Citation: | Huijun Kong, Weiyan Li, Zhongqian Song, Li Niu. Recent advances in multimodal sensing integration and decoupling strategies for tactile perception[J]. Materials Futures, 2024, 3(2): 022501. doi: 10.1088/2752-5724/ad305e |
Author contributions
Huijun Kong: Conceptualization, Investigation, Writing—original draft. Weiyan Li: Investigation, Writing—original draft. Zhongqian Song: Conceptualization, Funding acquisition, Writing—review & editing. Li Niu: Supervision, Funding acquisition, review & editing.
Conflict of interest
The authors declare no conflict of interests.
[1] |
Bai N, et al 2023 A robotic sensory system with high spatiotemporal resolution for texture recognition Nat. Commun. 14 7121 doi: 10.1038/s41467-023-42722-4
|
[2] |
Hua Q, Sun J, Liu H, Bao R, Yu R, Zhai J, Pan C, Wang Z L 2018 Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing Nat. Commun. 9 244 doi: 10.1038/s41467-017-02685-9
|
[3] |
Boutry C M, Negre M, Jorda M, Vardoulis O, Chortos A, Khatib O, Bao Z 2018 A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics Sci. Robot. 3 eaau6914 doi: 10.1126/scirobotics.aau6914
|
[4] |
Gao Y, et al 2023 Mechanoreceptor inspired electronic skin for multi-modal tactile information decoding Adv. Mater. Technol. 8 2200759 doi: 10.1002/admt.202200759
|
[5] |
Kim T, Lee S, Hong T, Shin G, Kim T, Park Y L 2020 Heterogeneous sensing in a multifunctional soft sensor for human-robot interfaces Sci. Robot. 5 eabc6878 doi: 10.1126/scirobotics.abc6878
|
[6] |
Qu X, Liu Z, Tan P, Wang C, Liu Y, Feng H, Luo D, Li Z, Wang Z L 2022 Artificial tactile perception smart finger for material identification based on triboelectric sensing Sci. Adv. 8 eabq2521 doi: 10.1126/sciadv.abq2521
|
[7] |
Li G, Liu S, Wang L, Zhu R 2020 Skin-inspired quadruple tactile sensors integrated on a robot hand enable object recognition Sci. Robot. 5 eabc8134 doi: 10.1126/scirobotics.abc8134
|
[8] |
Zhang X, Hu Z, Sun Q, Liang X, Gu P, Huang J, Zu G 2023 Bioinspired gradient stretchable aerogels for ultrabroad-range-response pressure-sensitive wearable electronics and high-efficient separators Angew. Chem., Int. Ed. 62 e202213952 doi: 10.1002/anie.202213952
|
[9] |
Zhang W, Wang P-L, Huang L-Z, Guo W-Y, Zhao J, Ma M-G 2023 A stretchable, environmentally tolerant, and photoactive liquid metal/MXene hydrogel for high performance temperature monitoring, human motion detection and self-powered application Nano Energy 117 108875 doi: 10.1016/j.nanoen.2023.108875
|
[10] |
Yuan H, Liao X, Wu K, Chen J, Chen K, Zhu T, Wang Y, Zhang J, Liu G, Sun J 2023 Hierarchical wrinklingcracking architectures for flexible pressure sensors Adv. Mater. Interfaces 10 2202169 doi: 10.1002/admi.202202169
|
[11] |
Hegde C, Su J, Tan J M R, He K, Chen X, Magdassi S 2023 Sensing in soft robotics ACS Nano 17 15277-307 doi: 10.1021/acsnano.3c04089
|
[12] |
Yang R, Zhang W, Tiwari N, Yan H, Li T, Cheng H 2022 Multimodal sensors with decoupled sensing mechanisms Adv. Sci. 9 202202470 doi: 10.1002/advs.202202470
|
[13] |
Wang X M, Tao L Q, Yuan M, Wang Z P, Yu J, Xie D, Luo F, Chen X, Wong C 2021 Sea urchin-like microstructure pressure sensors with an ultra-broad range and high sensitivity Nat. Commun. 12 1776 doi: 10.1038/s41467-021-21958-y
|
[14] |
Lee H J, et al 2021 Hetero-dimensional 2D Ti3C2Tx MXene and 1D graphene nanoribbon hybrids for machine learning-assisted pressure sensors ACS Nano 15 10347-56 doi: 10.1021/acsnano.1c02567
|
[15] |
Sharma S, Chhetry A, Zhang S, Yoon H, Park C, Kim H, Sharifuzzaman M, Hui X, Park J Y 2021 Hydrogen-bond-triggered hybrid nanofibrous membrane-based wearable pressure sensor with ultrahigh sensitivity over a broad pressure range ACS Nano 15 4380-93 doi: 10.1021/acsnano.0c07847
|
[16] |
Lv C, Tian C, Jiang J, Dang Y, Liu Y, Duan X, Li Q, Chen X, Xie M 2023 Ultrasensitive linear capacitive pressure sensor with wrinkled microstructures for tactile perception Adv. Sci. 10 e2206807 doi: 10.1002/advs.202206807
