Volume 3 Issue 2
June  2024
Turn off MathJax
Article Contents
Yuanbin Cheng, Qian Li, Mengyuan Chen, Fei Chen, Zhenghui Wu, Huaibin Shen. High-brightness green InP-based QLEDs enabled by in-situ passivating core surface with zinc myristate[J]. Materials Futures, 2024, 3(2): 025201. doi: 10.1088/2752-5724/ad3a83
Citation: Yuanbin Cheng, Qian Li, Mengyuan Chen, Fei Chen, Zhenghui Wu, Huaibin Shen. High-brightness green InP-based QLEDs enabled by in-situ passivating core surface with zinc myristate[J]. Materials Futures, 2024, 3(2): 025201. doi: 10.1088/2752-5724/ad3a83
Paper •
OPEN ACCESS

High-brightness green InP-based QLEDs enabled by in-situ passivating core surface with zinc myristate

© 2024 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory
Materials Futures, Volume 3, Number 2
  • Received Date: 2024-02-04
  • Accepted Date: 2024-04-03
  • Rev Recd Date: 2024-03-25
  • Publish Date: 2024-04-23
  • AbstractThe performance of red InP and blue ZnTeSe-based quantum dots (QDs) and corresponding QD light emitting diodes (QLEDs) has already been improved significantly, whose external quantum efficiencies (EQEs) and luminances have exceeded 20% and 80 000 cd m−2, respectively. However, the inferior performance of the green InP-based device hinders the commercialization of full-color Cd-free QLED technology. The ease of oxidation of the highly reactive InP cores leads to high non-radiative recombination and poor photoluminescence quantum yield (PL QY) of the InP-based core/shell QDs, limiting the performance of the relevant QLEDs. Here, we proposed a fluoride-free synthesis strategy to in-situ passivate the InP cores, in which zinc myristate reacted with phosphine dangling bonds to form Zn-P protective layer and protect InP cores from the water and oxygen in the environment. The resultant InP/ZnSe/ZnS core/shell QDs demonstrated a high PL QY of 91%. The corresponding green-emitting electroluminescence devices exhibited a maximum EQE of 12.74%, along with a luminance of over 175 000 cd m−2 and a long T50@100 cd m−2 lifetime of over 20 000 h.
  • loading
  • Author contributions

    F Chen, Z Wu and H Shen conceived and supervised the project. Y Cheng and Q Li contributed equally. Y Cheng and Q Li synthesized and characterized the materials. M Chen and F Chen fabricated and characterized the devices. All authors participated in the scientific discussion and the manuscript modification.

    Conflict of interest

    The authors declare that they have no competing financial interests.

