Yue Qi, Yueyi Wang, Xiaofei Wang, Hao Zheng, Yuan Lu. Tuning gut microbiota by advanced nanotechnology[J]. Materials Futures, 2025, 4(1): 012302. DOI: 10.1088/2752-5724/ada62b
Citation: Yue Qi, Yueyi Wang, Xiaofei Wang, Hao Zheng, Yuan Lu. Tuning gut microbiota by advanced nanotechnology[J]. Materials Futures, 2025, 4(1): 012302. DOI: 10.1088/2752-5724/ada62b
Topical Review •
OPEN ACCESS

Tuning gut microbiota by advanced nanotechnology

© 2025 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory
Materials Futures, Volume 4, Number 1
  • Received Date: November 15, 2024
  • Revised Date: December 20, 2024
  • Accepted Date: December 29, 2024
  • Available Online: January 08, 2025
  • Published Date: January 22, 2025
  • Gut microbiota reveals fundamental mechanisms of health and disease, and its modulation has important applications in biomedicine. Traditional modulation methods (e.g. diet, antibiotics, and probiotics) suffer from drug resistance, poor targeting, and low efficiency. Nanotechnology has become an attractive option for the precise modulation of gut microbiota due to its targeting and controllability. This review will focus on research progress in nanotechnology to modulate gut microbiota, including the direct use of nanomaterials as antimicrobials, nano-drug delivery systems, and stimulus-responsive nanotechnology. In addition, the applications of nanotechnology to modulate gut microbiota are summarized in terms of healthcare, animal protection, and agricultural development. Finally, the challenges and corresponding solution strategies for nanotechnology modulation are reviewed, and the future development prospects for nanotechnology modulation are summarized. This review provides an important theoretical basis and practical reference for the development of gut microbiota modulation, and promotes the research and application of more precise and efficient microbiota community intervention strategies.
  • Other Related Supplements

  • [1]
    Thursby E and Juge N 2017 Introduction to the human gut microbiota Biochem. J. 474 1823-36
    [2]
    Backhed F, Ley R E, Sonnenburg J L, Peterson D A and Gordon J I 2005 Host-bacterial mutualism in the human intestine Science 307 1915-20
    [3]
    Zheng D, Liwinski T and Elinav E 2020 Interaction between microbiota and immunity in health and disease Cell Res. 30 492-506
    [4]
    Lynch J B and Hsiao E Y 2019 Microbiomes as sources of emergent host phenotypes Science 365 1405-9
    [5]
    Yang Y, Du H, Zou G, Song Z, Zhou Y, Li H, Tan C, Chen H, Fischetti V A and Li J 2023 Encapsulation and delivery of phage as a novel method for gut flora manipulation in situ: a review J. Control. Release 353 634-49
    [6]
    Liu J, Yuan S, Bremmer A and Hu Q 2024 Convergence of nanotechnology and bacteriotherapy for biomedical applications Adv. Sci. 11 e2309295
    [7]
    Angelucci F, Cechova K, Amlerova J and Hort J 2019 Antibiotics, gut microbiota, and Alzheimer’s disease J. Neuroinflammation 16 108
    [8]
    Wu S, Bekhit A E-D A, Wu Q, Chen M, Liao X, Wang J and Ding Y 2021 Bioactive peptides and gut microbiota: candidates for a novel strategy for reduction and control of neurodegenerative diseases Trends Food Sci. Technol. 108 164-76
    [9]
    Dahiya D and Nigam P S 2023 Antibiotic-therapy-induced gut dysbiosis affecting gut microbiota-brain axis and cognition: restoration by intake of probiotics and synbiotics Int. J. Mol. Sci. 24 3074
    [10]
    Shao T, Hsu R, Hacein-Bey C, Zhang W, Gao L, Kurth M J, Zhao H, Shuai Z and Leung P S C 2023 The evolving landscape of fecal microbial transplantation Clin. Rev. Allergy Immunol. 65 101-20
    [11]
    Dahlman S, Avellaneda-Franco L and Barr J J 2021 Phages to shape the gut microbiota? Curr. Opin. Biotechnol. 68 89-95
    [12]
    Yadav R, Kumar V, Baweja M and Shukla P 2018 Gene editing and genetic engineering approaches for advanced probiotics: a review Crit. Rev. Food Sci. Nutr. 58 1735-46
    [13]
    Xie J, Zhao M, Wang C, Yong Y and Gu Z 2022 Recent advances in understanding the effects of nanomaterials on gut microbiota Chem. Eng. J. 435 134976
    [14]
    Makabenta J M V, Nabawy A, Li C H, Schmidt-Malan S, Patel R and Rotello V M 2021 Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections Nat. Rev. Microbiol. 19 23-36
    [15]
    Hu S, Zhao R, Xu Y, Gu Z, Zhu B and Hu J 2023 Orally-administered nanomedicine systems targeting colon inflammation for the treatment of inflammatory bowel disease: latest advances J. Mater. Chem. B 12 13-38
    [16]
    Zhang Q, Kuang G, Li W, Wang J, Ren H and Zhao Y 2023 Stimuli-responsive gene delivery nanocarriers for cancer therapy Nanomicro Lett. 15 44
    [17]
    Rinninella E, Raoul P, Cintoni M, Franceschi F, Miggiano G A D, Gasbarrini A and Mele M C 2019 What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases Microorganisms 7 14
