin LaCoO3 with a structurally consistent Hubbard U Phys. Rev. B 79 125124 doi: 10.1103/PhysRevB.79.125124
|
[19] |
Tsuchiya T, Wentzcovitch R M, da Silva C R S, de Gironcoli S 2006 Spin transition in magnesiowüstite in Earth’s lower mantle Phys. Rev. Lett. 96 198501 doi: 10.1103/PhysRevLett.96.198501
|
[20] |
Kulik H J, Marzari N 2011 Accurate potential energy surfaces with a DFT+U(R) approach J. Chem. Phys. 135 194105 doi: 10.1063/1.3660353
|
[21] |
Heyd J, Scuseria G E, Ernzerhof M 2003 Hybrid functionals based on a screened Coulomb potential J. Chem. Phys. 118 8207-15 doi: 10.1063/1.1564060
|
[22] |
Heyd J, Scuseria G E, Ernzerhof M 2006 Erratum: ‘Hybrid functionals based on a screened Coulomb potential’ [J. Chem. Phys. 118, 8207 (2003)] J. Chem. Phys. 124 219906 doi: 10.1063/1.2204597
|
[23] |
Amit Y, Geman D 1997 Shape quantization and recognition with randomized trees Neural Comput. 9 1545-88 doi: 10.1162/neco.1997.9.7.1545
|
[24] |
Ho T K 1998 The random subspace method for constructing decision forests IEEE Trans. Pattern Anal. Mach. Intell. 20 832-44 doi: 10.1109/34.709601
|
[25] |
Kresse G, Furthmüller J 1996 Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set Phys. Rev. B 54 11169-86 doi: 10.1103/PhysRevB.54.11169
|
[26] |
Kresse G, Joubert D 1999 From ultrasoft pseudopotentials to the projector augmented-wave method Phys. Rev. B 59 1758-75 doi: 10.1103/PhysRevB.59.1758
|
[27] |
Blöchl P E 1994 Projector augmented-wave method Phys. Rev. B 50 17953-79 doi: 10.1103/PhysRevB.50.17953
|
[28] |
Tavadze P, Boucher R, Avendaño-Franco G, Kocan K X, Singh S, Dovale-Farelo V, Ibarra-Hernández W, Johnson M B, Mebane D S, Romero A H 2021 Exploring DFT+U parameter space with a Bayesian calibration assisted by Markov chain Monte Carlo sampling npj Comput. Mater. 7 182 doi: 10.1038/s41524-021-00651-0
|
[29] |
Liechtenstein A I, Anisimov V I, Zaanen J 1995 Density-functional theory and strong interactions: orbital ordering in Mott-Hubbard insulators Phys. Rev. B 52 R5467-70 doi: 10.1103/PhysRevB.52.R5467
|
[30] |
Blum V, Gehrke R, Hanke F, Havu P, Havu V, Ren X, Reuter K, Scheffler M 2009 Ab initio molecular simulations with numeric atom-centered orbitals Comput. Phys. Commun. 180 2175-96 doi: 10.1016/j.cpc.2009.06.022
|
[31] |
Ren X, Rinke P, Blum V, Wieferink J, Tkatchenko A, Sanfilippo A, Reuter K, Scheffler M 2012 Resolution-of-identity approach to Hartree-Fock, hybrid density functionals, RPA, MP2 and GW with numeric atom-centered orbital basis functions New J. Phys. 14 053020 doi: 10.1088/1367-2630/14/5/053020
|
[32] |
Levchenko S V, Ren X, Wieferink J, Johanni R, Rinke P, Blum V, Scheffler M 2015 Hybrid functionals for large periodic systems in an all-electron, numeric atom-centered basis framework Comput. Phys. Commun. 192 60-69 doi: 10.1016/j.cpc.2015.02.021
|
[33] |
Ong S P, Richards W D, Jain A, Hautier G, Kocher M, Cholia S, Gunter D, Chevrier V L, Persson K A, Ceder G 2013 Python materials genomics (pymatgen): a robust, open-source python library for materials analysis Comput. Mater. Sci. 68 314-9 doi: 10.1016/j.commatsci.2012.10.028
|
[34] |
Fernando 2022 Bayesian optimization
|
[35] |
Okazawa K, Tsuji Y, Kurino K, Yoshida M, Amamoto Y, Yoshizawa K 2022 Exploring the optimal alloy for nitrogen activation by combining Bayesian optimization with density functional theory calculations ACS Omega 7 45403-8 doi: 10.1021/acsomega.2c05988
|
[36] |