|
[17] |
Feng Z, He Q, Wang X, Lin Y, Qiu J, Wu Y, Yang J 2023 Capacitive sensors with hybrid dielectric structures and high sensitivity over a wide pressure range for monitoring biosignals ACS Appl. Mater. Interfaces 15 6217-27 doi: 10.1021/acsami.2c21885
|
[18] |
Yi Z, Liu Z, Li W, Ruan T, Chen X, Liu J, Yang B, Zhang W 2022 Piezoelectric dynamics of arterial pulse for wearable continuous blood pressure monitoring Adv. Mater. 34 e2110291 doi: 10.1002/adma.202110291
|
[19] |
Zhao Q Y, Yang L, Ma Y Z, Huang H J, He H Y, Ji H L, Wang Z F, Qiu J H 2021 Highly sensitive, reliable and flexible pressure sensor based on piezoelectric PVDF hybrid film using MXene nanosheet reinforcement J. Alloys Compd. 886 161069 doi: 10.1016/j.jallcom.2021.161069
|
[20] |
Yuan X, Gao X, Shen X, Yang J, Li Z, Dong S 2021 A 3D-printed, alternatively tilt-polarized PVDF-TrFE polymer with enhanced piezoelectric effect for self-powered sensor application Nano Energy 85 105985 doi: 10.1016/j.nanoen.2021.105985
|
[21] |
Zhao D, et al 2021 Eco-friendly in-situ gap generation of no-spacer triboelectric nanogenerator for monitoring cardiovascular activities Nano Energy 90 106580 doi: 10.1016/j.nanoen.2021.106580
|
[22] |
Pu X, Liu M, Chen X, Sun J, Du C, Zhang Y, Zhai J, Hu W, Wang Z L 2017 Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing Sci. Adv. 3 e1700015 doi: 10.1126/sciadv.1700015
|
[23] |
Guo H, et al 2018 A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids Sci. Robot. 3 eaat2516 doi: 10.1126/scirobotics.aat2516
|
[24] |
Fan W, He Q, Meng K, Tan X, Zhou Z, Zhang G, Yang J, Wang Z L 2020 Machine-knitted washable sensor array textile for precise epidermal physiological signal monitoring Sci. Adv. 6 eaay2840 doi: 10.1126/sciadv.aay2840
|
[25] |
Wang H, Wang W, Kim J J, Wang C, Wang Y, Wang B, Lee S, Yokota T, Someya T 2023 An optical-based multipoint 3-axis pressure sensor with a flexible thin-film form Sci. Adv. 9 eadi2445 doi: 10.1126/sciadv.adi2445
|
[26] |
Cao Y, Lewis L, Hamad W Y, MacLachlan M J 2019 Pressureresponsive hierarchical chiral photonic aerogels Adv. Mater. 31 1808186 doi: 10.1002/adma.201808186
|
[27] |
Larson C, Peele B, Li S, Robinson S, Totaro M, Beccai L, Mazzolai B, Shepherd R 2016 Highly stretchable electroluminescent skin for optical signaling and tactile sensing Science 351 1071-4 doi: 10.1126/science.aac5082
|
[28] |
Tao X, Liao S, Wang S, Wu D, Wang Y 2018 Body compatible thermometer based on green electrolytes ACS Sens. 3 1338-46 doi: 10.1021/acssensors.8b00249
|
[29] |
Tao X, Jia H, He Y, Liao S, Wang Y 2017 Ultrafast paper thermometers based on a green sensing ink ACS Sens. 2 449-54 doi: 10.1021/acssensors.7b00060
|
[30] |
Yokota T, et al 2015 Ultraflexible, large-area, physiological temperature sensors for multipoint measurements Proc. Natl Acad. Sci. 112 14533-8 doi: 10.1073/pnas.1515650112
|
[31] |
Gao X-Z, Gao F-L, Liu J, Li Y, Wan P, Yu Z-Z, Li X 2022 Self-powered resilient porous sensors with thermoelectric poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) and carbon nanotubes for sensitive temperature and pressure dual-mode sensing ACS Appl. Mater. Interfaces 14 43783-91 doi: 10.1021/acsami.2c12892
|
[32] |
Wang Y, et al 2020 Flexible capacitive humidity sensors based on ionic conductive wood-derived cellulose nanopapers ACS Appl. Mater. Interfaces 12 41896-904 doi: 10.1021/acsami.0c12868
|
[33] |
Kuang Q, Lao C, Wang Z L, Xie Z, Zheng L 2007 High-sensitivity humidity sensor based on a single SnO2 nanowire J. Am. Chem. Soc. 129 6070-1 doi: 10.1021/ja070788m
|
[34] |
Zheng H, Zhou A, Li Y, Chen X, Chen Y, Xu Y, Li Y, Ge H, Ning X 2023 A sandwich-like flexible nanofiber device boosts moisture induced electricity generation for power supply and multiple sensing applications Nano Energy 113 108529 doi: 10.1016/j.nanoen.2023.108529