    [18]
    Lozupone C A, Stombaugh J I, Gordon J I, Jansson J K and Knight R 2012 Diversity, stability and resilience of the human gut microbiota Nature 489 220-30
    [19]
    Vilchez-Vargas R et al 2022 Gut microbial similarity in twins is driven by shared environment and aging EBioMedicine 79 104011
    [20]
    Lin D, Wang R, Luo J, Ren F, Gu Z, Zhao Y and Zhao L 2020 The core and distinction of the gut microbiota in Chinese populations across geography and ethnicity Microorganisms 8 1579
    [21]
    Conlon M A and Bird A R 2014 The impact of diet and lifestyle on gut microbiota and human health Nutrients 7 17-44
    [22]
    Kałużna-Czaplińska J, Gątarek P, Chartrand M S, Dadar M and Bjørklund G 2017 Is there a relationship between intestinal microbiota, dietary compounds, and obesity? Trends Food Sci. Technol. 70 105-13
    [23]
    O’Toole P W and Jeffery I B 2015 Gut microbiota and aging Science 350 1214-5
    [24]
    Sommer F, Anderson J M, Bharti R, Raes J and Rosenstiel P 2017 The resilience of the intestinal microbiota influences health and disease Nat. Rev. Microbiol. 15 630-8
    [25]
    Gomaa E Z 2020 Human gut microbiota/microbiome in health and diseases: a review Antonie Van Leeuwenhoek 113 2019-40
    [26]
    Correa-Oliveira R, Fachi J L, Vieira A, Sato F T and Vinolo M A 2016 Regulation of immune cell function by short-chain fatty acids Clin. Transl. Immunol. 5 e73
    [27]
    Chambers E S et al 2015 Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults Gut 64 1744-54
    [28]
    Chambers E S, Morrison D J and Frost G 2015 Control of appetite and energy intake by scfa: what are the potential underlying mechanisms? Proc. Nutr. Soc. 74 328-36
    [29]
    Wu L, Tang Z, Chen H, Ren Z, Ding Q, Liang K and Sun Z 2021 Mutual interaction between gut microbiota and protein/amino acid metabolism for host mucosal immunity and health Animal Nutr. 7 11-16
    [30]
    Schoeler M and Caesar R 2019 Dietary lipids, gut microbiota and lipid metabolism Rev. Endocr. Metab. Disord. 20 461-72
    [31]
    Hill M J 1997 Intestinal flora and endogenous vitamin synthesis Eur. J. Cancer Prev. 6 S43-45
    [32]
    Steinert R E, Lee Y K and Sybesma W 2020 Vitamins for the gut microbiome Trends Mol. Med. 26 137-40
    [33]
    Pickard J M, Zeng M Y, Caruso R and Nunez G 2017 Gut microbiota: role in pathogen colonization, immune responses, and inflammatory disease Immunol. Rev. 279 70-89
    [34]
    Campbell C, Kandalgaonkar M R, Golonka R M, Yeoh B S, Vijay-Kumar M and Saha P 2023 Crosstalk between gut microbiota and host immunity: impact on inflammation and immunotherapy Biomedicines 11 294
    [35]
    Jordan C K I and Clarke T B 2024 How does the microbiota control systemic innate immunity? Trends Immunol. 45 94-102
    [36]
    Adak A and Khan M R 2019 An insight into gut microbiota and its functionalities Cell Mol. Life Sci. 76 473-93
    [37]
    Chen Y, Xu J and Chen Y 2021 Regulation of neurotransmitters by the gut microbiota and effects on cognition in neurological disorders Nutrients 13 2099
    [38]
    Martin C R, Osadchiy V, Kalani A and Mayer E A 2018 The brain-gut-microbiome axis Cell Mol. Gastroenterol. Hepatol. 6 133-48
    [39]
    Osadchiy V, Martin C R and Mayer E A 2019 The gut-brain axis and the microbiome: mechanisms and clinical implications Clin. Gastroenterol. Hepatol. 17 322-32
    [40]
    Varatharaj A and Galea I 2017 The blood-brain barrier in systemic inflammation Brain Behav. Immun. 60 1-12
    [41]
    Albillos A, de Gottardi A and Rescigno M 2020 The gut-liver axis in liver disease: pathophysiological basis for therapy J. Hepatol. 72 558-77
    [42]
    Hsu C L and Schnabl B 2023 The gut-liver axis and gut microbiota in health and liver disease Nat. Rev. Microbiol. 21 719-33
    [43]
    Mertowska P, Mertowski S, Wojnicka J, Korona-Glowniak I, Grywalska E, Blazewicz A and Zaluska W 2021 A link between chronic kidney disease and gut microbiota in immunological and nutritional aspects Nutrients 13 3637
    [44]
    Yang T, Richards E M, Pepine C J and Raizada M K 2018 The gut microbiota and the brain-gut-kidney axis in hypertension and chronic kidney disease Nat. Rev. Nephrol. 14 442-56
    [45]
    Wang L, Cai Y, Garssen J, Henricks P A J, Folkerts G and Braber S 2023 The bidirectional gut-lung axis in chronic obstructive pulmonary disease Am. J. Respir. Crit. Care Med. 207 1145-60
    [46]
    Budden K F, Gellatly S L, Wood D L, Cooper M A, Morrison M, Hugenholtz P and Hansbro P M 2017 Emerging pathogenic links between microbiota and the gut-lung axis Nat. Rev. Microbiol. 15 55-63
    [47]
    Zhang Y W, Song P R, Wang S C, Liu H, Shi Z M and Su J C 2024 Diets intervene osteoporosis via gut-bone axis Gut Microbes 16 2295432
    [48]
    Liu C, Cheung W H, Li J, Chow S K, Yu J, Wong S H, Ip M, Sung J J Y and Wong R M Y 2021 Understanding the gut microbiota and sarcopenia: a systematic review J. Cachexia Sarcopenia Muscle 12 1393-407
