Citation: | Yue Qi, Yueyi Wang, Xiaofei Wang, Hao Zheng, Yuan Lu. Tuning gut microbiota by advanced nanotechnology[J]. Materials Futures, 2025, 4(1): 012302. DOI: 10.1088/2752-5724/ada62b |
[1] |
Thursby E and Juge N 2017 Introduction to the human gut microbiota Biochem. J. 474 1823-36
|
[2] |
Backhed F, Ley R E, Sonnenburg J L, Peterson D A and Gordon J I 2005 Host-bacterial mutualism in the human intestine Science 307 1915-20
|
[3] |
Zheng D, Liwinski T and Elinav E 2020 Interaction between microbiota and immunity in health and disease Cell Res. 30 492-506
|
[4] |
Lynch J B and Hsiao E Y 2019 Microbiomes as sources of emergent host phenotypes Science 365 1405-9
|
[5] |
Yang Y, Du H, Zou G, Song Z, Zhou Y, Li H, Tan C, Chen H, Fischetti V A and Li J 2023 Encapsulation and delivery of phage as a novel method for gut flora manipulation in situ: a review J. Control. Release 353 634-49
|
[6] |
Liu J, Yuan S, Bremmer A and Hu Q 2024 Convergence of nanotechnology and bacteriotherapy for biomedical applications Adv. Sci. 11 e2309295
|
[7] |
Angelucci F, Cechova K, Amlerova J and Hort J 2019 Antibiotics, gut microbiota, and Alzheimer’s disease J. Neuroinflammation 16 108
|
[8] |
Wu S, Bekhit A E-D A, Wu Q, Chen M, Liao X, Wang J and Ding Y 2021 Bioactive peptides and gut microbiota: candidates for a novel strategy for reduction and control of neurodegenerative diseases Trends Food Sci. Technol. 108 164-76
|
[9] |
Dahiya D and Nigam P S 2023 Antibiotic-therapy-induced gut dysbiosis affecting gut microbiota-brain axis and cognition: restoration by intake of probiotics and synbiotics Int. J. Mol. Sci. 24 3074
|
[10] |
Shao T, Hsu R, Hacein-Bey C, Zhang W, Gao L, Kurth M J, Zhao H, Shuai Z and Leung P S C 2023 The evolving landscape of fecal microbial transplantation Clin. Rev. Allergy Immunol. 65 101-20
|
[11] |
Dahlman S, Avellaneda-Franco L and Barr J J 2021 Phages to shape the gut microbiota? Curr. Opin. Biotechnol. 68 89-95
|
[12] |
Yadav R, Kumar V, Baweja M and Shukla P 2018 Gene editing and genetic engineering approaches for advanced probiotics: a review Crit. Rev. Food Sci. Nutr. 58 1735-46
|
[13] |
Xie J, Zhao M, Wang C, Yong Y and Gu Z 2022 Recent advances in understanding the effects of nanomaterials on gut microbiota Chem. Eng. J. 435 134976
|
[14] |
Makabenta J M V, Nabawy A, Li C H, Schmidt-Malan S, Patel R and Rotello V M 2021 Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections Nat. Rev. Microbiol. 19 23-36
|
[15] |
Hu S, Zhao R, Xu Y, Gu Z, Zhu B and Hu J 2023 Orally-administered nanomedicine systems targeting colon inflammation for the treatment of inflammatory bowel disease: latest advances J. Mater. Chem. B 12 13-38
|
[16] |
Zhang Q, Kuang G, Li W, Wang J, Ren H and Zhao Y 2023 Stimuli-responsive gene delivery nanocarriers for cancer therapy Nanomicro Lett. 15 44
|
[17] |
Rinninella E, Raoul P, Cintoni M, Franceschi F, Miggiano G A D, Gasbarrini A and Mele M C 2019 What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases Microorganisms 7 14
|
[18] |
Lozupone C A, Stombaugh J I, Gordon J I, Jansson J K and Knight R 2012 Diversity, stability and resilience of the human gut microbiota Nature 489 220-30
|
[19] |
Vilchez-Vargas R et al 2022 Gut microbial similarity in twins is driven by shared environment and aging EBioMedicine 79 104011
|
[20] |
Lin D, Wang R, Luo J, Ren F, Gu Z, Zhao Y and Zhao L 2020 The core and distinction of the gut microbiota in Chinese populations across geography and ethnicity Microorganisms 8 1579
|
[21] |
Conlon M A and Bird A R 2014 The impact of diet and lifestyle on gut microbiota and human health Nutrients 7 17-44
|
[22] |
Kałużna-Czaplińska J, Gątarek P, Chartrand M S, Dadar M and Bjørklund G 2017 Is there a relationship between intestinal microbiota, dietary compounds, and obesity? Trends Food Sci. Technol. 70 105-13
|
[23] |
O’Toole P W and Jeffery I B 2015 Gut microbiota and aging Science 350 1214-5
|
[24] |
Sommer F, Anderson J M, Bharti R, Raes J and Rosenstiel P 2017 The resilience of the intestinal microbiota influences health and disease Nat. Rev. Microbiol. 15 630-8
|
[25] |
Gomaa E Z 2020 Human gut microbiota/microbiome in health and diseases: a review Antonie Van Leeuwenhoek 113 2019-40
|
[26] |
Correa-Oliveira R, Fachi J L, Vieira A, Sato F T and Vinolo M A 2016 Regulation of immune cell function by short-chain fatty acids Clin. Transl. Immunol. 5 e73
|
[27] |
Chambers E S et al 2015 Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults Gut 64 1744-54
|
[28] |
Chambers E S, Morrison D J and Frost G 2015 Control of appetite and energy intake by scfa: what are the potential underlying mechanisms? Proc. Nutr. Soc. 74 328-36
|
[29] |
Wu L, Tang Z, Chen H, Ren Z, Ding Q, Liang K and Sun Z 2021 Mutual interaction between gut microbiota and protein/amino acid metabolism for host mucosal immunity and health Animal Nutr. 7 11-16
|
[30] |
Schoeler M and Caesar R 2019 Dietary lipids, gut microbiota and lipid metabolism Rev. Endocr. Metab. Disord. 20 461-72
|
[31] |
Hill M J 1997 Intestinal flora and endogenous vitamin synthesis Eur. J. Cancer Prev. 6 S43-45
|
[32] |
Steinert R E, Lee Y K and Sybesma W 2020 Vitamins for the gut microbiome Trends Mol. Med. 26 137-40
|
[33] |
Pickard J M, Zeng M Y, Caruso R and Nunez G 2017 Gut microbiota: role in pathogen colonization, immune responses, and inflammatory disease Immunol. Rev. 279 70-89
|
[34] |
Campbell C, Kandalgaonkar M R, Golonka R M, Yeoh B S, Vijay-Kumar M and Saha P 2023 Crosstalk between gut microbiota and host immunity: impact on inflammation and immunotherapy Biomedicines 11 294
|
[35] |
Jordan C K I and Clarke T B 2024 How does the microbiota control systemic innate immunity? Trends Immunol. 45 94-102
|
[36] |
Adak A and Khan M R 2019 An insight into gut microbiota and its functionalities Cell Mol. Life Sci. 76 473-93
|
[37] |
Chen Y, Xu J and Chen Y 2021 Regulation of neurotransmitters by the gut microbiota and effects on cognition in neurological disorders Nutrients 13 2099
|
[38] |
Martin C R, Osadchiy V, Kalani A and Mayer E A 2018 The brain-gut-microbiome axis Cell Mol. Gastroenterol. Hepatol. 6 133-48
|
[39] |
Osadchiy V, Martin C R and Mayer E A 2019 The gut-brain axis and the microbiome: mechanisms and clinical implications Clin. Gastroenterol. Hepatol. 17 322-32
|
[40] |
