Volume 3 Issue 1
March  2024
Turn off MathJax
Article Contents
Xie Hongyao, Zhao Li-Dong. Origin of off-centering effect and the influence on heat transport in thermoelectrics[J]. Materials Futures, 2024, 3(1): 013501. doi: 10.1088/2752-5724/ad1ac0
Citation: Xie Hongyao, Zhao Li-Dong. Origin of off-centering effect and the influence on heat transport in thermoelectrics[J]. Materials Futures, 2024, 3(1): 013501. doi: 10.1088/2752-5724/ad1ac0
Perspective •

Origin of off-centering effect and the influence on heat transport in thermoelectrics

© 2024 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory
Materials Futures, Volume 3, Number 1
  • Received Date: 2023-12-26
  • Accepted Date: 2024-01-04
  • Rev Recd Date: 2024-01-02
  • Publish Date: 2024-01-17
  • Recently, off-centering behavior has been discovered in a series of thermoelectric materials. This behavior indicates that the constituent atoms of the lattice displace from their coordination centers, leading to the locally distorted state and local symmetry breaking, while the material still retains its original crystallographic symmetry. This effect has been proved to be the root cause of ultralow thermal conductivity in off-centering materials, and is considered as an effective tool to regulate the thermal conductivity and improve the thermoelectric performance. Herein, we present a collection of recently discovered off-centering compounds, discuss their electronic origins and local coordination structures, and illuminate the underlying mechanism of the off-centering effect on phonon transport and thermal conductivity. This paper presents a comprehensive view of our current understanding to the off-centering effect, and provides a new idea for designing high performance thermoelectrics.
  • loading
  • Conflict of interest

    The authors declare no competing interests.