    [49]
    Levy M, Kolodziejczyk A A, Thaiss C A and Elinav E 2017 Dysbiosis and the immune system Nat. Rev. Immunol. 17 219-32
    [50]
    Sasso J M, Ammar R M, Tenchov R, Lemmel S, Kelber O, Grieswelle M and Zhou Q A 2023 Gut microbiome-brain alliance: a landscape view into mental and gastrointestinal health and disorders ACS Chem. Neurosci. 14 1717-63
    [51]
    Hou K et al 2022 Microbiota in health and diseases Signal Transduct. Target Ther. 7 135
    [52]
    Yoo J Y, Groer M, Dutra S V O, Sarkar A and McSkimming D I 2020 Gut microbiota and immune system interactions Microorganisms 8 1587
    [53]
    Mitrea L, Nemes S A, Szabo K, Teleky B E and Vodnar D C 2022 Guts imbalance imbalances the brain: a review of gut microbiota association with neurological and psychiatric disorders Front. Med. Lausanne 9 813204
    [54]
    Chidambaram S B et al 2022 Gut dysbiosis, defective autophagy and altered immune responses in neurodegenerative diseases: tales of a vicious cycle Pharmacol. Ther. 231 107988
    [55]
    Gebrayel P et al 2022 Microbiota medicine: towards clinical revolution J. Transl. Med. 20 111
    [56]
    Wang P X, Deng X R, Zhang C H and Yuan H J 2020 Gut microbiota and metabolic syndrome Chin. Med. J. 133 808-16
    [57]
    Kesavelu D and Jog P 2023 Current understanding of antibiotic-associated dysbiosis and approaches for its management Ther. Adv. Infect Dis. 10 20499361231154443
    [58]
    Lopetuso L R, Napoli M, Rizzatti G and Gasbarrini A 2018 The intriguing role of rifaximin in gut barrier chronic inflammation and in the treatment of Crohn’s disease Expert Opin. Investig. Drugs 27 543-51
    [59]
    Fong W, Li Q and Yu J 2020 Gut microbiota modulation: a novel strategy for prevention and treatment of colorectal cancer Oncogene 39 4925-43
    [60]
    Vassallo G, Mirijello A, Ferrulli A, Antonelli M, Landolfi R, Gasbarrini A and Addolorato G 2015 Review article: alcohol and gut microbiota—the possible role of gut microbiota modulation in the treatment of alcoholic liver disease Aliment. Pharmacol. Ther. 41 917-27
    [61]
    Lorente-Picon M and Laguna A 2021 New avenues for parkinson’s disease therapeutics: disease-modifying strategies based on the gut microbiota Biomolecules 11 433
    [62]
    Ribeiro C F A, Silveira G, Candido E S, Cardoso M H, Espinola Carvalho C M and Franco O L 2020 Effects of antibiotic treatment on gut microbiota and how to overcome its negative impacts on human health ACS Infect. Dis. 6 2544-59
    [63]
    Modi S R, Lee H H, Spina C S and Collins J J 2013 Antibiotic treatment expands the resistance reservoir and ecological network of the phage metagenome Nature 499 219-22
    [64]
    Jian S, Yang K, Zhang L, Zhang L, Xin Z, Wen C, He S, Deng J and Deng B 2023 The modulation effects of plant-derived bioactive ingredients on chronic kidney disease: focus on the gut-kidney axis Food Front. 4 262-82
    [65]
    Li B Y, Xu X Y, Gan R Y, Sun Q C, Meng J M, Shang A, Mao Q Q and Li H B 2019 Targeting gut microbiota for the prevention and management of diabetes mellitus by dietary natural products Foods 8 440
    [66]
    Sun Y, Ho C T and Zhang X 2023 Neuroprotection of food bioactives in neurodegenerative diseases: role of the gut microbiota and innate immune receptors J. Agric. Food Chem. 71 2718-33
    [67]
    Zhao L, Wang S, Zhang N, Zhou J, Mehmood A, Raka R N, Zhou F and Zhao L 2022 The beneficial effects of natural extracts and bioactive compounds on the gut-liver axis: a promising intervention for alcoholic liver disease Antioxidants 11 1211
    [68]
    Sharma B R, Jaiswal S and Ravindra P V 2022 Modulation of gut microbiota by bioactive compounds for prevention and management of type 2 diabetes Biomed. Pharmacother. 152 113148
    [69]
    Hill C et al 2014 Expert consensus document. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic Nat. Rev. Gastroenterol. Hepatol. 11 506-14
    [70]
    Markowiak P and Slizewska K 2017 Effects of probiotics, prebiotics, and synbiotics on human health Nutrients 9 1021
    [71]
    Plaza-Diaz J, Ruiz-Ojeda F J, Gil-Campos M and Gil A 2019 Mechanisms of action of probiotics Adv. Nutr. 10 S49-S66
    [72]
    Ji J, Jin W, Liu S J, Jiao Z and Li X 2023 Probiotics, prebiotics, and postbiotics in health and disease MedComm 4 e420
    [73]
    Jang Y J, Kim W K, Han D H, Lee K and Ko G 2019 Lactobacillus fermentum species ameliorate dextran sulfate sodium-induced colitis by regulating the immune response and altering gut microbiota Gut Microbes 10 696-711
    [74]
    Li K L, Wang B Z, Li Z P, Li Y L and Liang J J 2019 Alterations of intestinal flora and the effects of probiotics in children with recurrent respiratory tract infection World J. Pediatr. 15 255-61
    [75]