Varatharaj A and Galea I 2017 The blood-brain barrier in systemic inflammation Brain Behav. Immun. 60 1-12
|
[41] |
Albillos A, de Gottardi A and Rescigno M 2020 The gut-liver axis in liver disease: pathophysiological basis for therapy J. Hepatol. 72 558-77
|
[42] |
Hsu C L and Schnabl B 2023 The gut-liver axis and gut microbiota in health and liver disease Nat. Rev. Microbiol. 21 719-33
|
[43] |
Mertowska P, Mertowski S, Wojnicka J, Korona-Glowniak I, Grywalska E, Blazewicz A and Zaluska W 2021 A link between chronic kidney disease and gut microbiota in immunological and nutritional aspects Nutrients 13 3637
|
[44] |
Yang T, Richards E M, Pepine C J and Raizada M K 2018 The gut microbiota and the brain-gut-kidney axis in hypertension and chronic kidney disease Nat. Rev. Nephrol. 14 442-56
|
[45] |
Wang L, Cai Y, Garssen J, Henricks P A J, Folkerts G and Braber S 2023 The bidirectional gut-lung axis in chronic obstructive pulmonary disease Am. J. Respir. Crit. Care Med. 207 1145-60
|
[46] |
Budden K F, Gellatly S L, Wood D L, Cooper M A, Morrison M, Hugenholtz P and Hansbro P M 2017 Emerging pathogenic links between microbiota and the gut-lung axis Nat. Rev. Microbiol. 15 55-63
|
[47] |
Zhang Y W, Song P R, Wang S C, Liu H, Shi Z M and Su J C 2024 Diets intervene osteoporosis via gut-bone axis Gut Microbes 16 2295432
|
[48] |
Liu C, Cheung W H, Li J, Chow S K, Yu J, Wong S H, Ip M, Sung J J Y and Wong R M Y 2021 Understanding the gut microbiota and sarcopenia: a systematic review J. Cachexia Sarcopenia Muscle 12 1393-407
|
[49] |
Levy M, Kolodziejczyk A A, Thaiss C A and Elinav E 2017 Dysbiosis and the immune system Nat. Rev. Immunol. 17 219-32
|
[50] |
Sasso J M, Ammar R M, Tenchov R, Lemmel S, Kelber O, Grieswelle M and Zhou Q A 2023 Gut microbiome-brain alliance: a landscape view into mental and gastrointestinal health and disorders ACS Chem. Neurosci. 14 1717-63
|
[51] |
Hou K et al 2022 Microbiota in health and diseases Signal Transduct. Target Ther. 7 135
|
[52] |
Yoo J Y, Groer M, Dutra S V O, Sarkar A and McSkimming D I 2020 Gut microbiota and immune system interactions Microorganisms 8 1587
|
[53] |
Mitrea L, Nemes S A, Szabo K, Teleky B E and Vodnar D C 2022 Guts imbalance imbalances the brain: a review of gut microbiota association with neurological and psychiatric disorders Front. Med. Lausanne 9 813204
|
[54] |
Chidambaram S B et al 2022 Gut dysbiosis, defective autophagy and altered immune responses in neurodegenerative diseases: tales of a vicious cycle Pharmacol. Ther. 231 107988
|
[55] |
Gebrayel P et al 2022 Microbiota medicine: towards clinical revolution J. Transl. Med. 20 111
|
[56] |
Wang P X, Deng X R, Zhang C H and Yuan H J 2020 Gut microbiota and metabolic syndrome Chin. Med. J. 133 808-16
|
[57] |
Kesavelu D and Jog P 2023 Current understanding of antibiotic-associated dysbiosis and approaches for its management Ther. Adv. Infect Dis. 10 20499361231154443
|
[58] |
Lopetuso L R, Napoli M, Rizzatti G and Gasbarrini A 2018 The intriguing role of rifaximin in gut barrier chronic inflammation and in the treatment of Crohn’s disease Expert Opin. Investig. Drugs 27 543-51
|
[59] |
Fong W, Li Q and Yu J 2020 Gut microbiota modulation: a novel strategy for prevention and treatment of colorectal cancer Oncogene 39 4925-43
|
[60] |
Vassallo G, Mirijello A, Ferrulli A, Antonelli M, Landolfi R, Gasbarrini A and Addolorato G 2015 Review article: alcohol and gut microbiota—the possible role of gut microbiota modulation in the treatment of alcoholic liver disease Aliment. Pharmacol. Ther. 41 917-27
|
[61] |
Lorente-Picon M and Laguna A 2021 New avenues for parkinson’s disease therapeutics: disease-modifying strategies based on the gut microbiota Biomolecules 11 433
|
[62] |
Ribeiro C F A, Silveira G, Candido E S, Cardoso M H, Espinola Carvalho C M and Franco O L 2020 Effects of antibiotic treatment on gut microbiota and how to overcome its negative impacts on human health ACS Infect. Dis. 6 2544-59
|
[63] |
Modi S R, Lee H H, Spina C S and Collins J J 2013 Antibiotic treatment expands the resistance reservoir and ecological network of the phage metagenome Nature 499 219-22
|
[64] |
Jian S, Yang K, Zhang L, Zhang L, Xin Z, Wen C, He S, Deng J and Deng B 2023 The modulation effects of plant-derived bioactive ingredients on chronic kidney disease: focus on the gut-kidney axis Food Front. 4 262-82
|
[65] |
Li B Y, Xu X Y, Gan R Y, Sun Q C, Meng J M, Shang A, Mao Q Q and Li H B 2019 Targeting gut microbiota for the prevention and management of diabetes mellitus by dietary natural products Foods 8 440
|
[66] |
Sun Y, Ho C T and Zhang X 2023 Neuroprotection of food bioactives in neurodegenerative diseases: role of the gut microbiota and innate immune receptors J. Agric. Food Chem. 71 2718-33
|
[67] |
Zhao L, Wang S, Zhang N, Zhou J, Mehmood A, Raka R N, Zhou F and Zhao L 2022 The beneficial effects of natural extracts and bioactive compounds on the gut-liver axis: a promising intervention for alcoholic liver disease Antioxidants 11 1211
|
[68] |
Sharma B R, Jaiswal S and Ravindra P V 2022 Modulation of gut microbiota by bioactive compounds for prevention and management of type 2 diabetes Biomed. Pharmacother. 152 113148
|
[69] |
Hill C et al 2014 Expert consensus document. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic Nat. Rev. Gastroenterol. Hepatol. 11 506-14
|
[70] |
Markowiak P and Slizewska K 2017 Effects of probiotics, prebiotics, and synbiotics on human health Nutrients 9 1021
|
[71] |
Plaza-Diaz J, Ruiz-Ojeda F J, Gil-Campos M and Gil A 2019 Mechanisms of action of probiotics Adv. Nutr. 10 S49-S66
|
[72] |
Ji J, Jin W, Liu S J, Jiao Z and Li X 2023 Probiotics, prebiotics, and postbiotics in health and disease MedComm 4 e420
|
[73] |
Jang Y J, Kim W K, Han D H, Lee K and Ko G 2019 Lactobacillus fermentum species ameliorate dextran sulfate sodium-induced colitis by regulating the immune response and altering gut microbiota Gut Microbes 10 696-711
|
[74] |
Li K L, Wang B Z, Li Z P, Li Y L and Liang J J 2019 Alterations of intestinal flora and the effects of probiotics in children with recurrent respiratory tract infection World J. Pediatr. 15 255-61
|
[75] |
Song H, Wang W, Shen B, Jia H, Hou Z, Chen P and Sun Y 2018 Pretreatment with probiotic bifico ameliorates colitis-associated cancer in mice: transcriptome and gut flora profiling Cancer Sci. 109 666-77
