Volume 3 Issue 2
June  2024
Turn off MathJax
Article Contents
Hui-Ru Zhang, Liang Gao, Yu-Hao Ye, Jia-Xin Zhang, Tao Zhang, Qing-Zhou Bu, Qun Yang, Zeng-Wei Zhu, Shuai Wei, Hai-Bin Yu. Fragility crossover mediated by covalent-like electronic interactions in metallic liquids[J]. Materials Futures, 2024, 3(2): 025002. doi: 10.1088/2752-5724/ad4404
Citation: Hui-Ru Zhang, Liang Gao, Yu-Hao Ye, Jia-Xin Zhang, Tao Zhang, Qing-Zhou Bu, Qun Yang, Zeng-Wei Zhu, Shuai Wei, Hai-Bin Yu. Fragility crossover mediated by covalent-like electronic interactions in metallic liquids[J]. Materials Futures, 2024, 3(2): 025002. doi: 10.1088/2752-5724/ad4404
Paper •
OPEN ACCESS

Fragility crossover mediated by covalent-like electronic interactions in metallic liquids

© 2024 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory
Materials Futures, Volume 3, Number 2
  • Received Date: 2024-02-19
  • Accepted Date: 2024-04-26
  • Rev Recd Date: 2024-04-11
  • Publish Date: 2024-05-14
  • AbstractFragility is one of the central concepts in glass and liquid sciences, as it characterizes the extent of deviation of viscosity from Arrhenius behavior and is linked to a range of glass properties. However, the intervention of crystallization often prevents the assessment of fragility in poor glass-formers, such as supercooled metallic liquids. Hence experimental data on their compositional dependence are scarce, let alone fundamentally understood. In this work, we use fast scanning calorimetry to overcome this obstacle and systematically study the fragility in a ternary La-Ni-Al system, over previously inaccessible composition space. We observe fragility dropped in a small range with the Al alloying, indicating an alloying-induced fragility crossover. We use x-ray photoelectron spectroscopy, resistance measurements, electronic structure calculations, and DFT-based deep-learning atomic simulations to investigate the cause of this fragility drop. These results show that the fragility crossover can be fundamentally ascribed to the electronic covalency associated with the unique Al-Al interactions. Our findings provide insight into the origin of fragility in metallic liquids from an electronic structure perspective and pave a new way for the design of metallic glasses.
  • loading
  • [1]
    Angell C A 1995 Formation of glasses from liquids and biopolymers Science 267 1924-35 doi: 10.1126/science.267.5206.1924
    [2]
    Mauro J C, Yue Y, Ellison A J, Gupta P K, Allan D C 2009 Viscosity of glass-forming liquids Proc. Natl Acad. Sci. 106 19780-4 doi: 10.1073/pnas.0911705106
    [3]
    Orava J, Greer A L, Gholipour B, Hewak D W, Smith C E 2012 Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry Nat. Mater. 11 279-83 doi: 10.1038/nmat3275
    [4]
    Johnson W L, Na J H, Demetriou M D 2016 Quantifying the origin of metallic glass formation Nat. Commun. 7 10313 doi: 10.1038/ncomms10313
    [5]
    Jaiswal A, Egami T, Kelton K F, Schweizer K S, Zhang Y 2016 Correlation between fragility and the Arrhenius crossover phenomenon in metallic, molecular, and network liquids Phys. Rev. Lett. 117 205701 doi: 10.1103/PhysRevLett.117.205701
    [6]
    Wei S, Evenson Z, Stolpe M, Lucas P, Angell C A 2018 Breakdown of the Stokes-Einstein relation above the melting temperature in a liquid phase-change material Sci. Adv. 4 eaat8632 doi: 10.1126/sciadv.aat8632
    [7]