  • [1]
    Yadav R, Kwon Y, Rivaux C, Pierre C S, Ling W L, Reiss P 2023 Narrow near-infrared emission from InP QDs synthesized with indium (I) halides and aminophosphine J. Am. Chem. Soc. 145 5970-81 doi: 10.1021/jacs.2c13834
    [2]
    Dumbgen K C, Leemans J, De Roo V, Minjauw M, Detavernier C, Hens Z 2023 Surface chemistry of InP quantum dots, amine-halide co-passivation, and binding of Z-type ligands Chem. Mater. 35 1037-46 doi: 10.1021/acs.chemmater.2c02960
    [3]
    Zhou X, Ren J, Cao W, Meijerink A, Wang Y 2023 Narrow-band blue-emitting indium phosphide quantum dots induced by highly active Zn precursor Adv. Opt. Mater. 11 2202128 doi: 10.1002/adom.202202128
    [4]
    Lee Y, Jo D Y, Kim T, Jo J H, Park J, Yang H, Kim D 2022 Effectual interface and defect engineering for Auger recombination suppression in bright InP/ZnSeS/ZnS quantum dots ACS Appl. Mater. Interfaces 14 12479-87 doi: 10.1021/acsami.1c20088
    [5]
    Sung Y M, et al 2021 Increasing the energy gap between band-edge and trap states slows down picosecond carrier trapping in highly luminescent InP/ZnSe/ZnS quantum dots Small 17 2102792 doi: 10.1002/smll.202102792
    [6]
    Dou Y, Wang L, Wang Y, Wu Q, Cao F, Wang S, Huang Q, Ma Y, Yang X 2023 Coordinating solvent synthesis of InP quantum dots with large sizes and suppressed defects for yellow light-emitting diodes Adv. Opt. Mater. 11 2300133 doi: 10.1002/adom.202300133
    [7]
    Shin S, et al 2023 Fluoride-free synthesis strategy for luminescent InP cores and effective shelling processes via combinational precursor chemistry Chem. Eng. J. 466 143223 doi: 10.1016/j.cej.2023.143223
    [8]
    Huang P, Liu X, Jin G, Liu F, Shen H, Li H 2023 Deep-red InP core-multishell quantum dots for highly bright and efficient light-emitting diodes Adv. Opt. Mater. 11 2300612 doi: 10.1002/adom.202300612
    [9]
    Li H, Bian Y, Zhang W, Wu Z, Ahn T K, Shen H, Du Z 2022 High performance InP-based quantum dot light-emitting diodes via the suppression of field-enhanced electron delocalization Adv. Funct. Mater. 32 2204529 doi: 10.1002/adfm.202204529
    [10]
    Won Y H, Cho O, Kim T, Chung D Y, Kim T, Chung H, Jang H, Lee J, Kim D, Jang E 2019 Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes Nature 575 634-8 doi: 10.1038/s41586-019-1771-5
    [11]
    Ubbink R F, Almeida G, Iziyi H, du Fossé I, Verkleij R, Ganapathy S, van Eck E R H, Houtepen A J 2022 A water-free in situ HF treatment for ultrabright InP quantum dots Chem. Mater. 34 10093-103 doi: 10.1021/acs.chemmater.2c02800
    [12]
    Fan X B, et al 2023 InP/ZnS quantum dot photoluminescence modulation via in situ H2S interface engineering Nanoscale Horiz. 8 522-9 doi: 10.1039/d2nh00436d
    [13]
    Duan X, Ma J, Zhang W, Liu P, Liu H, Hao J, Wang K, Samuelson L, Sun X W 2023 Study of the interfacial oxidation of InP quantum dots synthesized from tris(dimethylamino)phosphine ACS Appl. Mater. Interfaces 15 1619-28 doi: 10.1021/acsami.2c20138
    [14]
    Li H, Zhang W, Bian Y, Ahn T K, Shen H, Ji B 2022 ZnF2-assisted synthesis of highly luminescent InP/ZnSe/ZnS quantum dots for efficient and stable electroluminescence Nano Lett. 22 4067-73 doi: 10.1021/acs.nanolett.2c00763
    [15]
    Wang H C, Zhang H, Chen H Y, Yeh H C, Tseng M R, Chung R J, Chen S, Liu R S 2017 Cadmium-free InP/ZnSeS/ZnS heterostructure-based quantum dot light-emitting diodes with a ZnMgO electron transport layer and a brightness of over 10 000 cd m−2 Small 13 1603962 doi: 10.1002/smll.201603962
    [16]
    Zhang H, et al 2019 High-efficiency green InP quantum dot-based electroluminescent device comprising thick-shell quantum dots Adv. Opt. Mater. 7 1801602 doi: 10.1002/adom.201801602
    [17]
    Moon H, Lee W, Kim J, Lee D, Cha S, Shin S, Chae H 2019 Composition-tailored ZnMgO nanoparticles for electron transport layers of highly efficient and bright InP-based quantum dot light emitting diodes Chem. Commun. 55 13299-302 doi: 10.1039/C9CC06882A
    [18]
    Li Y, Hou X, Dai X, Yao Z, Lv L, Jin Y, Peng X 2019 Stoichiometry-controlled InP-based quantum dots: synthesis, photoluminescence, and electroluminescence J. Am. Chem. Soc. 141 6448-52 doi: 10.1021/jacs.8b12908
    [19]
    Chao W C, Chiang T H, Liu Y C, Huang Z X, Liao C C, Chu C H, Wang C H, Tseng H W, Hung W Y, Chou P T 2021 High efficiency green InP quantum dot light-emitting diodes by balancing electron and hole mobility Commun. Mater. 2 96 doi: 10.1038/s43246-021-00203-5