|
[35] |
Cai T, Lan L, Peng B, Zhang C, Dai S, Zhang C, Ping J, Ying Y 2022 Bilayer wood membrane with aligned ion nanochannels for spontaneous moist-electric generation Nano Lett. 22 6476-83 doi: 10.1021/acs.nanolett.2c00919
|
[36] |
Li W-D, et al 2022 Recent advances in multiresponsive flexible sensors towards E-skin: a delicate design for versatile sensing Small 18 2103734 doi: 10.1002/smll.202103734
|
[37] |
Tu J, Wang M, Li W, Su J, Li Y, Lv Z, Li H, Feng X, Chen X 2023 Electronic skins with multimodal sensing and perception Soft Sci. 3 25 doi: 10.20517/ss.2023.15
|
[38] |
Tian S, Wang Y, Deng H, Wang Y, Zhang X 2023 Flexible pressure and temperature sensors towards e-skin: material, mechanism, structure and fabrication Soft Sci. 3 30 doi: 10.20517/ss.2023.21
|
[39] |
Luo Y, Shao J, Chen S, Chen X, Tian H, Li X, Wang L, Wang D, Lu B 2019 Flexible capacitive pressure sensor enhanced by tilted micropillar arrays ACS Appl. Mater. Interfaces 11 17796-803 doi: 10.1021/acsami.9b03718
|
[40] |
Yao C, et al 2023 Personalized machine learning-coupled nanopillar triboelectric pulse sensor for cuffless blood pressure continuous monitoring ACS Nano 17 24242-58 doi: 10.1021/acsnano.3c09766
|
[41] |
Wu S, et al 2023 Normal-direction graded hemispheres for ionic flexible sensors with a record-high linearity in a wide working range ACS Appl. Mater. Interfaces 15 47733-44 doi: 10.1021/acsami.3c09580
|
[42] |
Song Z, et al 2022 Merkel receptor-inspired integratable and biocompatible pressure sensor with linear and ultrahigh sensitive response for versatile applications Chem. Eng. J. 444 136481 doi: 10.1016/j.cej.2022.136481
|
[43] |
Chen Z, Hu Y, Zhuo H, Liu L, Jing S, Zhong L, Peng X, Sun R-C 2019 Compressible, elastic, and pressure-sensitive carbon aerogels derived from 2D titanium carbide nanosheets and bacterial cellulose for wearable sensors Chem. Mater. 31 3301-12 doi: 10.1021/acs.chemmater.9b00259
|
[44] |
Cao X, Zhang J, Chen S, Varley R J, Pan K 2020 1D/2D nanomaterials synergistic, compressible, and response rapidly 3D graphene aerogel for piezoresistive sensor Adv. Funct. Mater. 30 2003618 doi: 10.1002/adfm.202003618
|
[45] |
Zu G, Kanamori K, Nakanishi K, Huang J 2019 Superhydrophobic ultraflexible triple-network graphene/polyorganosiloxane aerogels for a high-performance multifunctional temperature/strain/pressure sensing array Chem. Mater. 31 6276-85 doi: 10.1021/acs.chemmater.9b02437
|
[46] |
Yang L, Liu Y, Filipe C D M, Ljubic D, Luo Y, Zhu H, Yan J, Zhu S 2019 Development of a highly sensitive, broad-range hierarchically structured reduced graphene oxide/polyhipe foam for pressure sensing ACS Appl. Mater. Interfaces 11 4318-27 doi: 10.1021/acsami.8b17020
|
[47] |
Ma C, Xu D, Huang Y-C, Wang P, Huang J, Zhou J, Liu W, Li S-T, Huang Y, Duan X 2020 Robust flexible pressure sensors made from conductive micropyramids for manipulation tasks ACS Nano 14 12866-76 doi: 10.1021/acsnano.0c03659
|
[48] |
Zhao P, Zhang R, Tong Y, Zhao X, Tang Q, Liu Y 2020 All-paper, all-organic, cuttable, and foldable pressure sensor with tuneable conductivity polypyrrole Adv. Electron. Mater. 6 1901426 doi: 10.1002/aelm.201901426
|
[49] |
Shi H, AlRubaiai M, Holbrook C M, Miao J, Pinto T, Wang C, Tan X 2019 Screenprinted soft capacitive sensors for spatial mapping of both positive and negative pressures Adv. Funct. Mater. 29 1809116 doi: 10.1002/adfm.201809116
|
[50] |
Qiu Y, et al 2020 Bioinspired, multifunctional dual-mode pressure sensors as electronic skin for decoding complex loading processes and human motions Nano Energy 78 105337 doi: 10.1016/j.nanoen.2020.105337
|
[51] |
Kong H, et al 2022 A self-protective piezoelectric-piezoresistive dual-mode device with superior dynamic-static mechanoresponse and energy harvesting performance enabled by flextensional transduction Nano Energy 100 107498 doi: 10.1016/j.nanoen.2022.107498
