Volume 3 Issue 2
June  2024
Turn off MathJax
Article Contents
Bohan Wei, Yun Li, Tinghe Yun, Yang Li, Tianhu Gui, Wenzhi Yu, Hanran Mu, Nan Cui, Weiqiang Chen, Shenghuang Lin. Triply degenerate semimetal PtBi2 as van der Waals contact interlayer in two-dimensional transistor[J]. Materials Futures, 2024, 3(2): 025302. doi: 10.1088/2752-5724/ad47cf
Citation: Bohan Wei, Yun Li, Tinghe Yun, Yang Li, Tianhu Gui, Wenzhi Yu, Hanran Mu, Nan Cui, Weiqiang Chen, Shenghuang Lin. Triply degenerate semimetal PtBi2 as van der Waals contact interlayer in two-dimensional transistor[J]. Materials Futures, 2024, 3(2): 025302. doi: 10.1088/2752-5724/ad47cf
Paper •
OPEN ACCESS

Triply degenerate semimetal PtBi2 as van der Waals contact interlayer in two-dimensional transistor

© 2024 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory
Materials Futures, Volume 3, Number 2
  • Received Date: 2024-04-02
  • Accepted Date: 2024-05-05
  • Rev Recd Date: 2024-04-21
  • Publish Date: 2024-05-23
  • AbstractThe low-energy electronic excitations in topological semimetal yield a plethora of a range of novel physical properties. As a relatively scarce branch, the research of triple-degenerate semi-metal is mostly confined to the stage of physical properties and theoretical analysis, there are still challenges in its practical application. This research showcases the first application of the triply degenerate semimetal PtBi2 in electronic devices. Leveraging a van der Waals transfer method, PtBi2 flakes were used as interlayer contacts for metal electrodes and WS2 in transistors. The transistor achieved a switching ratio above 106 and average mobility can reach 85 cm2V−1 s−1, meeting integrated circuit requirements. Notably, the excellent air stability of PtBi2 simplifies the device preparation process and provides more stable device performance. Transfer process reduces the Schottky barrier between metal electrodes and semiconductors while avoiding Fermi pinning during metal deposition to achieve excellent contact. This groundbreaking work demonstrates the practical applicability of PtBi2 in the field of electronic devices while opening new avenues for the integration of novel materials in semiconductor technology, setting a precedent for future innovations.
  • loading
  • Conflict of interest

    The authors declare no conflict of interest.