    Lunkenheimer P, Loidl A, Riechers B, Zaccone A, Samwer K 2023 Thermal expansion and the glass transition Nat. Phys. 19 694-9 doi: 10.1038/s41567-022-01920-5
    [8]
    Kelton K F 2023 A perspective on metallic liquids and glasses J. Appl. Phys. 134 010902 doi: 10.1063/5.0144250
    [9]
    Ediger M D, Angell C A, Nagel S R 1996 Supercooled liquids and glasses J. Phys. Chem. 100 13200-12 doi: 10.1021/jp953538d
    [10]
    Wang L, Xu N, Wang W H, Guan P 2018 Revealing the link between structural relaxation and dynamic heterogeneity in glass-forming liquids Phys. Rev. Lett. 120 125502 doi: 10.1103/PhysRevLett.120.125502
    [11]
    Egami T, Ryu C W 2020 Why is the range of timescale so wide in glass-forming liquid? Front. Chem. 8 579169 doi: 10.3389/fchem.2020.579169
    [12]
    Zheng Z, Ni R, Wang Y, Han Y 2021 Translational and rotational critical-like behaviors in the glass transition of colloidal ellipsoid monolayers Sci. Adv. 7 eabd1958 doi: 10.1126/sciadv.abd1958
    [13]
    Senkov O N 2007 Correlation between fragility and glass-forming ability of metallic alloys Phys. Rev. B 76 104202 doi: 10.1103/PhysRevB.76.104202
    [14]
    Greer A L 2015 New horizons for glass formation and stability Nat. Mater. 14 542-6 doi: 10.1038/nmat4292
    [15]
    Kube S A, Sohn S, Ojeda-Mota R, Evers T, Polsky W, Liu N, Ryan K, Rinehart S, Sun Y, Schroers J 2022 Compositional dependence of the fragility in metallic glass forming liquids Nat. Commun. 13 3708 doi: 10.1038/s41467-022-31314-3
    [16]
    Kato H, Wada T, Hasegawa M, Saida J, Inoue A, Chen H S 2006 Fragility and thermal stability of Pt- and Pd-based bulk glass forming liquids and their correlation with deformability Scr. Mater. 54 2023-7 doi: 10.1016/j.scriptamat.2006.03.025
    [17]
    Plummer J D, Todd I 2011 Implications of elastic constants, fragility, and bonding on permanent deformation in metallic glass Appl. Phys. Lett. 98 021907 doi: 10.1063/1.3540652
    [18]
    Novikov V N, Sokolov A P 2004 Poisson’s ratio and the fragility of glass-forming liquids Nature 431 961-3 doi: 10.1038/nature02947
    [19]
    Novikov V N, Sokolov A P 2006 Correlation of fragility and Poisson’s ratio: difference between metallic and nonmetallic glass formers Phys. Rev. B 74 064203 doi: 10.1103/PhysRevB.74.064203
    [20]
    Jiang M, Dai L 2007 Intrinsic correlation between fragility and bulk modulus in metallic glasses Phys. Rev. B 76 054204 doi: 10.1103/PhysRevB.76.054204
    [21]
    Wang L M, Angell C A, Richert R 2006 Fragility and thermodynamics in nonpolymeric glass-forming liquids J. Chem. Phys. 125 074505 doi: 10.1063/1.2244551
    [22]
    Yang Q, Huang J, Qin X-H, Ge F-X, Yu H-B 2019 Revealing hidden supercooled liquid states in Al-based metallic glasses by ultrafast scanning calorimetry: approaching theoretical ceiling of liquid fragility Sci. China Mater. 63 157-64 doi: 10.1007/s40843-019-9478-3
    [23]
    Martinez L M, Angell C A 2001 A thermodynamic connection to the fragility of glass-forming liquids Nature 410 663-7 doi: 10.1038/35070517
    [24]
    Pan Z, Benzine O, Sawamura S, Limbach R, Koike A, Bennett T D, Wilde G, Schirmacher W, Wondraczek L 2021 Disorder classification of the vibrational spectra of modern glasses Phys. Rev. B 104 134106 doi: 10.1103/PhysRevB.104.134106
    [25]
    Annamareddy A, Li Y, Yu L, Voyles P M, Morgan D 2021 Factors correlating to enhanced surface diffusion in metallic glasses J. Chem. Phys. 154 104502 doi: 10.1063/5.0039078
    [26]