|
[52] |
Song Z, Li W, Bao Y, Han F, Gao L, Xu J, Ma Y, Han D, Niu L 2018 Breathable and skin-mountable strain sensor with tunable stretchability, sensitivity, and linearity via surface strain delocalization for versatile skin activities’ recognition ACS Appl. Mater. Interfaces 10 42826-36 doi: 10.1021/acsami.8b14365
|
[53] |
Kong H, et al 2021 Skin-inspired hair-epidermis-dermis hierarchical structures for electronic skin sensors with high sensitivity over a wide linear range ACS Nano 15 16218-27 doi: 10.1021/acsnano.1c05199
|
[54] |
Pang Y, Xu X, Chen S, Fang Y, Shi X, Deng Y, Wang Z-L, Cao C 2022 Skin-inspired textile-based tactile sensors enable multifunctional sensing of wearables and soft robots Nano Energy 96 107137 doi: 10.1016/j.nanoen.2022.107137
|
[55] |
Kim S, Cho W, Hwang J, Kim J 2023 Self-powered pressure sensor for detecting static and dynamic stimuli through electrochemical reactions Nano Energy 107 108109 doi: 10.1016/j.nanoen.2022.108109
|
[56] |
Wu X, Ahmed M, Khan Y, Payne M E, Zhu J, Lu C, Evans J W, Arias A C 2020 A potentiometric mechanotransduction mechanism for novel electronic skins Sci. Adv. 6 eaba1062 doi: 10.1126/sciadv.aba1062
|
[57] |
Wu X, Zhu J, Evans J W, Arias A C 2020 A single-mode, self-adapting, and self-powered mechanoreceptor based on a potentiometric-triboelectric hybridized sensing mechanism for resolving complex stimuli Adv. Mater. 32 e2005970 doi: 10.1002/adma.202005970
|
[58] |
Kim T, Kim J, You I, Oh J, Kim S P, Jeong U 2022 Dynamic tactility by position-encoded spike spectrum Sci. Robot. 7 eabl5761 doi: 10.1126/scirobotics.abl5761
|
[59] |
Hu M, Gao Y, Jiang Y, Zeng H, Zeng S, Zhu M, Xu G, Sun L 2021 High-performance strain sensors based on bilayer carbon black/PDMS hybrids Adv. Compos. Hybrid Mater. 4 514-20 doi: 10.1007/s42114-021-00226-z
|
[60] |
Roh E, Hwang B-U, Kim D, Kim B-Y, Lee N-E 2015 Stretchable, transparent, ultrasensitive, and patchable strain sensor for human-machine interfaces comprising a nanohybrid of carbon nanotubes and conductive elastomers ACS Nano 9 6252-61 doi: 10.1021/acsnano.5b01613
|
[61] |
Cai Y, Shen J, Ge G, Zhang Y, Jin W, Huang W, Shao J, Yang J, Dong X 2018 Stretchable Ti3C2Tx MXene/carbon nanotube composite based strain sensor with ultrahigh sensitivity and tunable sensing range ACS Nano 12 56-62 doi: 10.1021/acsnano.7b06251
|
[62] |
Cheng X, Cai J, Xu J, Gong D 2022 High-performance strain sensors based on Au/graphene composite films with hierarchical cracks for wide linear-range motion monitoring ACS Appl. Mater. Interfaces 14 39230-9 doi: 10.1021/acsami.2c10226
|
[63] |
Sun Z, et al 2020 Skin-like ultrasensitive strain sensor for full-range detection of human health monitoring ACS Appl. Mater. Interfaces 12 13287-95 doi: 10.1021/acsami.9b21751
|
[64] |
Liu Q, Chen J, Li Y, Shi G 2016 High-performance strain sensors with fish-scale-like graphene-sensing layers for full-range detection of human motions ACS Nano 10 7901-6 doi: 10.1021/acsnano.6b03813
|
[65] |
Zhao P, Zhang R, Tong Y, Zhao X, Zhang T, Tang Q, Liu Y 2020 Strain-discriminable pressure/proximity sensing of transparent stretchable electronic skin based on PEDOT:PSS/SWCNT electrodes ACS Appl. Mater. Interfaces 49 55083-93 doi: 10.1021/acsami.0c16546
|
[66] |
Kim K K, Hong S, Cho H M, Lee J, Suh Y D, Ham J, Ko S H 2015 Highly sensitive and stretchable multidimensional strain sensor with prestrained anisotropic metal nanowire percolation networs Nano Lett. 15 5240-7 doi: 10.1021/acs.nanolett.5b01505
|
[67] |
Liu Z, et al 2018 3D-structured stretchable strain sensors for out-of-plane force detection Adv. Mater. 30 e1707285 doi: 10.1002/adma.201707285
|
[68] |
Li Q, Zhang L-N, Tao X-M, Ding X 2017 Review of flexible temperature sensing networks for wearable physiological monitoring Adv. Healthcare Mater. 6 1601371 doi: 10.1002/adhm.201601371