|
[76] |
Yao M, Xie J, Du H, McClements D J, Xiao H and Li L 2020 Progress in microencapsulation of probiotics: a review Comprehensive Rev. Food Sci. Food Saf. 19 857-74
|
[77] |
Dosoky N S, May-Zhang L S and Davies S S 2020 Engineering the gut microbiota to treat chronic diseases Appl. Microbiol. Biotechnol. 104 7657-71
|
[78] |
Bober J R, Beisel C L and Nair N U 2018 Synthetic biology approaches to engineer probiotics and members of the human microbiota for biomedical applications Annu. Rev. Biomed. Eng. 20 277-300
|
[79] |
Riglar D T, Giessen T W, Baym M, Kerns S J, Niederhuber M J, Bronson R T, Kotula J W, Gerber G K, Way J C and Silver P A 2017 Engineered bacteria can function in the mammalian gut long-term as live diagnostics of inflammation Nat. Biotechnol. 35 653-8
|
[80] |
Zuo Z and Zhao F 2023 Gut microbiota-targeted interventions: from conventional approaches to genetic engineering Sci. Bull. 68 1231-4
|
[81] |
Sorbara M T and Pamer E G 2022 Microbiome-based therapeutics Nat. Rev. Microbiol. 20 365-80
|
[82] |
Yu Y, Wang W and Zhang F 2023 The next generation fecal microbiota transplantation: to transplant bacteria or virome Adv. Sci. 10 e2301097
|
[83] |
Sorboni S G, Moghaddam H S, Jafarzadeh-Esfehani R and Soleimanpour S 2022 A comprehensive review on the role of the gut microbiome in human neurological disorders Clin. Microbiol. Rev. 35 e0033820
|
[84] |
Blake S J, Wolf Y, Boursi B and Lynn D J 2024 Role of the microbiota in response to and recovery from cancer therapy Nat. Rev. Immunol. 24 308-25
|
[85] |
Jimenez-Avalos J A, Arrevillaga-Boni G, Gonzalez-Lopez L, Garcia-Carvajal Z Y and Gonzalez-Avila M 2021 Classical methods and perspectives for manipulating the human gut microbial ecosystem Crit. Rev. Food Sci. Nutr. 61 234-58
|
[86] |
Quera R, Espinoza R, Estay C and Rivera D 2014 Bacteremia as an adverse event of fecal microbiota transplantation in a patient with crohn’s disease and recurrent clostridium difficile infection J. Crohns Colitis 8 252-3
|
[87] |
Schwartz M, Gluck M and Koon S 2013 Norovirus gastroenteritis after fecal microbiota transplantation for treatment of clostridium difficile infection despite asymptomatic donors and lack of sick contacts Am. J. Gastroenterol. 108 1367
|
[88] |
Hohmann E L, Ananthakrishnan A N and Deshpande V 2014 Case records of the massachusetts general hospital. Case 25-2014. A 37-year-old man with ulcerative colitis and bloody diarrhea New Engl. J. Med. 371 668-75
|
[89] |
Shen Z H, Zhu C X, Quan Y S, Yang Z Y, Wu S, Luo W W, Tan B and Wang X Y 2018 Relationship between intestinal microbiota and ulcerative colitis: mechanisms and clinical application of probiotics and fecal microbiota transplantation World J. Gastroenterol. 24 5-14
|
[90] |
Basson A R, Zhou Y, Seo B, Rodriguez-Palacios A and Cominelli F 2020 Autologous fecal microbiota transplantation for the treatment of inflammatory bowel disease Transl. Res. 226 1-11
|
[91] |
Rinott E et al 2021 Effects of diet-modulated autologous fecal microbiota transplantation on weight regain Gastroenterology 160 158-173.e110
|
[92] |
de Groot P et al 2021 Faecal microbiota transplantation halts progression of human new-onset type 1 diabetes in a randomised controlled trial Gut 70 92-105
|
[93] |
Duan Y, Young R and Schnabl B 2022 Bacteriophages and their potential for treatment of gastrointestinal diseases Nat. Rev. Gastroenterol. Hepatol. 19 135-44
|
[94] |
Zhang Y, Li C X and Zhang X Z 2021 Bacteriophage-mediated modulation of microbiota for diseases treatment Adv. Drug Deliv. Rev. 176 113856
|
[95] |
Kortright K E, Chan B K, Koff J L and Turner P E 2019 Phage therapy: a renewed approach to combat antibiotic-resistant bacteria Cell Host Microbe 25 219-32
|
[96] |
Fujiki J and Schnabl B 2023 Phage therapy: targeting intestinal bacterial microbiota for the treatment of liver diseases JHEP Rep. 5 100909
|
[97] |
Voorhees P J, Cruz-Teran C, Edelstein J and Lai S K 2020 Challenges & opportunities for phage-based in situ microbiome engineering in the gut J. Control. Release 326 106-19
|
[98] |
Sivieri K, Bassan J, Peixoto G and Monti R 2017 Gut microbiota and antimicrobial peptides Curr. Opin. Food Sci. 13 56-62
|
[99] |
Garcia-Gutierrez E, Mayer M J, Cotter P D and Narbad A 2019 Gut microbiota as a source of novel antimicrobials Gut Microbes 10 1-21
|
[100] |
Datta N, Johnson C, Kao D, Gurnani P, Alexander C, Polytarchou C and Monaghan T M 2023 Microrna-based therapeutics for inflammatory disorders of the microbiota-gut-brain axis Pharmacol. Res. 194 106870
|
[101] |
Pan Q, Guo F, Huang Y, Li A, Chen S, Chen J, Liu H F and Pan Q 2021 Gut microbiota dysbiosis in systemic lupus erythematosus: novel insights into mechanisms and promising therapeutic strategies Front. Immunol. 12 799788
|
[102] |
Casado-Bedmar M and Viennois E 2022 Microrna and gut microbiota: tiny but mighty-novel insights into their cross-talk in inflammatory bowel disease pathogenesis and therapeutics J. Crohns Colitis 16 992-1005
|
[103] |
Riaz Rajoka M S, Mehwish H M, Xiong Y, Song X, Hussain N, Zhu Q and He Z 2021 Gut microbiota targeted nanomedicine for cancer therapy: challenges and future considerations Trends Food Sci. Technol. 107 240-51
|
[104] |
Song W, Anselmo A C and Huang L 2019 Nanotechnology intervention of the microbiome for cancer therapy Nat. Nanotechnol. 14 1093-103
|
[105] |
Weir E, Lawlor A, Whelan A and Regan F 2008 The use of nanoparticles in anti-microbial materials and their characterization Analyst 133 835-45
|
[106] |
Huh A J and Kwon Y J 2011 “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era J. Control. Release 156 128-45
|
[107] |
Xie M et al 2023 Antibacterial nanomaterials: mechanisms, impacts on antimicrobial resistance and design principles Angew. Chem., Int. Ed. Engl. 62 e202217345
|
[108] |
Li J, Cha R, Zhao X, Guo H, Luo H, Wang M, Zhou F and Jiang X 2019 Gold nanoparticles cure bacterial infection with benefit to intestinal microflora ACS Nano 13 5002-14
|
[109] |
Wang Y, Wu S, Wang L, Wang Y, Liu D, Fu Y and Xie Y 2022 The activity of liposomal linolenic acid against helicobacter pylori in vitro and its impact on human fecal bacteria Front. Cell. Infect. Microbiol. 12 865320
|
[110] |
