Volume 3 Issue 2
June  2024
Turn off MathJax
Article Contents
Junfeng Xiao, Mengxing Zhang, Fei Zhai, Hongrui Wei, Sen Liu, Peng Wang, Zhiyang Liu, Zhongying Ji, Xiaolong Wang. 3D printed modular Bouligand dissipative structures with adjustable mechanical properties for gradient energy absorbing[J]. Materials Futures, 2024, 3(2): 025001. doi: 10.1088/2752-5724/ad22cf
Citation: Junfeng Xiao, Mengxing Zhang, Fei Zhai, Hongrui Wei, Sen Liu, Peng Wang, Zhiyang Liu, Zhongying Ji, Xiaolong Wang. 3D printed modular Bouligand dissipative structures with adjustable mechanical properties for gradient energy absorbing[J]. Materials Futures, 2024, 3(2): 025001. doi: 10.1088/2752-5724/ad22cf
Paper •

3D printed modular Bouligand dissipative structures with adjustable mechanical properties for gradient energy absorbing

© 2024 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory
Materials Futures, Volume 3, Number 2
  • Received Date: 2023-12-19
  • Accepted Date: 2024-01-21
  • Rev Recd Date: 2024-01-17
  • Publish Date: 2024-02-08
  • AbstractThree-dimensional (3D) printing allows for the creation of complex, layered structures with precise micro and macro architectures that are not achievable through traditional methods. By designing 3D structures with geometric precision, it is possible to achieve selective regulation of mechanical properties, enabling efficient dissipation of mechanical energy. In this study, a series of modular samples inspired by the Bouligand structure were designed and produced using a direct ink writing system, along with a classical printable polydimethylsiloxane ink. By altering the angles of filaments in adjacent layers (from 30° to 90°) and the filament spacing during printing (from 0.8 mm to 2.4 mm), the mechanical properties of these modular samples can be adjusted. Compression mechanical testing revealed that the 3D printed modular Bouligand structures exhibit stress-strain responses that enable multiple adjustments of the elastic modulus from 0.06 MPa to over 0.8 MPa. The mechanical properties were adjusted more than 10 times in printed samples prepared using uniform materials. The gradient control mechanism of mechanical properties during this process was analyzed using finite element analysis. Finally, 3D printed customized modular Bouligand structures can be assembled to create an array with Bouligand structures displaying various orientations and interlayer details tailored to specific requirements. By decomposing the original Bouligand structure and then assembling the modular samples into a specialized array, this research aims to provide parameters for achieving gradient energy absorption structures through modular 3D printing.
  • loading
  • Conflict of interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