|
[69] |
Cai M, Jiao Z, Nie S, Wang C, Zou J, Song J 2021 A multifunctional electronic skin based on patterned metal films for tactile sensing with a broad linear response range Sci. Adv. 7 eabl8313 doi: 10.1126/sciadv.abl8313
|
[70] |
Bae G Y, Han J T, Lee G, Lee S, Kim S W, Park S, Kwon J, Jung S, Cho K 2018 Pressure/temperature sensing bimodal electronic skin with stimulus discriminability and linear sensitivity Adv. Mater. 30 e1803388 doi: 10.1002/adma.201803388
|
[71] |
Ge G, Lu Y, Qu X, Zhao W, Ren Y, Wang W, Wang Q, Huang W, Dong X 2020 Muscle-inspired self-healing hydrogels for strain and temperature sensor ACS Nano 14 218-28 doi: 10.1021/acsnano.9b07874
|
[72] |
Shin Y, Kim Y W, Kang H J, Lee J H, Byun J E, Yang J Y, Lee J W 2023 Stretchable and skin-mountable temperature sensor array using reduction-controlled graphene oxide for dermatological thermography Nano Lett. 23 5391-8 doi: 10.1021/acs.nanolett.2c04752
|
[73] |
Jia H, He Y, Zhang X, Du W, Wang Y 2015 Integrating ultra-thermal-sensitive fluids into elastomers for multifunctional flexible sensors Adv. Electron. Mater. 1 1500029 doi: 10.1002/aelm.201500029
|
[74] |
Gui Q, He Y, Gao N, Tao X, Wang Y 2017 A skin-inspired integrated sensor for synchronous monitoring of multiparameter signals Adv. Funct. Mater. 27 1702050 doi: 10.1002/adfm.201702050
|
[75] |
Han S, Jiao F, Khan Z U, Edberg J, Fabiano S, Crispin X 2017 Thermoelectric polymer aerogels for pressure-temperature sensing applications Adv. Funct. Mater. 27 1703549 doi: 10.1002/adfm.201703549
|
[76] |
Gao F-L, Liu J, Li X-P, Ma Q, Zhang T, Yu Z-Z, Shang J, Li R-W, Li X 2023 Ti3C2Tx MXene-based multifunctional tactile sensors for precisely detecting and distinguishing temperature and pressure stimuli ACS Nano 17 16036-47 doi: 10.1021/acsnano.3c04650
|
[77] |
Kwon C, et al 2023 Multi-functional and stretchable thermoelectric Bi2Te3 fabric for strain, pressure, and temperature-sensing Adv. Funct. Mater. 33 2300092 doi: 10.1002/adfm.202300092
|
[78] |
Li Y, Wang R, Wang G-E, Feng S, Shi W, Cheng Y, Shi L, Fu K, Sun J 2021 Mutually noninterfering flexible pressure-temperature dual-modal sensors based on conductive metal-organic framework for electronic skin ACS Nano 16 473-84 doi: 10.1021/acsnano.1c07388
|
[79] |
Jung M, Jeon S, Bae J 2018 Scalable and facile synthesis of stretchable thermoelectric fabric for wearable self-powered temperature sensors RSC Adv. 8 39992-9 doi: 10.1039/C8RA06664G
|
[80] |
Zhu P, Ou H, Kuang Y, Hao L, Diao J, Chen G 2020 Cellulose nanofiber/carbon nanotube dual network-enabled humidity sensor with high sensitivity and durability ACS Appl. Mater. Interfaces 12 33229-38 doi: 10.1021/acsami.0c07995
|
[81] |
Wang Y, Zhang L, Zhang Z, Sun P, Chen H 2020 High-sensitivity wearable and flexible humidity sensor based on graphene oxide/non-woven fabric for respiration monitoring Langmuir 36 9443-8 doi: 10.1021/acs.langmuir.0c01315
|
[82] |
Li N, Jiang Y, Zhou C, Xiao Y, Meng B, Wang Z, Huang D, Xing C, Peng Z 2019 High-performance humidity sensor based on urchin-like composite of Ti3C2 MXene-derived TiO2 nanowires ACS Appl. Mater. Interfaces 11 38116-25 doi: 10.1021/acsami.9b12168
|
[83] |
Yi Y, et al 2022 A free-standing humidity sensor with high sensing reliability for environmental and wearable detection Nano Energy 103 107780 doi: 10.1016/j.nanoen.2022.107780
|
[84] |
He J, Zheng X, Zheng Z, Kong D, Ding K, Chen N, Zhang H, Yang W 2022 Pair directed silver nano-lines by single-particle assembly in nanofibers for non-contact humidity sensors Nano Energy 92 106748 doi: 10.1016/j.nanoen.2021.106748
|
[85] |
Rana S M S, et al 2022 Zirconium metal-organic framework and hybridized Co-NPC@MXene nanocomposite-coated fabric for stretchable, humidity-resistant triboelectric nanogenerators and self-powered tactile sensors Nano Energy 104 107931 doi: 10.1016/j.nanoen.2022.107931