    Li Y, Annamareddy A, Morgan D, Yu Z, Wang B, Cao C, Perepezko J H, Ediger M, Voyles P M, Yu L 2022 Surface diffusion is controlled by bulk fragility across all glass types Phys. Rev. Lett. 128 075501 doi: 10.1103/PhysRevLett.128.075501
    [27]
    Schroers J 2010 Processing of bulk metallic glass Acta Mater. 22 1566-97 doi: 10.1002/adma.200902776
    [28]
    Bryn Pitt E, Kumar G, Schroers J 2011 Temperature dependence of the thermoplastic formability in bulk metallic glasses J. Appl. Phys. 110 043518 doi: 10.1063/1.3624666
    [29]
    Ojeda Mota R M, Liu N, Kube S A, Chay J, McClintock H D, Schroers J 2020 Overcoming geometric limitations in metallic glasses through stretch blow molding Appl. Mater. Today 19 100567 doi: 10.1016/j.apmt.2020.100567
    [30]
    Sastry S 2001 The relationship between fragility, configurational entropy and the potential energy landscape of glass-forming liquids Nature 409 164-7 doi: 10.1038/35051524
    [31]
    Chu W, Shang J, Yin K, Ren N, Hu L, Zhao Y, Dong B 2020 Generality of abnormal viscosity drop on cooling of CuZr alloy melts and its structural origin Acta Mater. 196 690-703 doi: 10.1016/j.actamat.2020.07.018
    [32]
    Hultmark S, Cravcenco A, Kushwaha K, Mallick S, Erhart P, Börjesson K, Müller C 2021 Vitrification of octonary perylene mixtures with ultralow fragility Sci. Adv. 7 eabi4659 doi: 10.1126/sciadv.abi4659
    [33]
    Shi Y, Deng B, Gulbiten O, Bauchy M, Zhou Q, Neuefeind J, Elliott S R, Smith N J, Allan D C 2023 Revealing the relationship between liquid fragility and medium-range order in silicate glasses Nat. Commun. 14 13 doi: 10.1038/s41467-022-35711-6
    [34]
    Bennett C H, Polk D E, Turnbull D M 1971 Role of composition in metallic glass formation Acta Metall. 19 1295-8 doi: 10.1016/0001-6160(71)90064-2
    [35]
    Tanaka H 2003 Relation between thermodynamics and kinetics of glass-forming liquids Phys. Rev. Lett. 90 055701 doi: 10.1103/PhysRevLett.90.055701
    [36]
    Tanaka H 2005 Relationship among glass-forming ability, fragility, and short-range bond ordering of liquids J. Non-Cryst. Solids 351 678-90 doi: 10.1016/j.jnoncrysol.2005.01.070
    [37]
    Götze W 2008 Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling TheoryOxford Univ Press
    [38]
    Bendert J C, Gangopadhyay A K, Mauro N A, Kelton K F 2012 Volume expansion measurements in metallic liquids and their relation to fragility and glass forming ability: an energy landscape interpretation Phys. Rev. Lett. 109 185901 doi: 10.1103/PhysRevLett.109.185901
    [39]
    Mauro N A, Vogt A J, Johnson M L, Bendert J C, Soklaski R, Yang L, Kelton K F 2013 Anomalous structural evolution and liquid fragility signatures in Cu-Zr and Cu-Hf liquids and glasses Acta Mater. 61 7411-21 doi: 10.1016/j.actamat.2013.08.047
    [40]
    Wang Z, Yang F, Bernasconi A, Samwer K, Meyer A 2018 Predicting structural and dynamical behavior of La-based glasses and melts from the anharmonicity in their interatomic potential Phys. Rev. B 98 024204 doi: 10.1103/PhysRevB.98.024204
    [41]
    Lee C-S, Lulli M, Zhang L-H, Deng H-Y, Lam C-H 2020 Fragile glasses associated with a dramatic drop of entropy under supercooling Phys. Rev. Lett. 125 265703 doi: 10.1103/PhysRevLett.125.265703
    [42]
    Krausser J, Samwer K H, Zaccone A 2015 Interatomic repulsion softness directly controls the fragility of supercooled metallic melts Proc. Natl Acad. Sci. 112 13762-7 doi: 10.1073/pnas.1503741112
    [43]