  • [1]
    Tanaka K, Chujo Y 2013 Chemicals-inspired biomaterials: developing biomaterials inspired by material science based on POSS Bull. Chem. Soc. Japan 86 1231-9 doi: 10.1246/bcsj.20130182
    Tony A, Badea I, Yang C, Liu Y, Wells G, Wang K, Yin R, Zhang H, Zhang W 2023 The additive manufacturing approach to polydimethylsiloxane (PDMS) microfluidic devices: review and future directions Polymers 15 1926 doi: 10.3390/polym15081926
    Eduok U, Faye O, Szpunar J 2017 Recent developments and applications of protective silicone coatings: a review of PDMS functional materials Prog. Org. Coat. 111 124-63 doi: 10.1016/j.porgcoat.2017.05.012
    Liu C, Ding J 2021 Material extrusion 3D printing of carbon material reinforced PDMS matrix composites and their mechanical properties 49th SME North American Manufacturing Research Conf.vol 53 450-510.1016/j.promfg.2021.06.048
    Mazurek P, Vudayagiri S, Skov A L 2019 How to tailor flexible silicone elastomers with mechanical integrity: a tutorial review Chem. Soc. Rev. 48 1448-64 doi: 10.1039/C8CS00963E
    Hinton T J, Hudson A, Pusch K, Lee A, Feinberg A W 2016 3D printing PDMS elastomer in a hydrophilic support bath via freeform reversible embedding ACS Biomater. Sci. Eng. 2 1781-6 doi: 10.1021/acsbiomaterials.6b00170
    McCoul D, Rosset S, Schlatter S, Shea H 2017 Inkjet 3D printing of UV and thermal cure silicone elastomers for dielectric elastomer actuators Smart Mater. Struct. 26 125022 doi: 10.1088/1361-665X/aa9695
    Zhao T, Yu R, Lo S, Li X, Zhang Y, Yang X, Zhao X, Wang C, Liu Z, Dou R 2019 Superstretchable and processable silicone elastomers by digital light processing 3D printing ACS Appl. Mater. Interfaces 11 14391-8 doi: 10.1021/acsami.9b03156
    Dahlberg T, Stangner T, Zhang H, Wiklund K, Lundberg P, Edman L, Andersson M 2018 3D printed water-soluble scaffolds for rapid production of PDMS micro-fluidic flow chambers Sci. Rep. 8 3372 doi: 10.1038/s41598-018-21638-w
    Thrasher C J, Schwartz J J, Boydston A J 2017 Modular elastomer photoresins for digital light processing additive manufacturing ACS Appl. Mater. Interfaces 9 39708-16 doi: 10.1021/acsami.7b13909
    Zhai F, Feng Y, Li Z, Xie Y, Ge J, Wang H, Qiu W, Feng W 2021 4D printed untethered self-propelling soft robot with tactile perception: rolling, racing, and exploring Matter 4 3313-26 doi: 10.1016/j.matt.2021.08.014
    Song L, Lu A, Feng P, Lu Z 2014 Preparation of silicone rubber foam using supercritical carbon dioxide Mater. Lett. 121 126-8 doi: 10.1016/j.matlet.2014.01.125
    Roh S, Parekh D P, Bharti B, Stoyanov S D, Velev O D 2017 3D printing by multiphase silicone/water capillary inks Adv. Mater. 29 1701554 doi: 10.1002/adma.201701554
    Xu X, Fang Z, Jin B, Mu H, Shi Y, Xu Y, Chen G, Zhao Q, Zheng N, Xie T 2023 Regenerative living 4D printing via reversible growth of polymer networks Adv. Mater. 35 2209824 doi: 10.1002/adma.202209824
    Wu H, Chen P, Yan C, Cai C, Shi Y 2019 Four-dimensional printing of a novel acrylate-based shape memory polymer using digital light processing Mater. Des. 171 107704 doi: 10.1016/j.matdes.2019.107704
    Bhattacharjee N, Parra-Cabrera C, Kim Y T, Kuo A P, Folch A 2018 Desktop-stereolithography 3D-printing of a poly (dimethylsiloxane)-based material with Sylgard-184 properties Adv. Mater. 30 1800001 doi: 10.1002/adma.201800001
    Femmer T, Kuehne A J, Wessling M 2014 Print your own membrane: direct rapid prototyping of polydimethylsiloxane Lab Chip 14 2610-3 doi: 10.1039/c4lc00320a