  • [1]
    Yan Q, Kanatzidis M G 2021 High-performance thermoelectrics and challenges for practical devices Nat. Mater. 21 503-13 doi: 10.1038/s41563-021-01109-w
    He J, Tritt T M 2017 Advances in thermoelectric materials research: looking back and moving forward Science 357 eaak9997 doi: 10.1126/science.aak9997
    Tang X, Li Z, Liu W, Zhang Q, Uher C 2022 A comprehensive review on Bi2Te3based thin films: thermoelectrics and beyond Interdiscip. Mater. 1 88-115 doi: 10.1002/idm2.12009
    Xiao Y, Zhao L-D 2020 Seeking new, highly effective thermoelectrics Science 367 1196-7 doi: 10.1126/science.aaz9426
    Pecunia V, et al 2023 Roadmap on energy harvesting materials J. Phys. Mater. 6 042501 doi: 10.1088/2515-7639/acc550
    Xie H, Su X, Bailey T P, Zhang C, Liu W, Uher C, Tang X, Kanatzidis M G 2020 Anomalously large Seebeck coefficient of CuFeS2 derives from large asymmetry in the energy dependence of carrier relaxation time Chem. Mater. 32 2639-46 doi: 10.1021/acs.chemmater.0c00388
    Tan G, Zhao L D, Kanatzidis M G 2016 Rationally designing high-performance bulk thermoelectric materials Chem. Rev. 116 12123-49 doi: 10.1021/acs.chemrev.6b00255
    Snyder G J, Toberer E S 2008 Complex thermoelectric materials Nat. Mater. 7 105-14 doi: 10.1038/nmat2090
    Xie H, Su X, Hao S, Wolverton C, Uher C, Tang X, Kanatzidis M G 2020 Quasilinear dispersion in electronic band structure and high Seebeck coefficient in CuFeS2-based thermoelectric materials Phys. Rev. Mater. 4 025405 doi: 10.1103/PhysRevMaterials.4.025405
    Luo Y, et al 2020 High-performance thermoelectrics from cellular nanostructured Sb2Si2Te6 Joule 4 159-75 doi: 10.1016/j.joule.2019.10.010
    Goldsmid H J 2016 Introduction to ThermoelectricitySpringer
    He J, Kanatzidis M G, Dravid V P 2013 High performance bulk thermoelectrics via a panoscopic approach Mater. Today 16 166-76 doi: 10.1016/j.mattod.2013.05.004
    Zheng Y, et al 2015 Mechanically robust BiSbTe alloys with superior thermoelectric performance: a case study of stable hierarchical nanostructured thermoelectric materials Adv. Energy Mater. 5 1401391 doi: 10.1002/aenm.201401391
    Xie H, Su X, Zheng G, Zhu T, Yin K, Yan Y, Uher C, Kanatzidis M G, Tang X 2016 The role of Zn in chalcopyrite CuFeS2: enhanced thermoelectric properties of Cu1-xZnxFeS2 with in situ nanoprecipitates Adv. Energy Mater. 7 1601299 doi: 10.1002/aenm.201601299
    Xie H, Su X, Yan Y, Liu W, Chen L, Fu J, Yang J, Uher C, Tang X 2017 Thermoelectric performance of CuFeS2+2x composites prepared by rapid thermal explosion NPG Asia Mater. 9 e390 doi: 10.1038/am.2017.80
    Biswas K, He J, Blum I D, Wu C I, Hogan T P, Seidman D N, Dravid V P, Kanatzidis M G 2012 High-performance bulk thermoelectrics with all-scale hierarchical architectures Nature 489 414-8 doi: 10.1038/nature11439
    Zhao L D, et al 2011 High performance thermoelectrics from earth-abundant materials: enhanced figure of merit in PbS by second phase nanostructures J. Am. Chem. Soc. 133 20476-87 doi: 10.1021/ja208658w
    Zhao L D, He J, Hao S, Wu C I, Hogan T P, Wolverton C, Dravid V P, Kanatzidis M G 2012 Raising the thermoelectric performance of p-type PbS with endotaxial nanostructuring and valence-band offset engineering using CdS and ZnS J. Am. Chem. Soc. 134 16327-36 doi: 10.1021/ja306527n
    Zhao W, et al 2015 Multi-localization transport behaviour in bulk thermoelectric materials Nat. Commun. 6 6197 doi: 10.1038/ncomms7197
    Duan B, et al 2016 Electronegative guests in CoSb3 Energy Environ. Sci. 9 2090-8 doi: 10.1039/C6EE00322B
    Qin D, Shi W, Xue W, Qin H, Cao J, Cai W, Wang Y, Sui J 2020 Solubility study of Y in n-type YxCe0.15Co4Sb12 skutterudites and its effect on thermoelectric properties Mater. Today Phys. 13 100206 doi: 10.1016/j.mtphys.2020.100206
    Meng X, Liu Z, Cui B, Qin D, Geng H, Cai W, Fu L, He J, Ren Z, Sui J 2017 Grain boundary engineering for achieving high thermoelectric performance in n-type skutterudites Adv. Energy Mater. 7 1602582 doi: 10.1002/aenm.201602582