Liu J, Cabral H and Mi P 2024 Nanocarriers address intracellular barriers for efficient drug delivery, overcoming drug resistance, subcellular targeting and controlled release Adv. Drug Deliv. Rev. 207 115239
|
[111] |
Li C, Wang N, Zheng G and Yang L 2021 Oral administration of resveratrol-selenium-peptide nanocomposites alleviates alzheimer’s disease-like pathogenesis by inhibiting abeta aggregation and regulating gut microbiota ACS Appl. Mater. Interfaces 13 46406-20
|
[112] |
Raghunath A and Perumal E 2017 Metal oxide nanoparticles as antimicrobial agents: a promise for the future Int. J. Antimicrob. Agents 49 137-52
|
[113] |
Hajipour M J, Fromm K M, Ashkarran A A, Jimenez de Aberasturi D, de Larramendi I R, Rojo T, Serpooshan V, Parak W J and Mahmoudi M 2012 Antibacterial properties of nanoparticles Trends Biotechnol. 30 499-511
|
[114] |
Shabatina T, Vernaya O, Shumilkin A, Semenov A and Melnikov M 2022 Nanoparticles of bioactive metals/metal oxides and their nanocomposites with antibacterial drugs for biomedical applications Materials 15 3602
|
[115] |
Yin X, Lai Y, Du Y, Zhang T, Gao J and Li Z 2023 Metal-based nanoparticles: a prospective strategy for helicobacter pylori treatment Int. J. Nanomed. 18 2413-29
|
[116] |
Dong X, Pan P, Zheng D W, Bao P, Zeng X and Zhang X Z 2020 Bioinorganic hybrid bacteriophage for modulation of intestinal microbiota to remodel tumor-immune microenvironment against colorectal cancer Sci. Adv. 6 eaba1590
|
[117] |
Shahverdi A R, Fakhimi A, Shahverdi H R and Minaian S 2007 Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against staphylococcus aureus and escherichia coli Nanomedicine 3 168-71
|
[118] |
Liu H, Cai Z, Wang F, Hong L, Deng L, Zhong J, Wang Z and Cui W 2021 Colon-targeted adhesive hydrogel microsphere for regulation of gut immunity and flora Adv. Sci. 8 e2101619
|
[119] |
Chen Z, Han S, Zhou D, Zhou S and Jia G 2019 Effects of oral exposure to titanium dioxide nanoparticles on gut microbiota and gut-associated metabolism in vivo Nanoscale 11 22398-412
|
[120] |
Xin Q et al 2019 Antibacterial carbon-based nanomaterials Adv. Mater. 31 e1804838
|
[121] |
Chen H et al 2017 The effects of orally administered ag, tio 2 and sio 2 nanoparticles on gut microbiota composition and colitis induction in mice NanoImpact 8 80-88
|
[122] |
Chen H, Wang B, Gao D, Guan M, Zheng L, Ouyang H, Chai Z, Zhao Y and Feng W 2013 Broad-spectrum antibacterial activity of carbon nanotubes to human gut bacteria Small 9 2735-46
|
[123] |
Li J et al 2018 The antihyperlipidemic effects of fullerenol nanoparticles via adjusting the gut microbiota in vivo Part Fibre Toxicol. 15 5
|
[124] |
Li J et al 2018 Lipid- and gut microbiota-modulating effects of graphene oxide nanoparticles in high-fat diet-induced hyperlipidemic mice RSC Adv. 8 31366-71
|
[125] |
Li X X, Shi S, Rong L, Feng M Q and Zhong L 2018 The impact of liposomal linolenic acid on gastrointestinal microbiota in mice Int. J. Nanomed. 13 1399-409
|
[126] |
Seabra C L, Nunes C, Bras M, Gomez-Lazaro M, Reis C A, Goncalves I C, Reis S and Martins M C L 2018 Lipid nanoparticles to counteract gastric infection without affecting gut microbiota Eur. J. Pharm. Biopharm. 127 378-86
|
[127] |
Chen H et al 2018 Acute oral administration of single-walled carbon nanotubes increases intestinal permeability and inflammatory responses: association with the changes in gut microbiota in mice Adv. Healthcare Mater. 7 e1701313
|
[128] |
Udayangani R M C, Dananjaya S H S, Nikapitiya C, Heo G J, Lee J and De Zoysa M 2017 Metagenomics analysis of gut microbiota and immune modulation in zebrafish (danio rerio) fed chitosan silver nanocomposites Fish Shellfish Immunol. 66 173-84
|
[129] |
Song R, Yao J, Shi Q and Wei R 2018 Nanocomposite of half-fin anchovy hydrolysates/zinc oxide nanoparticles exhibits actual non-toxicity and regulates intestinal microbiota, short-chain fatty acids production and oxidative status in mice Mar. Drugs 16 23
|
[130] |
Xia Y et al 2023 Ulcerative colitis alleviation of colon-specific delivered rhamnolipid/fullerene nanocomposites via dual modulation in oxidative stress and intestinal microbiome J. Mater. Chem. B 11 5882-97
|
[131] |
Sharma A, Kumar Arya D, Dua M, Chhatwal G S and Johri A K 2012 Nano-technology for targeted drug delivery to combat antibiotic resistance Expert Opin. Drug Deliv. 9 1325-32
|
[132] |
Kalhapure R S, Suleman N, Mocktar C, Seedat N and Govender T 2015 Nanoengineered drug delivery systems for enhancing antibiotic therapy J. Pharm. Sci. 104 872-905
|
[133] |
Zhang L, Pornpattananangku D, Hu C M and Huang C M 2010 Development of nanoparticles for antimicrobial drug delivery Curr. Med. Chem. 17 585-94
|
[134] |
Zhang L, Gu F X, Chan J M, Wang A Z, Langer R S and Farokhzad O C 2008 Nanoparticles in medicine: therapeutic applications and developments Clin. Pharmacol. Ther. 83 761-9
|
[135] |
Klochkov S G, Neganova M E, Nikolenko V N, Chen K, Somasundaram S G, Kirkland C E and Aliev G 2021 Implications of nanotechnology for the treatment of cancer: recent advances Semin. Cancer Biol. 69 190-9
|
[136] |
Pelgrift R Y and Friedman A J 2013 Nanotechnology as a therapeutic tool to combat microbial resistance Adv. Drug Deliv. Rev. 65 1803-15
|
[137] |
Zhao J, Hao S, Chen Y, Ye X, Fang P and Hu H 2024 Tauroursodeoxycholic acid liposome alleviates dss-induced ulcerative colitis through restoring intestinal barrier and gut microbiota Colloids Surf. B 236 113798
|
[138] |
Yan B et al 2023 Liposome-based silibinin for mitigating nonalcoholic fatty liver disease: dual effects via parenteral and intestinal routes ACS Pharmacol. Transl Sci. 6 1909-23
|
[139] |
von Baeckmann C, Riva A, Guggenberger P, Kählig H, Han S W, Inan D, Del Favero G, Berry D and Kleitz F 2022 Targeting gut bacteria using inulin-conjugated mesoporous silica nanoparticles Adv. Mater. Interfaces 9 2102558
|
[140] |
Liu J, Wang Y, Heelan W J, Chen Y, Li Z and Hu Q 2022 Mucoadhesive probiotic backpacks with ros nanoscavengers enhance the bacteriotherapy for inflammatory bowel diseases Sci. Adv. 8 eabp8798
|
[141] |
Xu Y, Michalowski C B and Beloqui A 2021 Advances in lipid carriers for drug delivery to the gastrointestinal tract Curr. Opin. Colloid Interface Sci. 52 101414
|
[142] |
Malam Y, Loizidou M and Seifalian A M 2009 Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer Trends Pharmacol. Sci. 30 592-9