    Song H, Wang W, Shen B, Jia H, Hou Z, Chen P and Sun Y 2018 Pretreatment with probiotic bifico ameliorates colitis-associated cancer in mice: transcriptome and gut flora profiling Cancer Sci. 109 666-77
    [76]
    Yao M, Xie J, Du H, McClements D J, Xiao H and Li L 2020 Progress in microencapsulation of probiotics: a review Comprehensive Rev. Food Sci. Food Saf. 19 857-74
    [77]
    Dosoky N S, May-Zhang L S and Davies S S 2020 Engineering the gut microbiota to treat chronic diseases Appl. Microbiol. Biotechnol. 104 7657-71
    [78]
    Bober J R, Beisel C L and Nair N U 2018 Synthetic biology approaches to engineer probiotics and members of the human microbiota for biomedical applications Annu. Rev. Biomed. Eng. 20 277-300
    [79]
    Riglar D T, Giessen T W, Baym M, Kerns S J, Niederhuber M J, Bronson R T, Kotula J W, Gerber G K, Way J C and Silver P A 2017 Engineered bacteria can function in the mammalian gut long-term as live diagnostics of inflammation Nat. Biotechnol. 35 653-8
    [80]
    Zuo Z and Zhao F 2023 Gut microbiota-targeted interventions: from conventional approaches to genetic engineering Sci. Bull. 68 1231-4
    [81]
    Sorbara M T and Pamer E G 2022 Microbiome-based therapeutics Nat. Rev. Microbiol. 20 365-80
    [82]
    Yu Y, Wang W and Zhang F 2023 The next generation fecal microbiota transplantation: to transplant bacteria or virome Adv. Sci. 10 e2301097
    [83]
    Sorboni S G, Moghaddam H S, Jafarzadeh-Esfehani R and Soleimanpour S 2022 A comprehensive review on the role of the gut microbiome in human neurological disorders Clin. Microbiol. Rev. 35 e0033820
    [84]
    Blake S J, Wolf Y, Boursi B and Lynn D J 2024 Role of the microbiota in response to and recovery from cancer therapy Nat. Rev. Immunol. 24 308-25
    [85]
    Jimenez-Avalos J A, Arrevillaga-Boni G, Gonzalez-Lopez L, Garcia-Carvajal Z Y and Gonzalez-Avila M 2021 Classical methods and perspectives for manipulating the human gut microbial ecosystem Crit. Rev. Food Sci. Nutr. 61 234-58
    [86]
    Quera R, Espinoza R, Estay C and Rivera D 2014 Bacteremia as an adverse event of fecal microbiota transplantation in a patient with crohn’s disease and recurrent clostridium difficile infection J. Crohns Colitis 8 252-3
    [87]
    Schwartz M, Gluck M and Koon S 2013 Norovirus gastroenteritis after fecal microbiota transplantation for treatment of clostridium difficile infection despite asymptomatic donors and lack of sick contacts Am. J. Gastroenterol. 108 1367
    [88]
    Hohmann E L, Ananthakrishnan A N and Deshpande V 2014 Case records of the massachusetts general hospital. Case 25-2014. A 37-year-old man with ulcerative colitis and bloody diarrhea New Engl. J. Med. 371 668-75
    [89]
    Shen Z H, Zhu C X, Quan Y S, Yang Z Y, Wu S, Luo W W, Tan B and Wang X Y 2018 Relationship between intestinal microbiota and ulcerative colitis: mechanisms and clinical application of probiotics and fecal microbiota transplantation World J. Gastroenterol. 24 5-14
    [90]
    Basson A R, Zhou Y, Seo B, Rodriguez-Palacios A and Cominelli F 2020 Autologous fecal microbiota transplantation for the treatment of inflammatory bowel disease Transl. Res. 226 1-11
    [91]
    Rinott E et al 2021 Effects of diet-modulated autologous fecal microbiota transplantation on weight regain Gastroenterology 160 158-173.e110
    [92]
    de Groot P et al 2021 Faecal microbiota transplantation halts progression of human new-onset type 1 diabetes in a randomised controlled trial Gut 70 92-105
    [93]
    Duan Y, Young R and Schnabl B 2022 Bacteriophages and their potential for treatment of gastrointestinal diseases Nat. Rev. Gastroenterol. Hepatol. 19 135-44
    [94]
    Zhang Y, Li C X and Zhang X Z 2021 Bacteriophage-mediated modulation of microbiota for diseases treatment Adv. Drug Deliv. Rev. 176 113856
    [95]
    Kortright K E, Chan B K, Koff J L and Turner P E 2019 Phage therapy: a renewed approach to combat antibiotic-resistant bacteria Cell Host Microbe 25 219-32
    [96]
    Fujiki J and Schnabl B 2023 Phage therapy: targeting intestinal bacterial microbiota for the treatment of liver diseases JHEP Rep. 5 100909
    [97]
    Voorhees P J, Cruz-Teran C, Edelstein J and Lai S K 2020 Challenges & opportunities for phage-based in situ microbiome engineering in the gut J. Control. Release 326 106-19
    [98]
    Sivieri K, Bassan J, Peixoto G and Monti R 2017 Gut microbiota and antimicrobial peptides Curr. Opin. Food Sci. 13 56-62
    [99]
    Garcia-Gutierrez E, Mayer M J, Cotter P D and Narbad A 2019 Gut microbiota as a source of novel antimicrobials Gut Microbes 10 1-21
    [100]
    Datta N, Johnson C, Kao D, Gurnani P, Alexander C, Polytarchou C and Monaghan T M 2023 Microrna-based therapeutics for inflammatory disorders of the microbiota-gut-brain axis Pharmacol. Res. 194 106870
    [101]
