Citation: | Chuan Ning, Shengxin Xiang, Xiupeng Sun, Xinya Zhao, Chuanhui Wei, Lele Li, Guoqiang Zheng, Kai Dong. Highly stretchable kirigami-patterned nanofiber-based nanogenerators for harvesting human motion energy to power wearable electronics[J]. Materials Futures, 2024, 3(2): 025101. doi: 10.1088/2752-5724/ad2f6a |
Conflict of interest
The authors declare no conflict of interest.
Author contributions
C N was responsible for characterization, testing and writing the manuscript. S X and X Z helped with testing electrical output and shooting video. X S and C W performed the calculations and analyzed the results. L L and G Z reviewed and revised the manuscript. G Z led this project. K D supervised the research and wrote the final version of the manuscript.
[1] |
Trung T Q, Lee N E 2016 Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare Adv. Mater. 28 4338-72 doi: 10.1002/adma.201504244
|
[2] |
Wang C, Xia K, Wang H, Liang X, Yin Z, Zhang Y 2018 Advanced carbon for flexible and wearable electronics Adv. Mater. 31 9 doi: 10.1002/adma.201801072
|
[3] |
Libanori A, Chen G, Zhao X, Zhou Y, Chen J 2022 Smart textiles for personalized healthcare Nat. Electron. 5 142-56 doi: 10.1038/s41928-022-00723-z
|
[4] |
Miyamoto A, et al 2017 Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes Nat. Nanotechnol. 12 907-13 doi: 10.1038/nnano.2017.125
|
[5] |
Tang W, Sun Q, Wang Z L 2023 Self-powered sensing in wearable electronicsa paradigm shift technology Chem. Rev. 123 12105-34 doi: 10.1021/acs.chemrev.3c00305
|
[6] |
Dong K, Peng X, Wang Z L 2019 Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence Adv. Mater. 32 1902549 doi: 10.1002/adma.201902549
|
[7] |
Ning C, Dong K, Cheng R, Yi J, Ye C, Peng X, Sheng F, Jiang Y, Wang Z L 2020 Flexible and stretchable fiber-shaped triboelectric nanogenerators for biomechanical monitoring and human-interactive sensing Adv. Funct. Mater. 31 2006679 doi: 10.1002/adfm.202006679
|
[8] |
Wu C, Wang A C, Ding W, Guo H, Wang Z L 2019 Triboelectric nanogenerator: a foundation of the energy for the new era Adv. Energy Mater. 9 1802906 doi: 10.1002/aenm.201802906
|
[9] |
Liu R, Wang Z L, Fukuda K, Someya T 2022 Flexible self-charging power sources Nat. Rev. Mater. 7 870-86 doi: 10.1038/s41578-022-00441-0
|
[10] |
Matsuhisa N, Chen X, Bao Z, Someya T 2019 Materials and structural designs of stretchable conductors Chem. Soc. Rev. 48 2946-66 doi: 10.1039/C8CS00814K
|
[11] |
He M, Du W, Feng Y, Li S, Wang W, Zhang X, Yu A, Wan L, Zhai J 2021 Flexible and stretchable triboelectric nanogenerator fabric for biomechanical energy harvesting and self-powered dual-mode human motion monitoring Nano Energy 86 106058 doi: 10.1016/j.nanoen.2021.106058
|
[12] |
Fan F R, Tian Z-Q, Wang Z L 2012 Flexible triboelectric generator Nano Energy 1 328-34 doi: 10.1016/j.nanoen.2012.01.004
|
[13] |
Fan F R, Lin L, Zhu G, Wu W, Zhang R, Wang Z L 2012 Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films Nano Lett. 12 3109-14 doi: 10.1021/nl300988z
|
[14] |
Ning C, Tian L, Zhao X, Xiang S, Tang Y, Liang E, Mao Y 2018 Washable textile-structured single-electrode triboelectric nanogenerator for self-powered wearable electronics J. Mater. Chem. A 6 19143-50 doi: 10.1039/C8TA07784C
|
[15] |
Dong K, Wu Z, Deng J, Wang A C, Zou H, Chen C, Hu D, Gu B, Sun B, Wang Z L 2018 A stretchable yarn embedded triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and multifunctional pressure sensing Adv. Mater. 30 e1804944 doi: 10.1002/adma.201804944
|
[16] |
Cheng R, Dong K, Chen P, Ning C, Peng X, Zhang Y, Liu D, Wang Z L 2021 High output direct-current power fabrics based on the air breakdown effect Energ. Environ. Sci. 14 2460-71 doi: 10.1039/D1EE00059D
|
[17] |
Dong K, et al 2017 3D orthogonal woven triboelectric nanogenerator for effective biomechanical energy harvesting and as self-powered active motion sensors Adv. Mater. 29 38 doi: 10.1002/adma.201702648
|
[18] |
