Volume 3 Issue 2
June  2024
Turn off MathJax
Article Contents
Miao Liu, Sheng Meng. Recent breakthrough in AI-driven materials science: tech giants introduce groundbreaking models[J]. Materials Futures, 2024, 3(2): 027501. doi: 10.1088/2752-5724/ad2e0c
Citation: Miao Liu, Sheng Meng. Recent breakthrough in AI-driven materials science: tech giants introduce groundbreaking models[J]. Materials Futures, 2024, 3(2): 027501. doi: 10.1088/2752-5724/ad2e0c
Commentary •
OPEN ACCESS

Recent breakthrough in AI-driven materials science: tech giants introduce groundbreaking models

© 2024 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory
Materials Futures, Volume 3, Number 2
  • Received Date: 2024-02-09
  • Accepted Date: 2024-02-28
  • Publish Date: 2024-03-07
  • A close look at Google’s GNoME inorganic materials dataset (Merchant et al 2023 Nature 624 80–85), and 11 things you would like to know.

  • loading
  • [1]
    Merchant A, Batzner S, Schoenholz S S, Aykol M, Cheon G and Cubuk E D 2023 Scaling deep learning for materials discovery Nature 624 80–85
    [2]
    Zeni C et al 2023 MatterGen: a generative model for inorganic materials design (arXiv:2312.03687)
    [3]
    Chen C et al 2024 Accelerating computational materials discovery with artificial intelligence and cloud high-performance computing: from large-scale screening to experimental validation (arXiv:2401.04070)
    [4]
    Jain A et al 2013 Commentary: the materials project: a materials genome approach to accelerating materials innovation APL Mater. 1 011002
    [5]
    Saal J E, Kirklin S, Aykol M, Meredig B and Wolverton C 2013 Materials design and discovery with highthroughput density functional theory: the open quantum materials database (OQMD) JOM 65 1501–9
    [6]
    Chen C and Ong S P 2022 A universal graph deep learning interatomic potential for the periodic table Nat. Comput. Sci. 2 718–28
    [7]
    Deng B, Zhong P, Jun K, Riebesell J, Han K, Bartel C J and Ceder G 2023 CHGNet as a pretrained universal neural network potential for charge-informed atomistic modelling Nat. Mach. Intell. 5 1031–41
  • 加载中

Catalog

    Figures(1)

    Article Metrics

    Article Views(156) PDF downloads(36)
    Article Statistics
    Related articles from

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return