    Pan Q, Guo F, Huang Y, Li A, Chen S, Chen J, Liu H F and Pan Q 2021 Gut microbiota dysbiosis in systemic lupus erythematosus: novel insights into mechanisms and promising therapeutic strategies Front. Immunol. 12 799788
    [102]
    Casado-Bedmar M and Viennois E 2022 Microrna and gut microbiota: tiny but mighty-novel insights into their cross-talk in inflammatory bowel disease pathogenesis and therapeutics J. Crohns Colitis 16 992-1005
    [103]
    Riaz Rajoka M S, Mehwish H M, Xiong Y, Song X, Hussain N, Zhu Q and He Z 2021 Gut microbiota targeted nanomedicine for cancer therapy: challenges and future considerations Trends Food Sci. Technol. 107 240-51
    [104]
    Song W, Anselmo A C and Huang L 2019 Nanotechnology intervention of the microbiome for cancer therapy Nat. Nanotechnol. 14 1093-103
    [105]
    Weir E, Lawlor A, Whelan A and Regan F 2008 The use of nanoparticles in anti-microbial materials and their characterization Analyst 133 835-45
    [106]
    Huh A J and Kwon Y J 2011 “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era J. Control. Release 156 128-45
    [107]
    Xie M et al 2023 Antibacterial nanomaterials: mechanisms, impacts on antimicrobial resistance and design principles Angew. Chem., Int. Ed. Engl. 62 e202217345
    [108]
    Li J, Cha R, Zhao X, Guo H, Luo H, Wang M, Zhou F and Jiang X 2019 Gold nanoparticles cure bacterial infection with benefit to intestinal microflora ACS Nano 13 5002-14
    [109]
    Wang Y, Wu S, Wang L, Wang Y, Liu D, Fu Y and Xie Y 2022 The activity of liposomal linolenic acid against helicobacter pylori in vitro and its impact on human fecal bacteria Front. Cell. Infect. Microbiol. 12 865320
    [110]
    Liu J, Cabral H and Mi P 2024 Nanocarriers address intracellular barriers for efficient drug delivery, overcoming drug resistance, subcellular targeting and controlled release Adv. Drug Deliv. Rev. 207 115239
    [111]
    Li C, Wang N, Zheng G and Yang L 2021 Oral administration of resveratrol-selenium-peptide nanocomposites alleviates alzheimer’s disease-like pathogenesis by inhibiting abeta aggregation and regulating gut microbiota ACS Appl. Mater. Interfaces 13 46406-20
    [112]
    Raghunath A and Perumal E 2017 Metal oxide nanoparticles as antimicrobial agents: a promise for the future Int. J. Antimicrob. Agents 49 137-52
    [113]
    Hajipour M J, Fromm K M, Ashkarran A A, Jimenez de Aberasturi D, de Larramendi I R, Rojo T, Serpooshan V, Parak W J and Mahmoudi M 2012 Antibacterial properties of nanoparticles Trends Biotechnol. 30 499-511
    [114]
    Shabatina T, Vernaya O, Shumilkin A, Semenov A and Melnikov M 2022 Nanoparticles of bioactive metals/metal oxides and their nanocomposites with antibacterial drugs for biomedical applications Materials 15 3602
    [115]
    Yin X, Lai Y, Du Y, Zhang T, Gao J and Li Z 2023 Metal-based nanoparticles: a prospective strategy for helicobacter pylori treatment Int. J. Nanomed. 18 2413-29
    [116]
    Dong X, Pan P, Zheng D W, Bao P, Zeng X and Zhang X Z 2020 Bioinorganic hybrid bacteriophage for modulation of intestinal microbiota to remodel tumor-immune microenvironment against colorectal cancer Sci. Adv. 6 eaba1590
    [117]
    Shahverdi A R, Fakhimi A, Shahverdi H R and Minaian S 2007 Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against staphylococcus aureus and escherichia coli Nanomedicine 3 168-71
    [118]
    Liu H, Cai Z, Wang F, Hong L, Deng L, Zhong J, Wang Z and Cui W 2021 Colon-targeted adhesive hydrogel microsphere for regulation of gut immunity and flora Adv. Sci. 8 e2101619
    [119]
    Chen Z, Han S, Zhou D, Zhou S and Jia G 2019 Effects of oral exposure to titanium dioxide nanoparticles on gut microbiota and gut-associated metabolism in vivo Nanoscale 11 22398-412
    [120]
    Xin Q et al 2019 Antibacterial carbon-based nanomaterials Adv. Mater. 31 e1804838
    [121]
    Chen H et al 2017 The effects of orally administered ag, tio 2 and sio 2 nanoparticles on gut microbiota composition and colitis induction in mice NanoImpact 8 80-88
    [122]
    Chen H, Wang B, Gao D, Guan M, Zheng L, Ouyang H, Chai Z, Zhao Y and Feng W 2013 Broad-spectrum antibacterial activity of carbon nanotubes to human gut bacteria Small 9 2735-46
    [123]
    Li J et al 2018 The antihyperlipidemic effects of fullerenol nanoparticles via adjusting the gut microbiota in vivo Part Fibre Toxicol. 15 5
    [124]
    Li J et al 2018 Lipid- and gut microbiota-modulating effects of graphene oxide nanoparticles in high-fat diet-induced hyperlipidemic mice RSC Adv. 8 31366-71
    [125]
    Li X X, Shi S, Rong L, Feng M Q and Zhong L 2018 The impact of liposomal linolenic acid on gastrointestinal microbiota in mice Int. J. Nanomed. 13 1399-409
    [126]
    Seabra C L, Nunes C, Bras M, Gomez-Lazaro M, Reis C A, Goncalves I C, Reis S and Martins M C L 2018 Lipid nanoparticles to counteract gastric infection without affecting gut microbiota Eur. J. Pharm. Biopharm. 127 378-86