    Mattsson J, Wyss H M, Fernandez-Nieves A, Miyazaki K, Hu Z, Reichman D R, Weitz D A 2009 Soft colloids make strong glasses Nature 462 83-86 doi: 10.1038/nature08457
    [44]
    Pueblo C E, Sun M, Kelton K F 2017 Strength of the repulsive part of the interatomic potential determines fragility in metallic liquids Nat. Mater. 16 792-6 doi: 10.1038/nmat4935
    [45]
    Legg B A, Schroers J, Busch R 2007 Thermodynamics, kinetics, and crystallization of Pt57.3Cu14.6Ni5.3P22.8 bulk metallic glass Acta Mater. 55 1109-16 doi: 10.1016/j.actamat.2006.09.024
    [46]
    Hosokawa S, Sato H, Happo N, Mimura K, Tezuka Y, Ichitsubo T, Matsubara E, Nishiyama N 2007 Electronic structure of Pd42.5Ni7.5Cu30P20, an excellent bulk metallic glass former: comparison to the Pd40Ni40P20 reference glass Acta Mater. 55 3413-9 doi: 10.1016/j.actamat.2007.01.041
    [47]
    Schnabel V, Evertz S, Ruess H, Music D, Schneider J M 2015 Stiffness and toughness prediction of Co-Fe-Ta-B metallic glasses, alloyed with Y, Zr, Nb, Mo, Hf, W, C, N and O by ab initio molecular dynamics J. Phys.: Condens. Matter 27 105502 doi: 10.1088/0953-8984/27/10/105502
    [48]
    Zítek M, Zeman P, Kotrlová M, erstvý R 2019 Impact of Al or Si addition on properties and oxidation resistance of magnetron sputtered Zr-Hf-Al/Si-Cu metallic glasses J. Alloys Compd. 772 409-17 doi: 10.1016/j.jallcom.2018.09.069
    [49]
    Luo L S, Topol E J 2019 Structural origins for the generation of strength, ductility and toughness in bulk-metallic glasses using hydrogen microalloying Acta Mater. 171 216-30 doi: 10.7326/M19-1498
    [50]
    Lai L, Liu T, Cai X, Wang M, Zhang S, Chen W, Guo S 2021 High-temperature Mo-based bulk metallic glasses Scr. Mater. 203 114095 doi: 10.1016/j.scriptamat.2021.114095
    [51]
    Wu Y, et al 2021 Substantially enhanced plasticity of bulk metallic glasses by densifying local atomic packing Nat. Commun. 12 6582 doi: 10.1038/s41467-021-26858-9
    [52]
    Xie Y, Huang X, Raj A, Li X, Dhall R, Balooch M, Minor A, Schroers J, Hosemann P 2024 Strengthening of Zr-based metallic glass at low dose helium ion irradiation J. Nucl. Mater. 592 154943 doi: 10.1016/j.jnucmat.2024.154943
    [53]
    Wei S, Coleman G J, Lucas P, Angell C A 2017 Glass transitions, semiconductor-metal transitions, and fragilities in Ge−V−Te (V=As, Sb) liquid alloys: the difference one element can make Phys. Rev. Appl. 7 034035 doi: 10.1103/PhysRevApplied.7.034035
    [54]
    Masuhr A, Waniuk T A, Busch R, Johnson W L 1999 Time scales for viscous flow, atomic transport, and crystallization in the liquid and supercooled liquid states of Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 Phys. Rev. Lett. 82 2290-3 doi: 10.1103/PhysRevLett.82.2290
    [55]
    Mauro N A, Blodgett M, Johnson M L, Vogt A J, Kelton K F 2014 A structural signature of liquid fragility Nat. Commun. 5 4616 doi: 10.1038/ncomms5616
    [56]
    Frey M, Busch R, Possart W, Gallino I 2018 On the thermodynamics, kinetics, and sub-Tg relaxations of Mg-based bulk metallic glasses Acta Mater. 155 117-27 doi: 10.1016/j.actamat.2018.05.063
    [57]
    Moynihan C T, Easteal A J, Bolt M A, Tucker J 1976 Dependence of the fictive temperature of glass on cooling rate J. Am. Ceram. Soc. 59 12-16 doi: 10.1111/j.1151-2916.1976.tb09376.x
    [58]
    Moynihan C T, Lee S K, Tatsumisago M, Minami T 1996 Estimation of activation energies for structural relaxation and viscous flow from DTA and DSC experiments Thermochim. Acta 280-281 153-62 doi: 10.1016/0040-6031(95)02781-5