|
[86] |
Zhang D, Xu Z, Yang Z, Song X 2020 High-performance flexible self-powered tin disulfide nanoflowers/reduced graphene oxide nanohybrid-based humidity sensor driven by triboelectric nanogenerator Nano Energy 67 104251 doi: 10.1016/j.nanoen.2019.104251
|
[87] |
Yang C, Wang H, Yang J, Yao H, He T, Bai J, Guang T, Cheng H, Yan J, Qu L 2022 A machinelearningenhanced simultaneous and multimodal sensor based on moistelectric powered graphene oxide Adv. Mater. 34 2205249 doi: 10.1002/adma.202205249
|
[88] |
Li P, Su N, Wang Z, Qiu J 2021 A Ti3C2Tx MXene-based energy-harvesting soft actuator with self-powered humidity sensing and real-time motion tracking capability ACS Nano 15 16811-8 doi: 10.1021/acsnano.1c07186
|
[89] |
Li X, Guo Y, Meng J, Li X, Li M, Gao D 2022 Self-powered carbon ink/filter paper flexible humidity sensor based on moisture-induced voltage generation Langmuir 38 8232-40 doi: 10.1021/acs.langmuir.2c00566
|
[90] |
Park J, Kim M, Lee Y, Lee H S, Ko H 2015 Fingertip skin-inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli Sci. Adv. 1 e1500661 doi: 10.1126/sciadv.1500661
|
[91] |
Yang J C, Kim J-O, Oh J, Kwon S Y, Sim J Y, Kim D W, Choi H B, Park S 2019 Microstructured porous pyramid-based ultrahigh sensitive pressure sensor insensitive to strain and temperature ACS Appl. Mater. Interfaces 11 19472-80 doi: 10.1021/acsami.9b03261
|
[92] |
Ding X, Zhong W, Jiang H, Li M, Chen Y, Lu Y, Ma J, Yadav A, Yang L, Wang D 2020 Highly accurate wearable piezoresistive sensors without tension disturbance based on weaved conductive yarn ACS Appl. Mater. Interfaces 12 35638-46 doi: 10.1021/acsami.0c07928
|
[93] |
He Q, Sheng T, Wang B, Zhang D, Zhang W, Li D, Wu T, Jiang Y 2023 Flexible bioelectronic tag with a kirigamibased design for crosstalk suppression in multimodal sensing Adv. Mater. Technol. 8 2300982 doi: 10.1002/admt.202300982
|
[94] |
Chang T H, Tian Y, Li C, Gu X, Li K, Yang H, Sanghani P, Lim C M, Ren H, Chen P Y 2019 Stretchable graphene pressure sensors with shar-pei-like hierarchical wrinkles for collision-aware surgical robotics ACS Appl. Mater. Interfaces 11 10226-36 doi: 10.1021/acsami.9b00166
|
[95] |
Zhu C, et al 2018 Stretchable temperature-sensing circuits with strain suppression based on carbon nanotube transistors Nat. Electron. 1 183-90 doi: 10.1038/s41928-018-0041-0
|
[96] |
Wang C, Xia K, Zhang M, Jian M, Zhang Y 2017 An all-silk-derived dual-mode E-skin for simultaneous temperature-pressure detection ACS Appl. Mater. Interfaces 9 39484-92 doi: 10.1021/acsami.7b13356
|
[97] |
Liu H, et al 2022 Approaching intrinsic dynamics of MXenes hybrid hydrogel for 3D printed multimodal intelligent devices with ultrahigh superelasticity and temperature sensitivity Nat. Commun. 13 3420 doi: 10.1038/s41467-022-31051-7
|
[98] |
Wu J, Fan X, Liu X, Ji X, Shi X, Wu W, Yue Z, Liang J 2022 Highly sensitive temperature-pressure bimodal aerogel with stimulus discriminability for human physiological monitoring Nano Lett. 22 4459-67 doi: 10.1021/acs.nanolett.2c01145
|
[99] |
Xia M, Pan N, Zhang C, Zhang C, Fan W, Xia Y, Wang Z, Sui K 2022 Self-powered multifunction ionic skins based on gradient polyelectrolyte hydrogels ACS Nano 16 4714-25 doi: 10.1021/acsnano.1c11505
|
[100] |
Zhu P, Wang Y, Sheng M, Wang Y, Yu Y, Deng Y 2019 A flexible active dual-parameter sensor for sensitive temperature and physiological signal monitoring via integrating thermoelectric and piezoelectric conversion J. Mater. Chem. A 7 8258-67 doi: 10.1039/C9TA00682F
|
[101] |
Zhu P, Wang Y, Wang Y, Mao H, Zhang Q, Deng Y 2020 Flexible 3D architectured piezo/thermoelectric bimodal tactile sensor array for E-skin application Adv. Energy Mater. 10 2001945 doi: 10.1002/aenm.202001945
|
[102] |