  • [1]
    Young S M, Zaheer S, Teo J C Y, Kane C L, Mele E J, Rappe A M 2012 Dirac semimetal in three dimensions Phys. Rev. Lett. 108 140405 doi: 10.1103/PhysRevLett.108.140405
    [2]
    Liu Z K, et al 2014 Discovery of a three-dimensional topological dirac semimetal, Na3Bi Science 343 864-7 doi: 10.1126/science.1245085
    [3]
    Xu S-Y, et al 2015 Observation of Fermi arc surface states in a topological metal Science 347 294-8 doi: 10.1126/science.1256742
    [4]
    Zeng L, et al 2023 Uncooled mid-infrared sensing enabled by chip-integrated low-temperature-grown 2D PdTe2 dirac semimetal Nano Lett. 23 8241-8 doi: 10.1021/acs.nanolett.3c02396
    [5]
    Huang S-M, et al 2015 A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class Nat. Commun. 6 7373 doi: 10.1038/ncomms8373
    [6]
    Xu S-Y, et al 2015 Discovery of a Weyl fermion semimetal and topological Fermi arcs Science 349 613-7 doi: 10.1126/science.aaa9297
    [7]
    Shao Y, et al 2020 Electronic correlations in nodal-line semimetals Nat. Phys. 16 636-41 doi: 10.1038/s41567-020-0859-z
    [8]
    Lv B Q, et al 2017 Observation of three-component fermions in the topological semimetal molybdenum phosphide Nature 546 627-31 doi: 10.1038/nature22390
    [9]
    Ma J Z, et al 2018 Three-component fermions with surface Fermi arcs in tungsten carbide Nat. Phys. 14 349-54 doi: 10.1038/s41567-017-0021-8
    [10]
    Wang A-Q, Ye X-G, Yu D-P, Liao Z-M 2020 Topological semimetal nanostructures: from properties to topotronics ACS Nano 14 3755-78 doi: 10.1021/acsnano.9b07990
    [11]
    Liu J, Xia F, Xiao D, García de Abajo F J, Sun D 2020 Semimetals for high-performance photodetection Nat. Mater. 19 830-7 doi: 10.1038/s41563-020-0715-7
    [12]
    Li Y, Yu W, Zhang K, Cui N, Yun T, Xia X, Jiang Y, Zhang G, Mu H, Lin S 2024 Two-dimensional topological semimetals: an emerging candidate for terahertz detectors and on-chip integration Mater. Horiz. doi: 10.1039/D3MH02250A
    [13]
    Gao W, et al 2018 A possible candidate for triply degenerate point fermions in trigonal layered PtBi2 Nat. Commun. 9 3249 doi: 10.1038/s41467-018-05730-3
    [14]
    Zhu A, Wang H, Chen Z, Han Y, Zhu M, Han M, Zhu X, Gao W, Tian M 2023 Thickness-tuned magnetotransport properties of topological semimetal trigonal PtBi2 Appl. Phys. Lett. 122 113101 doi: 10.1063/5.0137604
    [15]
    Feng Y, et al 2019 Rashba-like spin splitting along three momentum directions in trigonal layered PtBi2 Nat. Commun. 10 4765 doi: 10.1038/s41467-019-12805-2
    [16]
    Xing L, Chapai R, Nepal R, Jin R 2020 Topological behavior and Zeeman splitting in trigonal PtBi2-x single crystals npj Quantum Mater. 5 10 doi: 10.1038/s41535-020-0213-9
    [17]
    Shen P-C, et al 2021 Ultralow contact resistance between semimetal and monolayer semiconductors Nature 593 211-7 doi: 10.1038/s41586-021-03472-9
    [18]
    Li W, et al 2023 Approaching the quantum limit in two-dimensional semiconductor contacts Nature 613 274-9 doi: 10.1038/s41586-022-05431-4
    [19]
    Wen X, Lei W, Li X, Di B, Zhou Y, Zhang J, Zhang Y, Li L, Chang H, Zhang W 2023 ZrTe2 compound dirac semimetal contacts for high-performance MoS2 transistors Nano Lett. 23 8419-25 doi: 10.1021/acs.nanolett.3c01554
    [20]
    Wu D, et al 2023 Phase-controlled van der Waals growth of wafer-scale 2D MoTe2 layers for integrated high-sensitivity broadband infrared photodetection Light Sci. Appl. 12 5 doi: 10.1038/s41377-022-01047-5
    [21]
    Das S, Chen H-Y, Penumatcha A V, Appenzeller J 2013 High performance multilayer MoS2 transistors with scandium contacts Nano Lett. 13 100-5 doi: 10.1021/nl303583v
    [22]
    Wang Y, Kim J C, Wu R J, Martinez J, Song X, Yang J, Zhao F, Mkhoyan A, Jeong H Y, Chhowalla M 2019 Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors Nature 568 70-74 doi: 10.1038/s41586-019-1052-3
    [23]
    Li W, et al 2022 Synthesis of 2D α-GeTe single crystals and α-GeTe/WSe2 heterostructures with enhanced electronic performance Adv. Funct. Mater. 32 2201673 doi: 10.1002/adfm.202201673
    [24]
    Li X, Wu S-E, Wu D, Zhao T, Lin P, Shi Z, Tian Y, Li X, Zeng L, Yu X 2024 In situ construction of PtSe2/Ge Schottky junction array with interface passivation for broadband infrared photodetection and imaging InfoMat 2024 e12499 doi: 10.1002/inf2.12499
    [25]
    Nishimura T, Kita K, Toriumi A 2007 Evidence for strong Fermi-level pinning due to metal-induced gap states at metal/germanium interface Appl. Phys. Lett. 91 12 doi: 10.1063/1.2789701
    [26]