    [59]
    Kissinger H E 2002 Reaction kinetics in differential thermal analysis Anal. Chem. 29 1702-6 doi: 10.1021/ac60131a045
    [60]
    Chen Z, Li Z, Zhang Y, Liu R, Tian Y, Wang L M 2014 Calorimetric determination of fragility in glass forming liquids: Tf vs. Tg-onset methods Eur. Phys. J. E 37 1-7 doi: 10.1140/epje/i2014-14052-y
    [61]
    Zhao Y, Zhang B 2017 Evaluating the correlation between liquid fragility and glass-forming ability in the extremely strong Ce-based bulk metallic glasses J. Appl. Phys. 122 115107 doi: 10.1063/1.4996269
    [62]
    Zheng Q, Mauro J C, Yue Y 2017 Reconciling calorimetric and kinetic fragilities of glass-forming liquids J. Non-Cryst. Solids 456 95-100 doi: 10.1016/j.jnoncrysol.2016.11.014
    [63]
    Evenson Z, Gallino I, Busch R 2010 The effect of cooling rates on the apparent fragility of Zr-based bulk metallic glasses J. Appl. Phys. 107 123529 doi: 10.1063/1.3452381
    [64]
    Lu Z P, Li Y, Liu C T 2003 Glass-forming tendency of bulk La-Al-Ni-Cu-(Co) metallic glass-forming liquids J. Appl. Phys. 93 286-90 doi: 10.1063/1.1528297
    [65]
    Hu L, Bian X, Wang W, Zhang J, Jia Y 2004 Liquid fragility and characteristic of the structure corresponding to the prepeak of AlNiCe amorphous alloys Acta Mater. 52 4773-81 doi: 10.1016/j.actamat.2004.06.035
    [66]
    Yang B J, Yao J H, Chao Y S, Wang J Q, Ma E 2010 Developing aluminum-based bulk metallic glasses Phil. Mag. 90 3215-31 doi: 10.1080/14786435.2010.484401
    [67]
    Shen Y, Perepezko J H 2017 Al-based amorphous alloys: glass-forming ability, crystallization behavior and effects of minor alloying additions J. Alloys Compd. 707 3-11 doi: 10.1016/j.jallcom.2016.11.079
    [68]
    Orava J, Greer A L 2014 Fast and slow crystal growth kinetics in glass-forming melts J. Chem. Phys. 140 214504 doi: 10.1063/1.4880959
    [69]
    Johnson W L, Kaltenboeck G, Demetriou M D, Schramm J P, Liu X, Samwer K, Kim C P, Hofmann D C 2011 Beating crystallization in glass-forming metals by millisecond heating and processing Science 332 828-33 doi: 10.1126/science.1201362
    [70]
    Yang Q, Peng S, Bu Q, Yu H 2021 Revealing glass transition and supercooled liquid in Ni80P20 metallic glass Acta Metall. Sin. 57 553-8 doi: 10.11900/0412.1961.2020.00379
    [71]
    Perepezko J H, Glendenning T W, Wang J-Q 2015 Nanocalorimetry measurements of metastable states Thermochim. Acta 603 24-28 doi: 10.1016/j.tca.2014.06.017
    [72]
    Wang J Q, Shen Y, Perepezko J H, Ediger M D 2016 Increasing the kinetic stability of bulk metallic glasses Acta Mater. 104 25-32 doi: 10.1016/j.actamat.2015.11.048
    [73]
    Pogatscher S, Leutenegger D, Schawe J E, Uggowitzer P J, Loffler J F 2016 Solid-solid phase transitions via melting in metals Nat. Commun. 7 11113 doi: 10.1038/ncomms11113
    [74]
    Zhao B, Yang B, Abyzov A S, Schmelzer J W P, Rodriguez-Viejo J, Zhai Q, Schick C, Gao Y 2017 Beating homogeneous nucleation and tuning atomic ordering in glass-forming metals by nanocalorimetry Nano Lett. 17 7751-60 doi: 10.1021/acs.nanolett.7b03952
    [75]
    Bai F X, Yao J H, Wang Y X, Pan J, Li Y 2017 Crystallization kinetics of an Au-based metallic glass upon ultrafast heating and cooling Scr. Mater. 132 58-62 doi: 10.1016/j.scriptamat.2017.02.001
    [76]