    [127]
    Chen H et al 2018 Acute oral administration of single-walled carbon nanotubes increases intestinal permeability and inflammatory responses: association with the changes in gut microbiota in mice Adv. Healthcare Mater. 7 e1701313
    [128]
    Udayangani R M C, Dananjaya S H S, Nikapitiya C, Heo G J, Lee J and De Zoysa M 2017 Metagenomics analysis of gut microbiota and immune modulation in zebrafish (danio rerio) fed chitosan silver nanocomposites Fish Shellfish Immunol. 66 173-84
    [129]
    Song R, Yao J, Shi Q and Wei R 2018 Nanocomposite of half-fin anchovy hydrolysates/zinc oxide nanoparticles exhibits actual non-toxicity and regulates intestinal microbiota, short-chain fatty acids production and oxidative status in mice Mar. Drugs 16 23
    [130]
    Xia Y et al 2023 Ulcerative colitis alleviation of colon-specific delivered rhamnolipid/fullerene nanocomposites via dual modulation in oxidative stress and intestinal microbiome J. Mater. Chem. B 11 5882-97
    [131]
    Sharma A, Kumar Arya D, Dua M, Chhatwal G S and Johri A K 2012 Nano-technology for targeted drug delivery to combat antibiotic resistance Expert Opin. Drug Deliv. 9 1325-32
    [132]
    Kalhapure R S, Suleman N, Mocktar C, Seedat N and Govender T 2015 Nanoengineered drug delivery systems for enhancing antibiotic therapy J. Pharm. Sci. 104 872-905
    [133]
    Zhang L, Pornpattananangku D, Hu C M and Huang C M 2010 Development of nanoparticles for antimicrobial drug delivery Curr. Med. Chem. 17 585-94
    [134]
    Zhang L, Gu F X, Chan J M, Wang A Z, Langer R S and Farokhzad O C 2008 Nanoparticles in medicine: therapeutic applications and developments Clin. Pharmacol. Ther. 83 761-9
    [135]
    Klochkov S G, Neganova M E, Nikolenko V N, Chen K, Somasundaram S G, Kirkland C E and Aliev G 2021 Implications of nanotechnology for the treatment of cancer: recent advances Semin. Cancer Biol. 69 190-9
    [136]
    Pelgrift R Y and Friedman A J 2013 Nanotechnology as a therapeutic tool to combat microbial resistance Adv. Drug Deliv. Rev. 65 1803-15
    [137]
    Zhao J, Hao S, Chen Y, Ye X, Fang P and Hu H 2024 Tauroursodeoxycholic acid liposome alleviates dss-induced ulcerative colitis through restoring intestinal barrier and gut microbiota Colloids Surf. B 236 113798
    [138]
    Yan B et al 2023 Liposome-based silibinin for mitigating nonalcoholic fatty liver disease: dual effects via parenteral and intestinal routes ACS Pharmacol. Transl Sci. 6 1909-23
    [139]
    von Baeckmann C, Riva A, Guggenberger P, Kählig H, Han S W, Inan D, Del Favero G, Berry D and Kleitz F 2022 Targeting gut bacteria using inulin-conjugated mesoporous silica nanoparticles Adv. Mater. Interfaces 9 2102558
    [140]
    Liu J, Wang Y, Heelan W J, Chen Y, Li Z and Hu Q 2022 Mucoadhesive probiotic backpacks with ros nanoscavengers enhance the bacteriotherapy for inflammatory bowel diseases Sci. Adv. 8 eabp8798
    [141]
    Xu Y, Michalowski C B and Beloqui A 2021 Advances in lipid carriers for drug delivery to the gastrointestinal tract Curr. Opin. Colloid Interface Sci. 52 101414
    [142]
    Malam Y, Loizidou M and Seifalian A M 2009 Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer Trends Pharmacol. Sci. 30 592-9
    [143]
    Gao W, Hu C M, Fang R H and Zhang L 2013 Liposome-like nanostructures for drug delivery J. Mater. Chem. B 1 6569
    [144]
    Meligy A M A, El-Hamid M I A, Yonis A E, Elhaddad G Y, Abdel-Raheem S M, El-Ghareeb W R, Mohamed M H A, Ismail H and Ibrahim D 2023 Liposomal encapsulated oregano, cinnamon, and clove oils enhanced the performance, bacterial metabolites antioxidant potential, and intestinal microbiota of broiler chickens Poult. Sci. 102 102683
    [145]
    Dilliard S A, Cheng Q and Siegwart D J 2021 On the mechanism of tissue-specific mrna delivery by selective organ targeting nanoparticles Proc. Natl Acad. Sci. USA 118 e2109256118
    [146]
    Han L, Zhang X Y, Wang Y L, Li X, Yang X H, Huang M, Hu K, Li L H and Wei Y 2017 Redox-responsive theranostic nanoplatforms based on inorganic nanomaterials J. Control. Release 259 40-52
    [147]
    Ren Z et al 2020 Nanoparticle conjugation of ginsenoside rg3 inhibits hepatocellular carcinoma development and metastasis Small 16 e1905233
    [148]
    Neha D, Momin M, Khan T, Gharat S, Ningthoujam R S and Omri A 2021 Metallic nanoparticles as drug delivery system for the treatment of cancer Expert Opin. Drug Deliv. 18 1261-90
    [149]
    Safari J and Zarnegar Z 2014 Advanced drug delivery systems: nanotechnology of health design a review J. Saudi Chem. Soc. 18 85-99
    [150]
    Argyo C, Weiss V, Bräuchle C and Bein T 2013 Multifunctional mesoporous silica nanoparticles as a universal platform for drug delivery Chem. Mater. 26 435-51
    [151]