scikit-learn/scikit-learn Scikit-learn: machine learning in Python (available at: https://github.com/scikit-learn/scikit-learn)
|
[37] |
Liang Y, et al 2022 A universal model for accurately predicting the formation energy of inorganic compounds Sci. China Mater. 66 343-51 doi: 10.1007/s40843-022-2134-3
|
[38] |
Ong S P, Wang L, Kang B, Ceder G 2008 Li−Fe−P−O 2 phase diagram from first principles calculations Chem. Mater. 20 1798-807 doi: 10.1021/cm702327g
|
[39] |
Jain A, Hautier G, Ong S P, Moore C J, Fischer C C, Persson K A, Ceder G 2011 Formation enthalpies by mixing GGA and GGA + U calculations Phys. Rev. B 84 045115 doi: 10.1103/PhysRevB.84.045115
|
[40] |
Liu M, Meng S 2022 Atomly.net materials database and its application in inorganic chemistry Sci. Sin.-Chim. 53 19-25 doi: 10.1360/SSC-2022-0167
|
[41] |
Tomczak J M, Miyake T, Aryasetiawan F 2010 Realistic many-body models for manganese monoxide under pressure Phys. Rev. B 81 115116 doi: 10.1103/PhysRevB.81.115116
|
[42] |
Ivashko O, et al 2019 Strain-engineering Mott-insulating La2CuO4 Nat. Commun. 10 786 doi: 10.1038/s41467-019-08664-6
|
[43] |
Hedin L 1965 New method for calculating the one-particle Green’s function with application to the electron-gas problem Phys. Rev. 139 A796-823 doi: 10.1103/PhysRev.139.A796
|
[44] |
Purvis G D, Bartlett R J 1982 A full coupledcluster singles and doubles model: the inclusion of disconnected triples J. Chem. Phys. 76 1910-8 doi: 10.1063/1.443164
|
[45] |
Huhn W P, Blum V 2017 One-hundred-three compound band-structure benchmark of post-self-consistent spin-orbit coupling treatments in density functional theory Phys. Rev. Mater. 1 033803 doi: 10.1103/PhysRevMaterials.1.033803
|
[46] |
Ye L-H, Luo N, Peng L-M, Weinert M, Freeman A J 2013 Dielectric constant of NiO and LDA + U Phys. Rev. B 87 075115 doi: 10.1103/PhysRevB.87.075115
|
[47] |
Pask J E, Singh D J, Mazin I I, Hellberg C S, Kortus J 2001 Structural, electronic, and magnetic properties of MnO Phys. Rev. B 64 024403 doi: 10.1103/PhysRevB.64.024403
|
[48] |
Deng H-X, Li J, Li S-S, Xia J-B, Walsh A, Wei S-H 2010 Origin of antiferromagnetism in CoO: a density functional theory study Appl. Phys. Lett. 96 162508 doi: 10.1063/1.3402772
|
[49] |
Dufek P, Blaha P, Sliwko V, Schwarz K 1994 Generalized-gradient-approximation description of band splittings in transition-metal oxides and fluorides Phys. Rev. B 49 10170-5 doi: 10.1103/PhysRevB.49.10170
|
[50] |
Jain A, et al 2013 Commentary: the materials project: a materials genome approach to accelerating materials innovation APL Mater. 1 011002 doi: 10.1063/1.4812323
|
[51] |
Sit P H-L, Cococcioni M, Marzari N 2006 Realistic quantitative descriptions of electron transfer reactions: diabatic free-energy surfaces from first-principles molecular dynamics Phys. Rev. Lett. 97 028303 doi: 10.1103/PhysRevLett.97.028303
|
[52] |
Sit P H-L, Cococcioni M, Marzari N 2007 Car-Parrinello molecular dynamics in the DFT+U formalism: structure and energetics of solvated ferrous and ferric ions J. Electroanal. Chem. 607 107-12 doi: 10.1016/j.jelechem.2007.01.008
|
[53] |
Leiria Campo VJr, Cococcioni M 2010 Extended DFT + U + V method with on-site and inter-site electronic interactions J. Phys.: Condens. Matter 22 055602 doi: 10.1088/0953-8984/22/5/055602
|
[54] |
Yu W, et al 2023 Active learning the high-dimensional transferable Hubbard U and V parameters in the DFT + U + V scheme J. Chem. Theory. Comput. 19 6425-33 doi: 10.1021/acs.jctc.2c01116
|