Zhang F, Zang Y, Huang D, Di C A, Zhu D 2015 Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials Nat. Commun. 6 8356 doi: 10.1038/ncomms9356
|
[103] |
Li M, et al 2020 Large-area, wearable, self-powered pressure-temperature sensor based on 3D thermoelectric spacer fabric ACS Sens. 5 2545-54 doi: 10.1021/acssensors.0c00870
|
[104] |
Zhao P, Song Y, Xie P, Zhang F, Xie T, Liu G, Zhao J, Han S T, Zhou Y 2023 Allorganic smart textile sensor for deeplearningassisted multimodal sensing Adv. Funct. Mater. 33 2301816 doi: 10.1002/adfm.202301816
|
[105] |
Li F, Liu Y, Shi X, Li H, Wang C, Zhang Q, Ma R, Liang J 2020 Printable and stretchable temperature-strain dual-sensing nanocomposite with high sensitivity and perfect stimulus discriminability Nano Lett. 20 6176-84 doi: 10.1021/acs.nanolett.0c02519
|
[106] |
Zhang H, et al 2022 Bioinspired chromotropic ionic skin with inplane strain/temperature/pressure multimodal sensing and ultrahigh stimuli discriminability Adv. Funct. Mater. 32 2208362 doi: 10.1002/adfm.202208362
|
[107] |
Han S, Alvi N U H, Granlof L, Granberg H, Berggren M, Fabiano S, Crispin X 2019 A multiparameter pressure-temperature-humidity sensor based on mixed ionic-electronic cellulose aerogels Adv. Sci. 6 1802128 doi: 10.1002/advs.201802128
|
[108] |
Rao J, et al 2020 Tactile electronic skin to simultaneously detect and distinguish between temperature and pressure based on a triboelectric nanogenerator Nano Energy 75 105073 doi: 10.1016/j.nanoen.2020.105073
|
[109] |
Zhang X, Tang S, Ma R, Chen Z, Zhuo J, Cao L, Yang J, Yang G, Yi F 2022 High-performance multimodal smart textile for artificial sensation and health monitoring Nano Energy 103 107778 doi: 10.1016/j.nanoen.2022.107778
|
[110] |
Alam M M, Lee S, Kim M, Han K S, Cao V A, Nah J 2020 Ultra-flexible nanofiber-based multifunctional motion sensor Nano Energy 72 104672 doi: 10.1016/j.nanoen.2020.104672
|
[111] |
Kim J O, Kwon S Y, Kim Y, Choi H B, Yang J C, Oh J, Lee H S, Sim J Y, Ryu S, Park S 2019 Highly ordered 3D microstructure-based electronic skin capable of differentiating pressure, temperature, and proximity ACS Appl. Mater. Interfaces 11 1503-11 doi: 10.1021/acsami.8b19214
|
[112] |
Wang S, Wang X, Wang Q, Ma S, Xiao J, Liu H, Pan J, Zhang Z, Zhang L 2023 Flexible optoelectronic multimodal proximity/pressure/temperature sensors with low signal interference Adv. Mater. 35 2304701 doi: 10.1002/adma.202304701
|
[113] |
Xu J, Sun X, Sun B, Zhu H, Fan X, Guo Q, Li Y, Zhu Z, Qian K 2023 Stretchable, adhesive, and bioinspired visual electronic skin with strain/temperature/pressure multimodal non-interference sensing ACS Appl. Mater. Interfaces 15 33774-83 doi: 10.1021/acsami.3c07857
|
[114] |
Khatib M, Rapoport S, Zohar O, Mansour E, Zheng Y, Tang N, Saliba W, Mulytin Y, Huynh T P, Haick H 2022 Hierarchical graphenedye bilayers for multimodal optoelectronic sensing and decoupling of complex stimuli Adv. Mater. Technol. 8 2200920 doi: 10.1002/admt.202200920
|
[115] |
Ge J, Sun L, Zhang F R, Zhang Y, Shi L A, Zhao H Y, Zhu H W, Jiang H L, Yu S H 2015 A stretchable electronic fabric artificial skin with pressure, lateral strain, and flexionsensitive properties Adv. Mater. 28 722-8 doi: 10.1002/adma.201504239
|
[116] |
Park J, Lee Y, Hong J, Lee Y, Ha M, Jung Y, Lim H, Kim S Y, Ko H 2014 Tactile-direction-sensitive and stretchable electronic skins based on human-skin-inspired interlocked microstructures ACS Nano 8 12020-9 doi: 10.1021/nn505953t
|
[117] |
Tang C-Y, et al 2021 Low-entropy structured wearable film sensor with piezoresistive-piezoelectric hybrid effect for 3D mechanical signal screening Nano Energy 90 106603 doi: 10.1016/j.nanoen.2021.106603
|
[118] |
Oh J, Yang J C, Kim J-O, Park H, Kwon S Y, Lee S, Sim J Y, Oh H W, Kim J, Park S 2018 Pressure insensitive strain sensor with facile solution-based process for tactile sensing applications ACS Nano 12 7546-53 doi: 10.1021/acsnano.8b03488