    [20]
    Zhang W, et al 2022 High quantum yield blue InP/ZnS/ZnS quantum dots based on bromine passivation for efficient blue light-emitting diodes Adv. Opt. Mater. 10 2200685 doi: 10.1002/adom.202200685
    [21]
    Yu P, Cao S, Shan Y, Bi Y, Hu Y, Zeng R, Zou B, Wang Y, Zhao J 2022 Highly efficient green InP-based quantum dot light-emitting diodes regulated by inner alloyed shell component Light Sci. Appl. 11 162 doi: 10.1038/s41377-022-00855-z
    [22]
    Park J, Won Y H, Kim T, Jang E, Kim D 2020 Electrochemical charging effect on the optical properties of InP/ZnSe/ZnS quantum dots Small 16 2003542 doi: 10.1002/smll.202003542
    [23]
    Chen P, Liu H, Cui Y, Liu C, Li Y, Gao Y, Cheng J, He T 2023 Inner shell influence on the optical properties of InP/ZnSeS/ZnS quantum dots J. Phys. Chem. C 127 2464-70 doi: 10.1021/acs.jpcc.3c00144
    [24]
    Okamoto A, Bai H, Toda S, Huang M, Kajii H, Kawai K, Murakami H 2023 Controlling thickness of ZnSe intermediate shell narrows FWHM of green-emitting spectra of InP/ZnSe/ZnS multi-shell quantum dots ChemNanoMat 9 e202200534 doi: 10.1002/cnma.202200534
    [25]
    Kim T G, Zherebetskyy D, Bekenstein Y, Oh M H, Wang L W, Jang E, Alivisatos A P 2018 Trap passivation in indium-based quantum dots through surface fluorination: mechanism and applications ACS Nano 12 11529-40 doi: 10.1021/acsnano.8b06692
    [26]
    Zhang X, Hudson M H, Castellano F N 2021 Passivation of electron trap states in InP quantum dots with benzoic acid ligands J. Phys. Chem. C 125 18362-71 doi: 10.1021/acs.jpcc.1c05594
    [27]
    Pu Y C, Fan H C, Chang J C, Chen Y H, Tseng S W 2021 Effects of interfacial oxidative layer removal on charge carrier recombination dynamics in InP/ZnSexS1-x core/shell quantum dots J. Phys. Chem. Lett. 12 7194-200 doi: 10.1021/acs.jpclett.1c02125
    [28]
    Yang W, Yang Y, Kaledin A L, He S, Jin T, McBride J R, Lian T 2020 Surface passivation extends single and biexciton lifetimes of InP quantum dots Chem. Sci. 11 5779-89 doi: 10.1039/D0SC01039A
    [29]
    Yoo D, Bak E, Ju H M, Shin Y M, Choi M J 2022 Zinc carboxylate surface passivation for enhanced optical properties of In(Zn)P colloidal quantum dots Micromachines 13 1775 doi: 10.3390/mi13101775
    [30]
    Wu Q, et al 2022 Quasi-shell-growth strategy achieves stable and efficient green InP quantum dot light-emitting diodes Adv. Sci. 9 2200959 doi: 10.1002/advs.202200959
    [31]
    Jo J H, Jo D Y, Choi S W, Lee S H, Kim H M, Yoon S Y, Kim Y, Han J N, Yang H 2021 Highly bright, narrow emissivity of InP quantum dots synthesized by aminophosphine: effects of double shelling scheme and Ga treatment Adv. Opt. Mater. 9 2100427 doi: 10.1002/adom.202100427
    [32]
    Taylor D A, Teku J A, Cho S, Chae W S, Jeong S J, Lee J S 2021 Importance of surface functionalization and purification for narrow FWHM and bright green-emitting InP core-multishell quantum dots via a two-step growth process Chem. Mater. 33 4399-407 doi: 10.1021/acs.chemmater.1c00348
    [33]
    Xu H, et al 2024 Dipole-dipole-interaction-assisted self-assembly of quantum dots for highly efficient light-emitting diodes Nat. Photon. 18 186-91 doi: 10.1038/s41566-023-01344-4
    [34]
    Deng Y, et al 2022 Solution-processed green and blue quantum-dot light-emitting diodes with eliminated charge leakage Nat. Photon. 16 505-11 doi: 10.1038/s41566-022-00999-9
    [35]
    Han C Y, Lee S H, Song S W, Yoon S Y, Jo J H, Jo D Y, Kim H M, Lee B J, Kim H S, Yang H 2020 More than 9% efficient ZnSeTe quantum dot-based blue electroluminescent devices ACS Energy Lett. 5 1568-76 doi: 10.1021/acsenergylett.0c00638
    [36]
    Zhang T, et al 2023 Electric dipole modulation for boosting carrier recombination in green InP QLEDs under strong electron injection Nanoscale Adv. 5 385-92 doi: 10.1039/d2na00705c
    [37]
    Kim J, Hong A, Hahm D, Lee H, Bae W K, Lee T, Kwak J 2023 Realization of highly efficient InP quantum dot lightemitting diodes through indepth investigation of excitonharvesting layers Adv. Opt. Mater. 11 2300088 doi: 10.1002/adom.202300088
  • mfad3a83supp1.pdf
  • 加载中

Catalog

    Figures(4)  / Tables(1)

    Article Metrics

    Article Views(414) PDF downloads(38)
    Article Statistics
    Related articles from

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return