|
[143] |
Gao W, Hu C M, Fang R H and Zhang L 2013 Liposome-like nanostructures for drug delivery J. Mater. Chem. B 1 6569
|
[144] |
Meligy A M A, El-Hamid M I A, Yonis A E, Elhaddad G Y, Abdel-Raheem S M, El-Ghareeb W R, Mohamed M H A, Ismail H and Ibrahim D 2023 Liposomal encapsulated oregano, cinnamon, and clove oils enhanced the performance, bacterial metabolites antioxidant potential, and intestinal microbiota of broiler chickens Poult. Sci. 102 102683
|
[145] |
Dilliard S A, Cheng Q and Siegwart D J 2021 On the mechanism of tissue-specific mrna delivery by selective organ targeting nanoparticles Proc. Natl Acad. Sci. USA 118 e2109256118
|
[146] |
Han L, Zhang X Y, Wang Y L, Li X, Yang X H, Huang M, Hu K, Li L H and Wei Y 2017 Redox-responsive theranostic nanoplatforms based on inorganic nanomaterials J. Control. Release 259 40-52
|
[147] |
Ren Z et al 2020 Nanoparticle conjugation of ginsenoside rg3 inhibits hepatocellular carcinoma development and metastasis Small 16 e1905233
|
[148] |
Neha D, Momin M, Khan T, Gharat S, Ningthoujam R S and Omri A 2021 Metallic nanoparticles as drug delivery system for the treatment of cancer Expert Opin. Drug Deliv. 18 1261-90
|
[149] |
Safari J and Zarnegar Z 2014 Advanced drug delivery systems: nanotechnology of health design a review J. Saudi Chem. Soc. 18 85-99
|
[150] |
Argyo C, Weiss V, Bräuchle C and Bein T 2013 Multifunctional mesoporous silica nanoparticles as a universal platform for drug delivery Chem. Mater. 26 435-51
|
[151] |
Tang F, Li L and Chen D 2012 Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery Adv. Mater. 24 1504-34
|
[152] |
Liu N, Yang C, Liang X, Cao K, Xie J, Luo Q and Luo H 2022 Mesoporous silica nanoparticle-encapsulated bifidobacterium attenuates brain abeta burden and improves olfactory dysfunction of app/ps1 mice by nasal delivery J. Nanobiotechnol. 20 439
|
[153] |
Hosseinpour S, Walsh L J and Xu C 2020 Biomedical application of mesoporous silica nanoparticles as delivery systems: a biological safety perspective J. Mater. Chem. B 8 9863-76
|
[154] |
Zhao Q, Lin Y, Han N, Li X, Geng H, Wang X, Cui Y and Wang S 2017 Mesoporous carbon nanomaterials in drug delivery and biomedical application Drug Deliv. 24 94-107
|
[155] |
Prajapati S K, Jain A, Jain A and Jain S 2019 Biodegradable polymers and constructs: a novel approach in drug delivery Eur. Polym. J. 120 109191
|
[156] |
Zhang G, Wang Q, Tao W, Jiang W, Elinav E, Wang Y and Zhu S 2022 Glucosylated nanoparticles for the oral delivery of antibiotics to the proximal small intestine protect mice from gut dysbiosis Nat. Biomed. Eng. 6 867-81
|
[157] |
Fayed B, Jagal J, Cagliani R, Kedia R A, Elsherbeny A, Bayraktutan H, Khoder G and Haider M 2023 Co-administration of amoxicillin-loaded chitosan nanoparticles and inulin: a novel strategy for mitigating antibiotic resistance and preserving microbiota balance in helicobacter pylori treatment Int. J. Biol. Macromol. 253 126706
|
[158] |
Liu C, Guo Y, Cheng Y and Qian H 2023 A colon-targeted delivery system of torularhodin encapsulated in electrospinning microspheres, and its co-metabolic regulation mechanism of gut microbiota Food Hydrocol. 135 108189
|
[159] |
Zheng X, Zhu J, Zhang X, Cheng M, Zhang Z and Cao J 2018 The modulatory effect of nanocomplexes loaded with egcg3”me on intestinal microbiota of high fat diet-induced obesity mice model J. Food Biochem. 42 e12501
|
[160] |
Kamankesh M et al 2024 Future nanotechnology-based strategies for improved management of helicobacter pylori infection Small 20 e2302532
|
[161] |
Ding C, Chen C, Zeng X, Chen H and Zhao Y 2022 Emerging strategies in stimuli-responsive prodrug nanosystems for cancer therapy ACS Nano 16 13513-53
|
[162] |
Mura S, Nicolas J and Couvreur P 2013 Stimuli-responsive nanocarriers for drug delivery Nat. Mater. 12 991-1003
|
[163] |
Li L, Yang W W and Xu D G 2019 Stimuli-responsive nanoscale drug delivery systems for cancer therapy J. Drug Target 27 423-33
|
[164] |
Wang R et al 2022 Poly-γ-glutamic acid microgel-encapsulated probiotics with gastric acid resistance and smart inflammatory factor targeted delivery performance to ameliorate colitis Adv. Funct. Mater. 32
|
[165] |
Shen Z, He K, Ding Z, Zhang M, Yu Y and Hu J 2019 Visible-light-triggered self-reporting release of nitric oxide (no) for bacterial biofilm dispersal Macromolecules 52 7668-77
|
[166] |
Guo H H et al 2019 Dual-stimuli-responsive gut microbiota-targeting berberine-cs/pt-nps improved metabolic status in obese hamsters Adv. Funct. Mater. 29 1808197
|
[167] |
Yu J et al 2023 Gastric acid-responsive ros nanogenerators for effective treatment of helicobacter pylori infection without disrupting homeostasis of intestinal flora Adv. Sci. 10 e2206957
|
[168] |
Abuhelwa A Y, Williams D B, Upton R N and Foster D J 2017 Food, gastrointestinal ph, and models of oral drug absorption Eur. J. Pharm. Biopharm. 112 234-48
|
[169] |
Lou J, Duan H, Qin Q, Teng Z, Gan F, Zhou X and Zhou X 2023 Advances in oral drug delivery systems: challenges and opportunities Pharmaceutics 15 484
|
[170] |
Yang E, Jung H-S and Chang P-S 2022 Stimuli-responsive polymer-complexed liposome nanocarrier provides controlled release of biomolecules Food Hydrocol. 125 107397
|
[171] |
Luo S, Lv Z, Yang Q, Chang R and Wu J 2023 Research progress on stimulus-responsive polymer nanocarriers for cancer treatment Pharmaceutics 15 1928
|
[172] |
Huber D, Tegl G, Mensah A, Beer B, Baumann M, Borth N, Sygmund C, Ludwig R and Guebitz G M 2017 A dual-enzyme hydrogen peroxide generation machinery in hydrogels supports antimicrobial wound treatment ACS Appl. Mater. Interfaces 9 15307-16
|
[173] |
Duan Z, Zhang Y, Zhu H, Sun L, Cai H, Li B, Gong Q, Gu Z and Luo K 2017 Stimuli-sensitive biodegradable and amphiphilic block copolymer-gemcitabine conjugates self-assemble into a nanoscale vehicle for cancer therapy ACS Appl. Mater. Interfaces 9 3474-86
|
[174] |
Campbell E L and Colgan S P 2019 Control and dysregulation of redox signalling in the gastrointestinal tract Nat. Rev. Gastroenterol. Hepatol. 16 106-20
|
[175] |
Stettner N et al 2018 Induction of nitric-oxide metabolism in enterocytes alleviates colitis and inflammation-associated colon cancer Cell Rep. 23 1962-76
|
[176] |