    Tang F, Li L and Chen D 2012 Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery Adv. Mater. 24 1504-34
    [152]
    Liu N, Yang C, Liang X, Cao K, Xie J, Luo Q and Luo H 2022 Mesoporous silica nanoparticle-encapsulated bifidobacterium attenuates brain abeta burden and improves olfactory dysfunction of app/ps1 mice by nasal delivery J. Nanobiotechnol. 20 439
    [153]
    Hosseinpour S, Walsh L J and Xu C 2020 Biomedical application of mesoporous silica nanoparticles as delivery systems: a biological safety perspective J. Mater. Chem. B 8 9863-76
    [154]
    Zhao Q, Lin Y, Han N, Li X, Geng H, Wang X, Cui Y and Wang S 2017 Mesoporous carbon nanomaterials in drug delivery and biomedical application Drug Deliv. 24 94-107
    [155]
    Prajapati S K, Jain A, Jain A and Jain S 2019 Biodegradable polymers and constructs: a novel approach in drug delivery Eur. Polym. J. 120 109191
    [156]
    Zhang G, Wang Q, Tao W, Jiang W, Elinav E, Wang Y and Zhu S 2022 Glucosylated nanoparticles for the oral delivery of antibiotics to the proximal small intestine protect mice from gut dysbiosis Nat. Biomed. Eng. 6 867-81
    [157]
    Fayed B, Jagal J, Cagliani R, Kedia R A, Elsherbeny A, Bayraktutan H, Khoder G and Haider M 2023 Co-administration of amoxicillin-loaded chitosan nanoparticles and inulin: a novel strategy for mitigating antibiotic resistance and preserving microbiota balance in helicobacter pylori treatment Int. J. Biol. Macromol. 253 126706
    [158]
    Liu C, Guo Y, Cheng Y and Qian H 2023 A colon-targeted delivery system of torularhodin encapsulated in electrospinning microspheres, and its co-metabolic regulation mechanism of gut microbiota Food Hydrocol. 135 108189
    [159]
    Zheng X, Zhu J, Zhang X, Cheng M, Zhang Z and Cao J 2018 The modulatory effect of nanocomplexes loaded with egcg3”me on intestinal microbiota of high fat diet-induced obesity mice model J. Food Biochem. 42 e12501
    [160]
    Kamankesh M et al 2024 Future nanotechnology-based strategies for improved management of helicobacter pylori infection Small 20 e2302532
    [161]
    Ding C, Chen C, Zeng X, Chen H and Zhao Y 2022 Emerging strategies in stimuli-responsive prodrug nanosystems for cancer therapy ACS Nano 16 13513-53
    [162]
    Mura S, Nicolas J and Couvreur P 2013 Stimuli-responsive nanocarriers for drug delivery Nat. Mater. 12 991-1003
    [163]
    Li L, Yang W W and Xu D G 2019 Stimuli-responsive nanoscale drug delivery systems for cancer therapy J. Drug Target 27 423-33
    [164]
    Wang R et al 2022 Poly-γ-glutamic acid microgel-encapsulated probiotics with gastric acid resistance and smart inflammatory factor targeted delivery performance to ameliorate colitis Adv. Funct. Mater. 32
    [165]
    Shen Z, He K, Ding Z, Zhang M, Yu Y and Hu J 2019 Visible-light-triggered self-reporting release of nitric oxide (no) for bacterial biofilm dispersal Macromolecules 52 7668-77
    [166]
    Guo H H et al 2019 Dual-stimuli-responsive gut microbiota-targeting berberine-cs/pt-nps improved metabolic status in obese hamsters Adv. Funct. Mater. 29 1808197
    [167]
    Yu J et al 2023 Gastric acid-responsive ros nanogenerators for effective treatment of helicobacter pylori infection without disrupting homeostasis of intestinal flora Adv. Sci. 10 e2206957
    [168]
    Abuhelwa A Y, Williams D B, Upton R N and Foster D J 2017 Food, gastrointestinal ph, and models of oral drug absorption Eur. J. Pharm. Biopharm. 112 234-48
    [169]
    Lou J, Duan H, Qin Q, Teng Z, Gan F, Zhou X and Zhou X 2023 Advances in oral drug delivery systems: challenges and opportunities Pharmaceutics 15 484
    [170]
    Yang E, Jung H-S and Chang P-S 2022 Stimuli-responsive polymer-complexed liposome nanocarrier provides controlled release of biomolecules Food Hydrocol. 125 107397
    [171]
    Luo S, Lv Z, Yang Q, Chang R and Wu J 2023 Research progress on stimulus-responsive polymer nanocarriers for cancer treatment Pharmaceutics 15 1928
    [172]
    Huber D, Tegl G, Mensah A, Beer B, Baumann M, Borth N, Sygmund C, Ludwig R and Guebitz G M 2017 A dual-enzyme hydrogen peroxide generation machinery in hydrogels supports antimicrobial wound treatment ACS Appl. Mater. Interfaces 9 15307-16
    [173]
    Duan Z, Zhang Y, Zhu H, Sun L, Cai H, Li B, Gong Q, Gu Z and Luo K 2017 Stimuli-sensitive biodegradable and amphiphilic block copolymer-gemcitabine conjugates self-assemble into a nanoscale vehicle for cancer therapy ACS Appl. Mater. Interfaces 9 3474-86
    [174]
    Campbell E L and Colgan S P 2019 Control and dysregulation of redox signalling in the gastrointestinal tract Nat. Rev. Gastroenterol. Hepatol. 16 106-20
    [175]
    Stettner N et al 2018 Induction of nitric-oxide metabolism in enterocytes alleviates colitis and inflammation-associated colon cancer Cell Rep. 23 1962-76
    [176]