    Fu J, Su X, Zheng Y, Xie H, Yan Y, Tang X, Uher C 2015 Thermoelectric properties of Ga/Ag codoped type-III Ba24Ge100 clathrates with in situ nanostructures ACS Appl. Mater. Interfaces 7 19172-8 doi: 10.1021/acsami.5b04910
    Xie H, et al 2019 Origin of intrinsically low thermal conductivity in talnakhite Cu17.6Fe17.6S32 thermoelectric material: correlations between lattice dynamics and thermal transport J. Am. Chem. Soc. 141 10905-14 doi: 10.1021/jacs.9b05072
    Liu H, Shi X, Xu F, Zhang L, Zhang W, Chen L, Li Q, Uher C, Day T, Snyder G J 2012 Copper ion liquid-like thermoelectrics Nat. Mater. 11 422-5 doi: 10.1038/nmat3273
    Qiu P, et al 2019 High-efficiency and stable thermoelectric module based on liquid-like materials Joule 3 1538-48 doi: 10.1016/j.joule.2019.04.010
    Yang D, et al 2020 Blocking ion migration stabilizes the high thermoelectric performance in Cu2Se composites Adv. Mater. 32 e2003730 doi: 10.1002/adma.202003730
    Bailey T P, Hui S, Xie H, Olvera A, Poudeu P F P, Tang X, Uher C 2016 Enhanced ZT and attempts to chemically stabilize Cu2Se via Sn doping J. Mater. Chem. A 4 17225-35 doi: 10.1039/C6TA06445K
    Jiang B, Wang W, Liu S, Wang Y, Wang C, Chen Y, Xie L, Huang M, He J 2022 High figure-of-merit and power generation in high-entropy GeTe-based thermoelectrics Science 377 208-13 doi: 10.1126/science.abq5815
    Jiang B, et al 2021 High-entropy-stabilized chalcogenides with high thermoelectric performance Science 371 830-4 doi: 10.1126/science.abe1292
    Liu Y, et al 2023 Unraveling the role of entropy in thermoelectrics: entropy-stabilized quintuple rock salt PbGeSnCd(x)Te(3+x) J. Am. Chem. Soc. 145 8677-88 doi: 10.1021/jacs.3c01693
    Luo Y, Hao S, Cai S, Slade T J, Luo Z Z, Dravid V P, Wolverton C, Yan Q, Kanatzidis M G 2020 High thermoelectric performance in the new cubic semiconductor AgSnSbSe3 by high-entropy engineering J. Am. Chem. Soc. 142 15187-98 doi: 10.1021/jacs.0c07803
    Luo Y, Xu T, Ma Z, Zhang D, Guo Z, Jiang Q, Yang J, Yan Q, Kanatzidis M G 2021 Cubic AgMnSbTe3 semiconductor with a high thermoelectric performance J. Am. Chem. Soc. 143 13990-8 doi: 10.1021/jacs.1c07522
    Boin E S, Malliakas C D, Souvatzis P, Proffen T, Spaldin N A, Kanatzidis M G, Billinge S J L 2010 Entropically stabilized local dipole formation in lead chalcogenides Science 330 1660-3 doi: 10.1126/science.1192759
    Luo -Z-Z, et al 2018 Soft phonon modes from off-center Ge atoms lead to ultralow thermal conductivity and superior thermoelectric performance in n-type PbSe-GeSe Energy Environ. Sci. 11 3220-30 doi: 10.1039/C8EE01755G
    Cai S, et al 2020 Discordant nature of Cd in PbSe: off-centering and core-shell nanoscale CdSe precipitates lead to high thermoelectric performance Energy Environ. Sci. 13 200-11 doi: 10.1039/C9EE03087E
    Xie H, Bozin E S, Li Z, Abeykoon M, Banerjee S, Male J P, Snyder G J, Wolverton C, Billinge S J L, Kanatzidis M G 2022 Hidden local symmetry breaking in silver diamondoid compounds is root cause of ultralow thermal conductivity Adv. Mater. 34 e2202255 doi: 10.1002/adma.202202255
    Xie H, Hao S, Bao J, Slade T J, Snyder G J, Wolverton C, Kanatzidis M G 2020 All-inorganic halide perovskites as potential thermoelectric materials: dynamic cation off-centering induces ultralow thermal conductivity J. Am. Chem. Soc. 142 9553-63 doi: 10.1021/jacs.0c03427
    Xie H 2022 The role of off-centering behavior and acoustic-optical phonon coupling in heat transport Mater. Lab 1 220051 doi: 10.54227/mlab.20220051
    Xie H, Li Z, Liu Y, Zhang Y, Uher C, Dravid V P, Wolverton C, Kanatzidis M G 2023 Silver atom off-centering in diamondoid solid solutions causes crystallographic distortion and suppresses lattice thermal conductivity J. Am. Chem. Soc. 145 3211-20 doi: 10.1021/jacs.2c13179