Josh F, Soekamto T H, Adriani J R, Jonatan B, Mizuno H and Faruk M 2021 The combination of stromal vascular fraction cells and platelet-rich plasma reduces malondialdehyde and nitric oxide levels in deep dermal burn injury J. Inflamm Res. 14 3049-61
|
[177] |
Cook A B and Decuzzi P 2021 Harnessing endogenous stimuli for responsive materials in theranostics ACS Nano 15 2068-98
|
[178] |
Liu M, Du H, Zhang W and Zhai G 2017 Internal stimuli-responsive nanocarriers for drug delivery: design strategies and applications Mater. Sci. Eng. C 71 1267-80
|
[179] |
Huang Y, Zou L, Wang J, Jin Q and Ji J 2022 Stimuli-responsive nanoplatforms for antibacterial applications Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 14 e1775
|
[180] |
Wells C M, Harris M, Choi L, Murali V P, Guerra F D and Jennings J A 2019 Stimuli-responsive drug release from smart polymers J. Funct. Biomater. 10 34
|
[181] |
Tian B and Liu J 2023 Smart stimuli-responsive chitosan hydrogel for drug delivery: a review Int. J. Biol. Macromol. 235 123902
|
[182] |
Harris M, Ahmed H, Barr B, LeVine D, Pace L, Mohapatra A, Morshed B, Bumgardner J D and Jennings J A 2017 Magnetic stimuli-responsive chitosan-based drug delivery biocomposite for multiple triggered release Int. J. Biol. Macromol. 104 1407-14
|
[183] |
Guisasola E, Asin L, Beola L, de la Fuente J M, Baeza A and Vallet-Regi M 2018 Beyond traditional hyperthermia: in vivo cancer treatment with magnetic-responsive mesoporous silica nanocarriers ACS Appl. Mater. Interfaces 10 12518-25
|
[184] |
Xiao W, Zhao L, Sun Y, Yang X and Fu Q 2024 Stimuli-responsive nanoradiosensitizers for enhanced cancer radiotherapy Small Methods 8 e2301131
|
[185] |
Qu J, Zhao X, Ma P X and Guo B 2018 Injectable antibacterial conductive hydrogels with dual response to an electric field and ph for localized “smart” drug release Acta Biomater. 72 55-69
|
[186] |
Zhang A, Jung K, Li A, Liu J and Boyer C 2019 Recent advances in stimuli-responsive polymer systems for remotely controlled drug release Prog. Polym. Sci. 99 101164
|
[187] |
Ge J, Neofytou E, Cahill T J 3rd, Beygui R E and Zare R N 2012 Drug release from electric-field-responsive nanoparticles ACS Nano 6 227-33
|
[188] |
Li F, Qin Y, Lee J, Liao H, Wang N, Davis T P, Qiao R and Ling D 2020 Stimuli-responsive nano-assemblies for remotely controlled drug delivery J. Control. Release 322 566-92
|
[189] |
Jiang Q and Zhang S 2023 Stimulus-responsive drug delivery nanoplatforms for osteoarthritis therapy Small 19 e2206929
|
[190] |
Zhang X, Zhao X, Hua Z, Xing S, Li J, Fei S and Tan M 2023 Ros-triggered self-disintegrating and ph-responsive astaxanthin nanoparticles for regulating the intestinal barrier and colitis Biomaterials 292 121937
|
[191] |
Anuj S A, Gajera H P, Hirpara D G and Golakiya B A 2019 Bacterial membrane destabilization with cationic particles of nano-silver to combat efflux-mediated antibiotic resistance in gram-negative bacteria Life Sci. 230 178-87
|
[192] |
Angsantikul P, Thamphiwatana S, Zhang Q, Spiekermann K, Zhuang J, Fang R H, Gao W, Obonyo M and Zhang L 2018 Coating nanoparticles with gastric epithelial cell membrane for targeted antibiotic delivery against helicobacter pylori infection Adv. Ther. 1 1800016
|
[193] |
Xing L, Liu X, Wu L, Wu J, Deng Y, Li Q, Zhou Z, Li L and Huang Y 2024 Orally hierarchical targeting delivery systems relieve colitis by protecting host mitochondria and modulating gut microbiota Nano Today 55 102155
|
[194] |
Yuan P, Ding X, Yang Y Y and Xu Q H 2018 Metal nanoparticles for diagnosis and therapy of bacterial infection Adv. Healthcare Mater. 7 e1701392
|
[195] |
Kim W S, Han G G, Hong L, Kang S K, Shokouhimehr M, Choi Y J and Cho C S 2019 Novel production of natural bacteriocin via internalization of dextran nanoparticles into probiotics Biomaterials 218 119360
|
[196] |
Zheng D W, Dong X, Pan P, Chen K W, Fan J X, Cheng S X and Zhang X Z 2019 Phage-guided modulation of the gut microbiota of mouse models of colorectal cancer augments their responses to chemotherapy Nat. Biomed. Eng. 3 717-28
|
[197] |
Song Q, Zhao H, Zheng C, Wang K, Gao H, Feng Q, Zhang H, Zhang Z, Zhang Y and Wang L 2021 A bioinspired versatile spore coat nanomaterial for oral probiotics delivery Adv. Funct. Mater. 31 2104994
|
[198] |
Garces V, Gonzalez A, Galvez N, Delgado-Lopez J M, Calvino J J, Trasobares S, Fernandez-Afonso Y, Gutierrez L and Dominguez-Vera J M 2022 Magneto-optical hyperthermia agents based on probiotic bacteria loaded with magnetic and gold nanoparticles Nanoscale 14 5716-24
|
[199] |
Li J, Chen H, Wang B, Cai C, Yang X, Chai Z and Feng W 2017 Zno nanoparticles act as supportive therapy in dss-induced ulcerative colitis in mice by maintaining gut homeostasis and activating nrf2 signaling Sci. Rep. 7 43126
|
[200] |
Hu B, Yu S, Shi C, Gu J, Shao Y, Chen Q, Li Y and Mezzenga R 2020 Amyloid-polyphenol hybrid nanofilaments mitigate colitis and regulate gut microbial dysbiosis ACS Nano 14 2760-76
|
[201] |
Li C et al 2019 A proresolving peptide nanotherapy for site-specific treatment of inflammatory bowel disease by regulating proinflammatory microenvironment and gut microbiota Adv. Sci. 6 1900610
|
[202] |
Qiao L et al 2022 Dietary supplementation with biogenic selenium nanoparticles alleviate oxidative stress-induced intestinal barrier dysfunction npj Sci. Food 6 30
|
[203] |
Zhang Z, Pan Y, Guo Z, Fan X, Pan Q, Gao W, Luo K, Pu Y and He B 2024 An olsalazine nanoneedle-embedded inulin hydrogel reshapes intestinal homeostasis in inflammatory bowel disease Bioact. Mater. 33 71-84
|
[204] |
Javed I, Cui X, Wang X, Mortimer M, Andrikopoulos N, Li Y, Davis T P, Zhao Y, Ke P C and Chen C 2020 Implications of the human gut-brain and gut-cancer axes for future nanomedicine ACS Nano 14 14391-416
|
[205] |
Du Y, Gao Y, Hu M, Hou J, Yang L, Wang X, Du W, Liu J and Xu Q 2023 Colonization and development of the gut microbiome in calves J. Animal Sci. Biotechnol. 14 46
|
[206] |
Kers J G, Velkers F C, Fischer E A J, Hermes G D A, Stegeman J A and Smidt H 2018 Host and environmental factors affecting the intestinal microbiota in chickens Front. Microbiol. 9 235
|
[207] |
Fan P, Bian B, Teng L, Nelson C D, Driver J, Elzo M A and Jeong K C 2020 Host genetic effects upon the early gut microbiota in a bovine model with graduated spectrum of genetic variation ISME J. 14 302-17