    Kurtuldu G, Shamlaye K F, Löffler J F 2018 Metastable quasicrystal-induced nucleation in a bulk glass-forming liquid Proc. Natl Acad. Sci. 115 6123-8 doi: 10.1073/pnas.1717941115
    [77]
    Spieckermann F, Steffny I, Bian X, Ketov S, Stoica M, Eckert J 2019 Fast and direct determination of fragility in metallic glasses using chip calorimetry Heliyon 5 e01334 doi: 10.1016/j.heliyon.2019.e01334
    [78]
    Pries J, Wei S, Wuttig M, Lucas P 2019 Switching between crystallization from the glassy and the undercooled liquid phase in phase change material Ge2Sb2Te5 Adv. Mater. 31 1900784 doi: 10.1002/adma.201900784
    [79]
    Schawe J E K, Löffler J F 2019 Existence of multiple critical cooling rates which generate different types of monolithic metallic glass Nat. Commun. 10 1337 doi: 10.1038/s41467-018-07930-3
    [80]
    Al-Mukadam R, Götz I K, Stolpe M, Deubener J 2021 Viscosity of metallic glass-forming liquids based on Zr by fast-scanning calorimetry Acta Mater. 221 117370 doi: 10.1016/j.actamat.2021.117370
    [81]
    Gao Y L, Zhao B G, Vlassak J J, Schick C 2021 Reprint of: nanocalorimetry: door opened for in situ material characterization under extreme non-equilibrium conditions Prog. Mater. Sci. 120 100819 doi: 10.1016/j.pmatsci.2021.100819
    [82]
    Schawe J E K, Löffler J F 2022 Kinetics of structure formation in the vicinity of the glass transition Acta Mater. 226 117630 doi: 10.1016/j.actamat.2022.117630
    [83]
    Vila-Costa A, Gonzalez-Silveira M, Rodríguez-Tinoco C, Rodríguez-López M, Rodriguez-Viejo J 2022 Emergence of equilibrated liquid regions within the glass Nat. Phys. 19 114-9 doi: 10.1038/s41567-022-01791-w
    [84]
    Kresse G, Hafner J 1993 Ab initio molecular dynamics for liquid metals Phys. Rev. B 47 558-61 doi: 10.1103/PhysRevB.47.558
    [85]
    Kresse G, Furthmuller J 1996 Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set Phys. Rev. B 54 11169-86 doi: 10.1103/PhysRevB.54.11169
    [86]
    Wang H, Zhang L, Han J, Weinan E 2017 DeePMD-kit: a deep learning package for many-body potential energy representation and molecular dynamics (arXiv:1712.03641)
    [87]
    Chapman J, Hsu T, Chen X, Heo T W, Wood B C 2023 Quantifying disorder one atom at a time using an interpretable graph neural network paradigm Nat. Commun. 14 4030 doi: 10.1038/s41467-023-39755-0
    [88]
    Thompson A P, et al 2022 LAMMPS—a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales Comput. Phys. Commun. 271 108171 doi: 10.1016/j.cpc.2021.108171
    [89]
    Rycroft C H 2009 VORO++: a three-dimensional Voronoi cell library in C++ Chaos 19 41111 doi: 10.1063/1.3215722
    [90]
    Angell C A 2002 Liquid fragility and the glass transition in water and aqueous solutions Chem. Rev. 102 2627-50 doi: 10.1021/cr000689q
    [91]
    Wei S, Lucas P, Angell C A 2015 Phase change alloy viscosities down to Tg using Adam-Gibbs-equation fittings to excess entropy data: a fragile-to-strong transition J. Appl. Phys. 118 034903 doi: 10.1063/1.4926791
    [92]
    Pries J, Wei S, Hoff F, Lucas P, Wuttig M 2020 Control of effective cooling rate upon magnetron sputter deposition of glassy Ge15Te85 Scr. Mater. 178 223-6 doi: 10.1016/j.scriptamat.2019.11.024
    [93]
    Pries J, Weber H, Benke-Jacob J, Kaban I, Wei S, Wuttig M, Lucas P 2022 Fragile-to-strong transition in phase-change material Ge3Sb6Te5 Adv. Funct. Mater. 32 2202714 doi: 10.1002/adfm.202202714
    [94]