    Xie H, et al 2022 High thermoelectric performance in chalcopyrite Cu1-xAgxGaTe2-ZnTe: nontrivial band structure and dynamic doping effect J. Am. Chem. Soc. 144 9113-25 doi: 10.1021/jacs.2c02726
    Laing C C, Weiss B E, Pal K, Quintero M A, Xie H, Zhou X, Shen J, Chung D Y, Wolverton C, Kanatzidis M G 2022 ACuZrQ3 (A = Rb,Cs;Q = S,Se, Te): direct bandgap semiconductors and metals with ultralow thermal conductivity Chem. Mater. 34 8389-402 doi: 10.1021/acs.chemmater.2c02104
    Bozin E S, Yin W G, Koch R J, Abeykoon M, Hor Y S, Zheng H, Lei H C, Petrovic C, Mitchell J F, Billinge S J L 2019 Local orbital degeneracy lifting as a precursor to an orbital-selective Peierls transition Nat. Commun. 10 3638 doi: 10.1038/s41467-019-11372-w
    Li Z, Xie H, Hao S, Xia Y, Su X, Kanatzidis M G, Wolverton C, Tang X 2021 Optical phonon dominated heat transport: a first-principles thermal conductivity study of BaSnS2 Phys. Rev. B 104 245209 doi: 10.1103/PhysRevB.104.245209
    Li Z, Xie H, Xia Y, Hao S, Pal K, Kanatzidis M G, Wolverton C, Tang X 2022 Weak-bonding elements lead to high thermoelectric performance in BaSnS3 and SrSnS3: a first-principles study Chem. Mater. 34 1289-301 doi: 10.1021/acs.chemmater.1c03987
    Delaire O, et al 2011 Giant anharmonic phonon scattering in PbTe Nat. Mater. 10 614-9 doi: 10.1038/nmat3035
    Xie H, Hao S, Cai S, Bailey T P, Uher C, Wolverton C, Dravid V P, Kanatzidis M G 2020 Ultralow thermal conductivity in diamondoid lattices: high thermoelectric performance in chalcopyrite Cu0.8+yAg0.2In1yTe2 Energy Environ. Sci. 13 3693-705 doi: 10.1039/D0EE02323J
    Xie H, et al 2021 Ultralow thermal conductivity in diamondoid structures and high thermoelectric performance in (Cu1-xAgx)(In1-yGay)Te2 J. Am. Chem. Soc. 143 5978-89 doi: 10.1021/jacs.1c01801
    Waghmare U V, Spaldin N A, Kandpal H C, Seshadri R 2003 First-principles indicators of metallicity and cation off-centricity in the IV-VI rocksalt chalcogenides of divalent Ge, Sn, and Pb Phys. Rev. B 67 125111 doi: 10.1103/PhysRevB.67.125111
    Bozin E S, Xie H, Abeykoon A M M, Everett S M, Tucker M G, Kanatzidis M G, Billinge S 2023 Local Sn dipolar-character displacements behind the low thermal conductivity in SnSe thermoelectric Phys. Rev. Lett. 131 036101 doi: 10.1103/PhysRevLett.131.036101
    Knox K R, Bozin E S, Malliakas C D, Kanatzidis M G, Billinge S J L 2014 Local off-centering symmetry breaking in the high-temperature regime of SnTe Phys. Rev. B 89 014102 doi: 10.1103/PhysRevB.89.014102
    Banik A, Ghosh T, Arora R, Dutta M, Pandey J, Acharya S, Soni A, Waghmare U V, Biswas K 2019 Engineering ferroelectric instability to achieve ultralow thermal conductivity and high thermoelectric performance in Sn1xGexTe Energy Environ. Sci. 12 589-95 doi: 10.1039/C8EE03162B
    Dutta M, Pal K, Etter M, Waghmare U V, Biswas K 2021 Emphanisis in cubic (SnSe)0.5(AgSbSe2)0.5: dynamical off-centering of anion leads to low thermal conductivity and high thermoelectric performance J. Am. Chem. Soc. 143 16839-48 doi: 10.1021/jacs.1c08931
    Dutta M, Prasad M V D, Pandey J, Soni A, Waghmare U V, Biswas K 2022 Local symmetry breaking suppresses thermal conductivity in crystalline solids Angew. Chem. 61 e202200071 doi: 10.1002/anie.202200071
    Fabini D H, et al 2016 Dynamic stereochemical activity of the Sn(2+) lone pair in perovskite CsSnBr3 J. Am. Chem. Soc. 138 11820-32 doi: 10.1021/jacs.6b06287
    Xie H, Su X, Hao S, Zhang C, Zhang Z, Liu W, Yan Y, Wolverton C, Tang X, Kanatzidis M G 2019 Large thermal conductivity drops in the diamondoid lattice of CuFeS2 by discordant atom doping J. Am. Chem. Soc. 141 18900-9 doi: 10.1021/jacs.9b10983
    Hodges J M, et al 2018 Chemical insights into PbSe-x%HgSe: high power factor and improved thermoelectric performance by alloying with discordant atoms J. Am. Chem. Soc. 140 18115-23 doi: 10.1021/jacs.8b11050
  • 加载中



    Article Metrics

    Article Views(200) PDF downloads(61)
    Article Statistics
    Related articles from


    DownLoad:  Full-Size Img  PowerPoint