|
[208] |
Fang M, Hu W and Liu B 2023 Effects of nano-selenium on cecum microbial community and metabolomics in chickens challenged with ochratoxin a Front. Vet. Sci. 10 1228360
|
[209] |
Zhang Z, Shan J, Shi B, Dong B, Wu Q and Zhang Z 2023 Senps alleviates bde-209-induced intestinal damage by affecting necroptosis, inflammation, intestinal barrier and intestinal flora in layer chickens Ecotoxicol. Environ. Saf. 262 115336
|
[210] |
Yan Y Q et al 2024 Optimum doses and forms of selenium maintaining reproductive health via regulating homeostasis of gut microbiota and testicular redox, inflammation, cell proliferation, and apoptosis in roosters J. Nutr. 154 369-80
|
[211] |
Yadav S and Jha R 2019 Strategies to modulate the intestinal microbiota and their effects on nutrient utilization, performance, and health of poultry J. Animal Sci. Biotechnol. 10 1-11
|
[212] |
Shehata A A et al 2022 Probiotics, prebiotics, and phytogenic substances for optimizing gut health in poultry Microorganisms 10 395
|
[213] |
Gangadoo S, Bauer B W, Bajagai Y S, Van T T H, Moore R J and Stanley D 2019 In vitro growth of gut microbiota with selenium nanoparticles Animal Nutr. 5 424-31
|
[214] |
Alagawany M, Qattan S Y A, Attia Y A, El-Saadony M T, Elnesr S S, Mahmoud M A, Madkour M, Abd El-Hack M E and Reda F M 2021 Use of chemical nano-selenium as an antibacterial and antifungal agent in quail diets and its effect on growth, carcasses, antioxidant, immunity and caecal microbes Animals 11 3027
|
[215] |
Nouri A 2019 Chitosan nano-encapsulation improves the effects of mint, thyme, and cinnamon essential oils in broiler chickens Br. Poult. Sci. 60 530-8
|
[216] |
Hosseini S A and Meimandipour A 2018 Feeding broilers with thyme essential oil loaded in chitosan nanoparticles: an efficient strategy for successful delivery Br. Poult. Sci. 59 669-78
|
[217] |
Taha-Abdelaziz K, Yitbarek A, Alkie T N, Hodgins D C, Read L R, Weese J S and Sharif S 2018 PLGA-encapsulated CPG ODN and campylobacter jejuni lysate modulate cecal microbiota composition in broiler chickens experimentally challenged with c Jejuni. Sci. Rep. 8 12076
|
[218] |
Kaikabo A A, AbdulKarim S M and Abas F 2017 Evaluation of the efficacy of chitosan nanoparticles loaded phikaz14 bacteriophage in the biological control of colibacillosis in chickens Poult. Sci. 96 295-302
|
[219] |
Lin M et al 2023 Nano-encapsulation of halofuginone hydrobromide enhances anticoccidial activity against eimeria tenella in chickens Biomater. Sci. 11 1725-38
|
[220] |
Swain P S, Rao S B N, Rajendran D, Dominic G and Selvaraju S 2016 Nano zinc, an alternative to conventional zinc as animal feed supplement: a review Animal Nutr. 2 134-41
|
[221] |
Liu H, Bai M, Xu K, Zhou J, Zhang X, Yu R, Huang R and Yin Y 2021 Effects of different concentrations of coated nano zinc oxide material on fecal bacterial composition and intestinal barrier in weaned piglets J. Sci. Food Agric. 101 735-45
|
[222] |
Zhang H et al 2022 Dietary carbon loaded with nano-zno alters the gut microbiota community to mediate bile acid metabolism and potentiate intestinal immune function in fattening beef cattle BMC Vet. Res. 18 425
|
[223] |
Qu J et al 2023 Effect of two particle sizes of nano zinc oxide on growth performance, immune function, digestive tract morphology, and intestinal microbiota composition in broilers Animals 13 1454
|
[224] |
Wang C, Wang M Q, Ye S S, Tao W J and Du Y J 2011 Effects of copper-loaded chitosan nanoparticles on growth and immunity in broilers Poult. Sci. 90 2223-8
|
[225] |
Wang M Q, Du Y J, Wang C, Tao W J, He Y D and Li H 2012 Effects of copper-loaded chitosan nanoparticles on intestinal microflora and morphology in weaned piglets Biol. Trace Element Res. 149 184-9
|
[226] |
Sawosz E, Binek M, Grodzik M, Zielinska M, Sysa P, Szmidt M, Niemiec T and Chwalibog A 2007 Influence of hydrocolloidal silver nanoparticles on gastrointestinal microflora and morphology of enterocytes of quails Arch. Animal Nutr. 61 444-51
|
[227] |
Engel P and Moran N A 2013 The gut microbiota of insects—diversity in structure and function FEMS Microbiol. Rev. 37 699-735
|
[228] |
Jang S and Kikuchi Y 2020 Impact of the insect gut microbiota on ecology, evolution, and industry Curr. Opin. Insect Sci. 41 33-39
|
[229] |
Chen H, Yang L, Zhou J, Liu P, Zhu S, Li Y, Huang S, Xu H and Zhang Z 2023 Enhanced insecticidal activity of chlorfenapyr against spodoptera frugiperda by reshaping the intestinal microbial community and interfering with the metabolism of iron-based metal-organic frameworks ACS Appl. Mater. Interfaces 15 36036-51
|
[230] |
Li M, Li F, Lu Z, Fang Y, Qu J, Mao T, Wang H, Chen J and Li B 2020 Effects of tio(2) nanoparticles on intestinal microbial composition of silkworm, bombyx mori Sci. Total Environ. 704 135273
|
[231] |
Cheng X, Wang C, Yang J, Liu D, Liao Y, Wang B, Han S, Zhang X, Zheng H and Lu Y 2023 Nanotransducer-enabled wireless spatiotemporal tuning of engineered bacteria in bumblebee Small 19 e2301064
|
[232] |
Deng Y, Yang X, Chen J, Yang S, Chi H, Chen C, Yang X and Hou C 2023 Jute (corchorus olitorius l.) nanocrystalline cellulose inhibits insect virus via gut microbiota and metabolism ACS Nano 17 21662-77
|
[233] |
Bharani R S A and Namasivayam S K R 2017 Biogenic silver nanoparticles mediated stress on developmental period and gut physiology of major lepidopteran pest spodoptera litura (fab.) (lepidoptera: noctuidae)—an eco-friendly approach of insect pest control J. Environ. Chem. Eng. 5 453-67
|
[234] |
Barathi S, Sabapathi N, Kandasamy S and Lee J 2024 Present status of insecticide impacts and eco-friendly approaches for remediation-a review Environ. Res. 240 117432
|
[235] |
Matsuzaki R, Gunnigle E, Geissen V, Clarke G, Nagpal J and Cryan J F 2023 Pesticide exposure and the microbiota-gut-brain axis ISME J. 17 1153-66
|
[236] |
Zhang T, Xu X, Pan Y, Yang H, Han J, Liu J and Liu W 2023 Specific surface modification of liposomes for gut targeting of food bioactive agents Comprehensive Rev. Food Sci. Food Saf. 22 3685-706
|
[237] |
Rosenblum D, Joshi N, Tao W, Karp J M and Peer D 2018 Progress and challenges towards targeted delivery of cancer therapeutics Nat. Commun. 9 1410
|
[238] |