    Liu Y, Guo J, Zhu E, Liao L, Lee S-J, Ding M, Shakir I, Gambin V, Huang Y, Duan X 2018 Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions Nature 557 696-700 doi: 10.1038/s41586-018-0129-8
    [27]
    Phan N A N, Noh H, Kim J, Kim Y, Kim H, Whang D, Aoki N, Watanabe K, Taniguchi T, Kim G-H 2022 Enhanced performance of WS2 field-effect transistor through mono and bilayer h-BN tunneling contacts Small 18 2105753 doi: 10.1002/smll.202105753
    [28]
    Jang J, Ra H-S, Ahn J, Kim T W, Song S H, Park S, Taniguch T, Watanabe K, Lee K, Hwang D K 2022 Fermi-level pinning-free WSe2 transistors via 2D Van der Waals Metal contacts and their circuits Adv. Mater. 34 2109899 doi: 10.1002/adma.202109899
    [29]
    Li X, et al 2023 One-dimensional semimetal contacts to two-dimensional semiconductors Nat. Commun. 14 111 doi: 10.1038/s41467-022-35760-x
    [30]
    Kwon G, et al 2022 Interaction- and defect-free van der Waals contacts between metals and two-dimensional semiconductors Nat. Electron. 5 241-7 doi: 10.1038/s41928-022-00746-6
    [31]
    Zhang X, Yu H, Tang W, Wei X, Gao L, Hong M, Liao Q, Kang Z, Zhang Z, Zhang Y 2022 All-van-der-Waals barrier-free contacts for high-mobility transistors Adv. Mater. 34 2109521 doi: 10.1002/adma.202109521
    [32]
    Zhuang R, et al 2023 Solution-grown BiI/BiI3 van der Waals heterostructures for sensitive x-ray detection Nat. Commun. 14 1621 doi: 10.1038/s41467-023-37297-z
    [33]
    Mu H, et al 2023 Alternating BiI3-BiI van der Waals photodetector with low dark current and high-performance photodetection ACS Nano 17 21317-27 doi: 10.1021/acsnano.3c05849
    [34]
    Cui N, Song Y, Tan C-H, Zhang K, Yang X, Dong S, Xie B, Huang F 2021 Stretchable transparent electrodes for conformable wearable organic photovoltaic devices npj Flex. Electron. 5 31 doi: 10.1038/s41528-021-00127-7
    [35]
    Yang X, et al 2023 Highly reproducible van der Waals integration of two-dimensional electronics on the wafer scale Nat. Nanotechnol. 18 471-8 doi: 10.1038/s41565-023-01342-1
    [36]
    Ovchinnikov D, Allain A, Huang Y-S, Dumcenco D, Kis A 2014 Electrical transport properties of single-layer WS2 ACS Nano 8 8174-81 doi: 10.1021/nn502362b
    [37]
    Khalil H M W, Khan M F, Eom J, Noh H 2015 Highly stable and tunable chemical doping of multilayer WS2 field effect transistor: reduction in contact resistance ACS Appl. Mater. Interfaces 7 23589-96 doi: 10.1021/acsami.5b06825
    [38]
    Liu X, Hu J, Yue C, Della Fera N, Ling Y, Mao Z, Wei J 2014 High performance field-effect transistor based on multilayer tungsten disulfide ACS Nano 8 10396-402 doi: 10.1021/nn505253p
    [39]
    Baik S S, Im S, Choi H J 2017 Work function tuning in two-dimensional MoS2 field-effect-transistors with graphene and titanium source-drain contacts Sci. Rep. 7 45546 doi: 10.1038/srep45546
    [40]
    Akinwande D, Huyghebaert C, Wang C-H, Serna M I, Goossens S, Li L-J, Wong H S P, Koppens F H L 2019 Graphene and two-dimensional materials for silicon technology Nature 573 507-18 doi: 10.1038/s41586-019-1573-9
    [41]
    Zhou Y, Wang X, Dodabalapur A 2023 Accurate field-effect mobility and threshold voltage estimation for thin-film transistors with gate-voltage-dependent mobility in linear region Adv. Electron. Mater. 9 2200786 doi: 10.1002/aelm.202200786
    [42]
    Kim T, Park S, Jeon S 2017 Fast and slow transient charging of oxide semiconductor transistors Sci. Rep. 7 11850 doi: 10.1038/s41598-017-12155-3
    [43]
    Park J, Kim M S, Cha E, Kim J, Choi W 2017 Synthesis of uniform single layer WS2 for tunable photoluminescence Sci. Rep. 7 16121 doi: 10.1038/s41598-017-16251-2
    [44]
    Qiu D, Kim E K 2015 Electrically tunable and negative Schottky barriers in multi-layered graphene/MoS2 heterostructured transistors Sci. Rep. 5 13743 doi: 10.1038/srep13743
    [45]
    Harisha C P, Liao M-H, Kei C-C, Joshi S 2022 Negative Schottky barrier height and surface inhomogeneity in n-silicon M-I-S structures AIP Adv. 12 7 doi: 10.1063/5.0095003
    [46]
    Wang P, et al 2023 Recent progress on performance-enhancing strategies in flexible photodetectors: from structural engineering to flexible integration Mater. Sci. Eng. R 156 100759 doi: 10.1016/j.mser.2023.100759
    [47]
    Song H, Mu H, Yuan J, Liu B, Bai G, Lin S 2023 Boosting the efficiency of quantum dot-sensitized solar cells over 15% through light-harvesting enhancement SusMat 3 543-54 doi: 10.1002/sus2.144
  • mfad47cfsupp1.pdf
  • 加载中

Catalog

    Figures(7)

    Article Metrics

    Article Views(233) PDF downloads(46)
    Article Statistics
    Related articles from

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return