|
[119] |
Won S M, et al 2019 Multimodal sensing with a three-dimensional piezoresistive structure ACS Nano 13 10972-9 doi: 10.1021/acsnano.9b02030
|
[120] |
Ge R, Yu Q, Zhou F, Liu S, Qin Y 2023 Dual-modal piezotronic transistor for highly sensitive vertical force sensing and lateral strain sensing Nat. Commun. 14 6315 doi: 10.1038/s41467-023-41983-3
|
[121] |
Lee J S, Shin K-Y, Cheong O J, Kim J H, Jang J 2015 Highly sensitive and multifunctional tactile sensor using free-standing ZnO/PVDF thin film with graphene electrodes for pressure and temperature monitoring Sci. Rep. 5 7887 doi: 10.1038/srep07887
|
[122] |
Ma M, Zhang Z, Zhao Z, Liao Q, Kang Z, Gao F, Zhao X, Zhang Y 2019 Self-powered flexible antibacterial tactile sensor based on triboelectric-piezoelectric-pyroelectric multi-effect coupling mechanism Nano Energy 66 104105 doi: 10.1016/j.nanoen.2019.104105
|
[123] |
Suh W, Ki K, Kim T, Choi H, Lee A, Jeong U 2023 Shear-pressure decoupling and accurate perception of shear directions in ionic sensors by analyzing the frequency-dependent ionic behavior ACS Appl. Mater. Interfaces 15 51538-48 doi: 10.1021/acsami.3c12924
|
[124] |
You I, et al 2020 Artificial multimodal receptors based on ion relaxation dynamics Science 370 961-5 doi: 10.1126/science.aba5132
|
[125] |
Lo L W, Zhao J Y, Wan H C, Wang Y, Chakrabartty S, Wang C 2022 A soft sponge sensor for multimodal sensing and distinguishing of pressure, strain, and temperature ACS Appl. Mater. Interfaces 14 9570-8 doi: 10.1021/acsami.1c21003
|
[126] |
Ma Z, Zhang J, Li J, Shi Y, Pan L 2020 Frequency-enabled decouplable dual-modal flexible pressure and temperature sensor IEEE Electron Device Lett. 41 1568-71 doi: 10.1109/LED.2020.3020937
|
[127] |
Kwon K, et al 2023 A battery-less wireless implant for the continuous monitoring of vascular pressure, flow rate and temperature Nat. Biomed. Eng. 7 1215-28 doi: 10.1038/s41551-023-01022-4
|
[128] |
Cho S, et al 2023 Wireless, multimodal sensors for continuous measurement of pressure, temperature, and hydration of patients in wheelchair npj Flex. Electron. 7 8 doi: 10.1038/s41528-023-00238-3
|
[129] |
Li Y, et al 2023 Learning hand kinematics for Parkinson’s disease assessment using a multimodal sensor glove Adv. Sci. 10 2206982 doi: 10.1002/advs.202206982
|
[130] |
Zhu M, Sun Z, Lee C 2022 Soft modular glove with multimodal sensing and augmented haptic feedback enabled by materials’ multifunctionalities ACS Nano 16 14097-110 doi: 10.1021/acsnano.2c04043
|
[131] |
Cui Z, et al 2021 Haptically quantifying Young’s modulus of soft materials using a selflocked stretchable strain sensor Adv. Mater. 34 2104078 doi: 10.1002/adma.202104078
|
[132] |
Beker L, Matsuhisa N, You I, Ruth S R A, Niu S, Foudeh A, Tok J B, Chen X, Bao Z 2020 A bioinspired stretchable membrane-based compliance sensor Proc. Natl Acad. Sci. 117 11314-20 doi: 10.1073/pnas.1909532117
|
[133] |
Hao Y, Yan Q, Liu H, He X, Zhang P, Qin X, Wang R, Sun J, Wang L, Cheng Y 2023 A stretchable, breathable, and selfadhesive electronic skin with multimodal sensing capabilities for humancentered healthcare Adv. Funct. Mater. 33 2303881 doi: 10.1002/adfm.202303881
|
[134] |
Peng Y, et al 2023 Multimodal health monitoring via a hierarchical and ultrastretchable all-in-one electronic textile Nano Energy 110 108374 doi: 10.1016/j.nanoen.2023.108374
|
[135] |
Feng K, Lei M, Wang X, Zhou B, Xu Q 2023 A flexible bidirectional interface with integrated multimodal sensing and haptic feedback for closedloop human-machine interaction Adv. Intell. Syst. 5 2300291 doi: 10.1002/aisy.202300291
|
[136] |
Lee G, Son J H, Lee S, Kim S W, Kim D, Nguyen N N, Lee S G, Cho K 2021 Fingerpad-inspired multimodal electronic skin for material discrimination and texture recognition Adv. Sci. 8 2002606 doi: 10.1002/advs.202002606
|