Sun J, Ogunnaike E A, Jiang X and Chen Z 2021 Nanotechnology lights up the antitumor potency by combining chemotherapy with sirna J. Mater. Chem. B 9 7302-17
|
[239] |
Nguyen T L, Vieira-Silva S, Liston A and Raes J 2015 How informative is the mouse for human gut microbiota research? Dis. Model. Mech. 8 1-16
|
[240] |
Li C and Zhang X 2022 Current in vitro and animal models for understanding foods: human gut-microbiota interactions J. Agric Food Chem. 70 12733-45
|
[241] |
Sufian M M, Khattak J Z K, Yousaf S and Rana M S 2017 Safety issues associated with the use of nanoparticles in human body Photodiagnosis. Photodyn. Ther. 19 67-72
|
[242] |
Cui X, Bao L, Wang X and Chen C 2020 The nano-intestine interaction: understanding the location-oriented effects of engineered nanomaterials in the intestine Small 16 e1907665
|
[243] |
Sanchez-Lopez E et al 2020 Metal-based nanoparticles as antimicrobial agents: an overview Nanomaterials 10 292
|
[244] |
Jeong G N, Jo U B, Ryu H Y, Kim Y S, Song K S and Yu I J 2010 Histochemical study of intestinal mucins after administration of silver nanoparticles in sprague-dawley rats Arch. Toxicol. 84 63-69
|
[245] |
Ali S and Rytting E 2014 Influences of nanomaterials on the barrier function of epithelial cells Adv. Exp. Med. Biol. 811 45-54
|
[246] |
Chen J et al 2020 Crosstalk of gut microbiota and serum/hippocampus metabolites in neurobehavioral impairments induced by zinc oxide nanoparticles Nanoscale 12 21429-39
|
[247] |
Yamashita K et al 2011 Silica and titanium dioxide nanoparticles cause pregnancy complications in mice Nat. Nanotechnol. 6 321-8
|
[248] |
Yu W J, Son J M, Lee J, Kim S H, Lee I C, Baek H S, Shin I S, Moon C, Kim S H and Kim J C 2014 Effects of silver nanoparticles on pregnant dams and embryo-fetal development in rats Nanotoxicology 8 85-91
|
[249] |
Yang H, Du L, Tian X, Fan Z, Sun C, Liu Y, Keelan J A and Nie G 2014 Effects of nanoparticle size and gestational age on maternal biodistribution and toxicity of gold nanoparticles in pregnant mice Toxicol. Lett. 230 10-18
|
[250] |
Bolan S et al 2024 The distribution, fate, and environmental impacts of food additive nanomaterials in soil and aquatic ecosystems Sci. Total Environ. 916 170013
|
[251] |
Rui M et al 2017 Phytotoxicity of silver nanoparticles to peanut (arachis hypogaea l.): physiological responses and food safety ACS Sustain. Chem. Eng. 5 6557-67
|
[252] |
Schlich K, Hoppe M, Kraas M, Fries E and Hund-Rinke K 2017 Ecotoxicity and fate of a silver nanomaterial in an outdoor lysimeter study Ecotoxicology 26 738-51
|
[253] |
Liu S, Zhang X, Zeng K, He C, Huang Y, Xin G and Huang X 2023 Insights into eco-corona formation and its role in the biological effects of nanomaterials from a molecular mechanisms perspective Sci. Total Environ. 858 159867
|
[254] |
Zhang C, Chen X and Ho S H 2021 Wastewater treatment nexus: carbon nanomaterials towards potential aquatic ecotoxicity J. Hazard Mater. 417 125959
|
[255] |
Liu Z, Cai M, Wu D, Yu P, Jiao Y, Jiang Q and Zhao Y 2020 Effects of nanoplastics at predicted environmental concentration on daphnia pulex after exposure through multiple generations Environ. Pollut. 256 113506
|
[256] |
Kakakhel M A, Wu F, Sajjad W, Zhang Q, Khan I, Ullah K and Wang W 2021 Long-term exposure to high-concentration silver nanoparticles induced toxicity, fatality, bioaccumulation, and histological alteration in fish (cyprinus carpio) Environ. Sci. Eur. 33 1-11
|
[257] |
Kabir E, Kumar V, Kim K H, Yip A C K and Sohn J R 2018 Environmental impacts of nanomaterials J. Environ. Manage. 225 261-71
|
[258] |
Ma Y B, Xie Z Y, Hamid N, Tang Q P, Deng J Y, Luo L and Pei D S 2023 Recent advances in micro (nano) plastics in the environment: distribution, health risks, challenges and future prospects Aquat. Toxicol. 261 106597
|
[1] | Minh Tam Hoang, Junxian Liu, Yang Yang, Maciej Klein, Wei-Hsun Chiu, Yongyue Yu, Ngoc Duy Pham, Paul Moonie, Ajay Pandey, Liangzhi Kou, Hongxia Wang. Lead (II) fluoride additive modulating grains growth of water-processed metal halide perovskites for enhanced efficiency in solar cells[J]. Materials Futures, 2025, 4(2): 025103. DOI: 10.1088/2752-5724/adc8c0 |
[2] | Muhammad Shahid Sharif, Zuhra Tayyab, Sajid Rauf, Muhammad Ahsan Masood, MAK Yousaf Shah, Muhammad Tayyab, Abdullah N Alodhayb, Bin Zhu. Redefining electrolyte efficiency: bridging the gap with a systematic samarium–copper co-doping approach for optimized conductivity in advanced semiconductor ionic fuel cell[J]. Materials Futures, 2025, 4(2): 025102. DOI: 10.1088/2752-5724/adbcc9 |
[3] | Qingqing Ding, Zhongtian Wu, Yanfei Gao, Yuefei Zhang, Xiao Wei, Ze Zhang, Hongbin Bei. Excellent mechanical properties from the synergy of carbon partitioning, L12-nano-precipitation and TRIP effects in Fe-Ni-Al-Ti-C steels[J]. Materials Futures, 2025, 4(2): 025002. DOI: 10.1088/2752-5724/adda68 |
[4] | Ruolin Shi, Xiangyi Wu, Yuanjin Zhao, Shegan Gao, Gaofeng Liang. Tailoring esophageal tumor spheroids on a chip with inverse opal scaffolds for drug screening[J]. Materials Futures, 2024, 3(3): 035402. DOI: 10.1088/2752-5724/ad5f47 |
[5] | Xiao-Lei Shi, Shuai Sun, Ting Wu, Jian Tu, Zhiming Zhou, Qingfeng Liu, Zhi-Gang Chen. Weavable thermoelectrics: advances, controversies, and future developments[J]. Materials Futures, 2024, 3(1): 012103. DOI: 10.1088/2752-5724/ad0ca9 |
[6] | Yanqing Zhu, Min Hu, Mi Xu, Bo Zhang, Fuzhi Huang, Yi-Bing Cheng, Jianfeng Lu. Bilayer metal halide perovskite for efficient and stable solar cells and modules[J]. Materials Futures, 2022, 1(4): 042102. DOI: 10.1088/2752-5724/ac9248 |
[7] | Kehui Wu, Ying Jiang. Advanced scanning probe techniques and materials research[J]. Materials Futures, 2022, 1(4): 040201. DOI: 10.1088/2752-5724/aca0ae |
[8] | Rui Xu, Jianfeng Guo, Shuo Mi, Huanfei Wen, Fei Pang, Wei Ji, Zhihai Cheng. Advanced atomic force microscopies and their applications in two-dimensional materials: a review[J]. Materials Futures, 2022, 1(3): 032302. DOI: 10.1088/2752-5724/ac8aba |
[9] | H J Kong, T Yang, T L Zhang, B X Cao, C T Liu. Nanostructured steels for advanced structural applications[J]. Materials Futures, 2022, 1(1): 013501. DOI: 10.1088/2752-5724/ac376d |
[10] | Zehao Chen, Zhendong Lv, Zhen Zhang, Yuhui Zhang, Wenguo Cui. Biomaterials for microfluidic technology[J]. Materials Futures, 2022, 1(1): 012401. DOI: 10.1088/2752-5724/ac39ff |