Li Z, Shen J, Abdalla I, Yu J, Ding B 2017 Nanofibrous membrane constructed wearable triboelectric nanogenerator for high performance biomechanical energy harvesting Nano Energy 36 341-8 doi: 10.1016/j.nanoen.2017.04.035
|
[19] |
Souri H, Banerjee H, Jusufi A, Radacsi N, Stokes A A, Park I, Sitti M, Amjadi M 2020 Wearable and stretchable strain sensors: materials, sensing mechanisms, and applications Adv. Intell. Syst. 2 2000039 doi: 10.1002/aisy.202000039
|
[20] |
Gong W, Hou C, Guo Y, Zhou J, Mu J, Li Y, Zhang Q, Wang H 2017 A wearable, fibroid, self-powered active kinematic sensor based on stretchable sheath-core structural triboelectric fibers Nano Energy 39 673-83 doi: 10.1016/j.nanoen.2017.08.003
|
[21] |
Ning C, Cheng R, Jiang Y, Sheng F, Yi J, Shen S, Zhang Y, Peng X, Dong K, Wang Z L 2022 Helical fiber strain sensors based on triboelectric nanogenerators for self-powered human respiratory monitoring ACS Nano 16 2811-21 doi: 10.1021/acsnano.1c09792
|
[22] |
Cao W T, Ouyang H, Xin W, Chao S, Ma C, Li Z, Chen F, Ma M G 2020 A stretchable highoutput triboelectric nanogenerator improved by MXene liquid electrode with high electronegativity Adv. Funct. Mater. 30 2004181 doi: 10.1002/adfm.202004181
|
[23] |
Jin G, Sun Y, Geng J, Yuan X, Chen T, Liu H, Wang F, Sun L 2021 Bioinspired soft caterpillar robot with ultra-stretchable bionic sensors based on functional liquid metal Nano Energy 84 105896 doi: 10.1016/j.nanoen.2021.105896
|
[24] |
Yi F, et al 2016 A highly shape-adaptive, stretchable design based on conductive liquid for energy harvesting and self-powered biomechanical monitoring Sci. Adv. 2 e1501624 doi: 10.1126/sciadv.1501624
|
[25] |
Cao Z, Wang R, He T, Xu F, Sun J 2018 Interface-controlled conductive fibers for wearable strain sensors and stretchable conducting wires ACS Appl. Mater. Interfaces 10 14087-96 doi: 10.1021/acsami.7b19699
|
[26] |
Tang Z, Jia S, Wang F, Bian C, Chen Y, Wang Y, Li B 2018 Highly stretchable core-sheath fibers via wet-spinning for wearable strain sensors ACS Appl. Mater. Interfaces 10 6624-35 doi: 10.1021/acsami.7b18677
|
[27] |
Lai Y C, Deng J, Niu S, Peng W, Wu C, Liu R, Wen Z, Wang Z L 2016 Electric eel-skin-inspired mechanically durable and super-stretchable nanogenerator for deformable power source and fully autonomous conformable electronic-skin applications Adv. Mater. 28 10024-32 doi: 10.1002/adma.201603527
|
[28] |
Lin M, Zheng Z, Yang L, Luo M, Fu L, Lin B, Xu C 2021 A high-performance, sensitive, wearable multifunctional sensor based on rubber/CNT for human motion and skin temperature detection Adv. Mater. 34 e2107309 doi: 10.1002/adma.202107309
|
[29] |
Wen Z, et al 2018 A wrinkled PEDOT:PSS film based stretchable and transparent triboelectric nanogenerator for wearable energy harvesters and active motion sensors Adv. Funct. Mater. 28 1803684 doi: 10.1002/adfm.201803684
|
[30] |
Guo H, Lan C, Zhou Z, Sun P, Wei D, Li C 2017 Transparent, flexible, and stretchable WS2 based humidity sensors for electronic skin Nanoscale 9 6246-53 doi: 10.1039/C7NR01016H
|
[31] |
Wu C, Wang X, Lin L, Guo H, Wang Z L 2016 Paper-based triboelectric nanogenerators made of stretchable interlocking kirigami patterns ACS Nano 10 4652-9 doi: 10.1021/acsnano.6b00949
|
[32] |
Park J J, Won P, Ko S H 2019 A review on hierarchical origami and kirigami structure for engineering applications Int. J. Precis. Eng. Manuf. 6 147-61 doi: 10.1007/s40684-019-00027-2
|
[33] |
Shyu T C, Damasceno P F, Dodd P M, Lamoureux A, Xu L, Shlian M, Shtein M, Glotzer S C, Kotov N A 2015 A kirigami approach to engineering elasticity in nanocomposites through patterned defects Nat. Mater. 14 785-9 doi: 10.1038/nmat4327
|
[34] |
Guan Y S, Zhang Z, Tang Y, Yin J, Ren S 2018 Kirigami-inspired nanoconfined polymer conducting nanosheets with 2000% stretchability Adv. Mater. 30 e1706390 doi: 10.1002/adma.201706390
|
[35] |
Ma R, Wu C, Wang Z L, Tsukruk V V 2018 Pop-up conducting large-area biographene kirigami ACS Nano 12 9714-20 doi: 10.1021/acsnano.8b04507
|
mfad2f6asupp1-5.zip |