    Wang L-M, Velikov V, Angell C A 2002 Direct determination of kinetic fragility indices of glassforming liquids by differential scanning calorimetry: kinetic versus thermodynamic fragilities J. Chem. Phys. 117 10184-92 doi: 10.1063/1.1517607
    [95]
    Becke A D, Edgecombe K E 1990 A simple measure of electron localization in atomic and molecular systems J. Chem. Phys. 92 5397-403 doi: 10.1063/1.458517
    [96]
    Silvi B, Savin A 1994 Classification of chemical bonds based on topological analysis of electron localization functions Nature 371 683-6 doi: 10.1038/371683a0
    [97]
    Liu B-W, Jiang X-M, Pei S-M, Chen W-F, Yang L-Q, Guo G-C 2021 Balanced infrared nonlinear optical performance achieved by modulating the covalency and ionicity distributions in the electron localization function map Mater. Horiz. 8 3394-8 doi: 10.1039/D1MH01434J
    [98]
    Hadi M A, Kelaidis N, Filippatos P P, Christopoulos S R G, Chroneos A, Naqib S H, Islam A K M A 2022 Optical response, lithiation and charge transfer in Sn-based 211 MAX phases with electron localization function J. Mater. Res. Technol. 18 2470-9 doi: 10.1016/j.jmrt.2022.03.083
    [99]
    Zhang T, Zhao H-F, Wang K-Y, Chen Z-J, Li L, Peng J, Peng X, Huang Y-J, Yu H-B 2023 Three factors make bulk high-entropy alloys as effective electrocatalysts for oxygen evolution Mater. Futures 2 045101 doi: 10.1088/2752-5724/aceef3
    [100]
    Xu H, Ke H, Huang H, Zhang P, Pu Z, Zhang P, Liu T 2018 U-based metallic glasses with superior glass forming ability J. Nucl. Mater. 499 372-6 doi: 10.1016/j.jnucmat.2017.11.043
    [101]
    Jia P, Xu J 2008 Comparison of bulk metallic glass formation between Cu-Hf binary and Cu-Hf-Al ternary alloys J. Mater. Res. 24 96-106 doi: 10.1557/JMR.2009.0014
    [102]
    Wang T, Hu L, Liu Y, Hui X 2019 Intrinsic correlation of the plasticity with liquid behavior of bulk metallic glass forming alloys Mater. Sci. Eng. A 744 316-23 doi: 10.1016/j.msea.2018.12.004
    [103]
    Shao L, Xue L, Luo Q, Wang Q, Shen B 2019 The role of Co/Al ratio in glass-forming GdCoAl magnetocaloric metallic glasses Materialia 7 100419 doi: 10.1016/j.mtla.2019.100419
    [104]
    Wang D, Zhang D, Wang S, Ning Q, Zheng C, Yan Y, Liu J, Sun M 2008 Viscosity properties and strong liquid behavior of Pr60Ni25Al15 bulk metallic glass-forming liquids Sci. China G 51 307-14 doi: 10.1007/s11433-008-0017-6
    [105]
    Sun Q, Zhou C, Yue Y, Hu L 2014 A direct link between the fragile-to-strong transition and relaxation in supercooled liquids J. Phys. Chem. Lett. 5 1170-4 doi: 10.1021/jz500239w
    [106]
    Mukherjee S, Schroers J, Zhou Z, Johnson W L, Rhim W K 2004 Viscosity and specific volume of bulk metallic glass-forming alloys and their correlation with glass forming ability Acta Mater. 52 3689-95 doi: 10.1016/j.actamat.2004.04.023
    [107]
    Zheng Q, Xu J, Ma E 2007 High glass-forming ability correlated with fragility of Mg-Cu(Ag)-Gd alloys J. Appl. Phys. 102 113519 doi: 10.1063/1.2821755
    [108]
    Busch R, Schroers J, Wang W H 2007 Thermodynamics and kinetics of bulk metallic glass MRS Bull. 32 620-3 doi: 10.1557/mrs2007.122
    [109]
    Wang L-M, Tian Y, Liu R 2010 Dependence of glass forming ability on liquid fragility: thermodynamics versus kinetics Appl. Phys. Lett. 97 181901 doi: 10.1063/1.3506900
  • 加载中

Catalog

    Figures(9)  / Tables(2)

    Article Metrics

    Article Views(173) PDF downloads(52)
    Article Statistics
    Related articles from

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return