    Zhou L, Gao Q, Fu J, Chen Q, Zhu J, Sun Y, He Y 2019 Multimaterial 3D printing of highly stretchable silicone elastomers ACS Appl. Mater. Interfaces 11 23573-83 doi: 10.1021/acsami.9b04873
    O’Bryan C S, Bhattacharjee T, Hart S, Kabb C P, Schulze K D, Chilakala I, Sumerlin B S, Sawyer W G, Angelini T E 2017 Self-assembled micro-organogels for 3D printing silicone structures Sci. Adv. 3 e1602800 doi: 10.1126/sciadv.1602800
    Muthusamy M, Safaee S, Chen R 2018 Additive manufacturing of overhang structures using moisture-cured silicone with support material J. Manuf. Mater. Process. 2 24 doi: 10.3390/jmmp2020024
    Porter D A, Cohen A L, Krueger P S, Son D Y 2018 Additive manufacturing with ultraviolet curable silicones containing carbon black 3D Print. Addit. Manuf. 5 73-86 doi: 10.1089/3dp.2017.0019
    Zhai F, Feng Y, Zhou K, Wang L, Zheng Z, Feng W 2019 Graphene-based chiral liquid crystal materials for optical applications J. Mater. Chem. C 7 2146-71 doi: 10.1039/C8TC04947E
    Lewis J A 2006 Direct ink writing of 3D functional materials Adv. Funct. Mater. 16 2193-204 doi: 10.1002/adfm.200600434
    Zhu X, et al 2023 Stress relaxation behavior of 3D printed silicone rubber foams with different topologies under uniaxial compressive load Compos. Commun. 38 101475 doi: 10.1016/j.coco.2022.101475
    Van Meerbeek I M, Lenhardt J M, Small W, Bryson T M, Duoss E B, Weisgraber T H 2022 Compressive properties of silicone Bouligand structures MRS Bull. 48 325-31 doi: 10.1557/s43577-022-00398-z
    Wu A S, Small W, Bryson T M, Cheng E, Metz T R, Schulze S E, Duoss E B, Wilson T S 2017 3D printed silicones with shape memory Sci. Rep. 7 4664 doi: 10.1038/s41598-017-04663-z
    Wen S, Chen S, Gao W, Zheng Z, Bao J, Cui C, Liu S, Gao H, Yu S 2023 Biomimetic gradient Bouligand structure enhances impact resistance of ceramic-polymer composites Adv. Mater. 35 2211175 doi: 10.1002/adma.202211175
    Yang Y, Chen Z, Song X, Zhang Z, Zhang J, Shung K K, Zhou Q, Chen Y 2017 Biomimetic anisotropic reinforcement architectures by electrically assisted nanocomposite 3D printing Adv. Mater. 29 1605750 doi: 10.1002/adma.201605750
    Liu S, Dong X, Wang Y, Xiong J, Guo R, Xiao J, Sun C, Zhai F, Wang X 2023 4D printing of shape memory epoxy for adaptive dynamic components Adv. Mater. Technol. 8 2202004 doi: 10.1002/admt.202202004
    Ji Z, Jiang D, Zhang X, Guo Y, Wang X 2020 Facile photo and thermal two-stage curing for high-performance 3D printing of Poly (Dimethylsiloxane) Macromol. Rapid Commun. 10 2000064 doi: 10.1002/marc.202000064
    Yang X, Wu T, Liu D, Wu J, Wang Y, Lu Y, Ji Z, Jia X, Jiang P, Wang X 2023 3D printing of release-agent retaining molds Addit. Manuf. 71 103580 doi: 10.1016/j.addma.2023.103580
    Wang H, et al 2023 A smart mechanical-energy harvesting and self-heating textile device for photo-thermal energy utilization Ecomat 5 e12337 doi: 10.1002/eom2.12337
    Wang J, Sun S, Li X, Fei G, Wang Z, Xia H 2023 Selective laser sintering of polydimethylsiloxane composite 3D Print. Addit. Manuf. 10 684-96 doi: 10.1089/3dp.2021.0105
    Zhang P, Deng B, Zhu K, Zhou Q, Zhang S, Sun W, Zheng Z, Liu W 2022 Wide-temperature range thermoregulating e-skin design through a hybrid structure of flexible thermoelectric devices and phase change materials heat sink Ecomat 4 e12253 doi: 10.1002/eom2.12253
    Truby R L, Lewis J A 2016 Printing soft matter in three dimensions Nature 540 371-8 doi: 10.1038/nature21003
  • 加载中



    Article Metrics

    Article Views(434) PDF downloads(77)
    Article Statistics
    Related articles from


    DownLoad:  Full-Size Img  PowerPoint