    Josh F, Soekamto T H, Adriani J R, Jonatan B, Mizuno H and Faruk M 2021 The combination of stromal vascular fraction cells and platelet-rich plasma reduces malondialdehyde and nitric oxide levels in deep dermal burn injury J. Inflamm Res. 14 3049-61
    [177]
    Cook A B and Decuzzi P 2021 Harnessing endogenous stimuli for responsive materials in theranostics ACS Nano 15 2068-98
    [178]
    Liu M, Du H, Zhang W and Zhai G 2017 Internal stimuli-responsive nanocarriers for drug delivery: design strategies and applications Mater. Sci. Eng. C 71 1267-80
    [179]
    Huang Y, Zou L, Wang J, Jin Q and Ji J 2022 Stimuli-responsive nanoplatforms for antibacterial applications Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 14 e1775
    [180]
    Wells C M, Harris M, Choi L, Murali V P, Guerra F D and Jennings J A 2019 Stimuli-responsive drug release from smart polymers J. Funct. Biomater. 10 34
    [181]
    Tian B and Liu J 2023 Smart stimuli-responsive chitosan hydrogel for drug delivery: a review Int. J. Biol. Macromol. 235 123902
    [182]
    Harris M, Ahmed H, Barr B, LeVine D, Pace L, Mohapatra A, Morshed B, Bumgardner J D and Jennings J A 2017 Magnetic stimuli-responsive chitosan-based drug delivery biocomposite for multiple triggered release Int. J. Biol. Macromol. 104 1407-14
    [183]
    Guisasola E, Asin L, Beola L, de la Fuente J M, Baeza A and Vallet-Regi M 2018 Beyond traditional hyperthermia: in vivo cancer treatment with magnetic-responsive mesoporous silica nanocarriers ACS Appl. Mater. Interfaces 10 12518-25
    [184]
    Xiao W, Zhao L, Sun Y, Yang X and Fu Q 2024 Stimuli-responsive nanoradiosensitizers for enhanced cancer radiotherapy Small Methods 8 e2301131
    [185]
    Qu J, Zhao X, Ma P X and Guo B 2018 Injectable antibacterial conductive hydrogels with dual response to an electric field and ph for localized “smart” drug release Acta Biomater. 72 55-69
    [186]
    Zhang A, Jung K, Li A, Liu J and Boyer C 2019 Recent advances in stimuli-responsive polymer systems for remotely controlled drug release Prog. Polym. Sci. 99 101164
    [187]
    Ge J, Neofytou E, Cahill T J 3rd, Beygui R E and Zare R N 2012 Drug release from electric-field-responsive nanoparticles ACS Nano 6 227-33
    [188]
    Li F, Qin Y, Lee J, Liao H, Wang N, Davis T P, Qiao R and Ling D 2020 Stimuli-responsive nano-assemblies for remotely controlled drug delivery J. Control. Release 322 566-92
    [189]
    Jiang Q and Zhang S 2023 Stimulus-responsive drug delivery nanoplatforms for osteoarthritis therapy Small 19 e2206929
    [190]
    Zhang X, Zhao X, Hua Z, Xing S, Li J, Fei S and Tan M 2023 Ros-triggered self-disintegrating and ph-responsive astaxanthin nanoparticles for regulating the intestinal barrier and colitis Biomaterials 292 121937
    [191]
    Anuj S A, Gajera H P, Hirpara D G and Golakiya B A 2019 Bacterial membrane destabilization with cationic particles of nano-silver to combat efflux-mediated antibiotic resistance in gram-negative bacteria Life Sci. 230 178-87
    [192]
    Angsantikul P, Thamphiwatana S, Zhang Q, Spiekermann K, Zhuang J, Fang R H, Gao W, Obonyo M and Zhang L 2018 Coating nanoparticles with gastric epithelial cell membrane for targeted antibiotic delivery against helicobacter pylori infection Adv. Ther. 1 1800016
    [193]
    Xing L, Liu X, Wu L, Wu J, Deng Y, Li Q, Zhou Z, Li L and Huang Y 2024 Orally hierarchical targeting delivery systems relieve colitis by protecting host mitochondria and modulating gut microbiota Nano Today 55 102155
    [194]
    Yuan P, Ding X, Yang Y Y and Xu Q H 2018 Metal nanoparticles for diagnosis and therapy of bacterial infection Adv. Healthcare Mater. 7 e1701392
    [195]
    Kim W S, Han G G, Hong L, Kang S K, Shokouhimehr M, Choi Y J and Cho C S 2019 Novel production of natural bacteriocin via internalization of dextran nanoparticles into probiotics Biomaterials 218 119360
    [196]
    Zheng D W, Dong X, Pan P, Chen K W, Fan J X, Cheng S X and Zhang X Z 2019 Phage-guided modulation of the gut microbiota of mouse models of colorectal cancer augments their responses to chemotherapy Nat. Biomed. Eng. 3 717-28
    [197]
    Song Q, Zhao H, Zheng C, Wang K, Gao H, Feng Q, Zhang H, Zhang Z, Zhang Y and Wang L 2021 A bioinspired versatile spore coat nanomaterial for oral probiotics delivery Adv. Funct. Mater. 31 2104994
    [198]
    Garces V, Gonzalez A, Galvez N, Delgado-Lopez J M, Calvino J J, Trasobares S, Fernandez-Afonso Y, Gutierrez L and Dominguez-Vera J M 2022 Magneto-optical hyperthermia agents based on probiotic bacteria loaded with magnetic and gold nanoparticles Nanoscale 14 5716-24
    [199]
    Li J, Chen H, Wang B, Cai C, Yang X, Chai Z and Feng W 2017 Zno nanoparticles act as supportive therapy in dss-induced ulcerative colitis in mice by maintaining gut homeostasis and activating nrf2 signaling Sci. Rep. 7 43126
    [200]
    Hu B, Yu S, Shi C, Gu J, Shao Y, Chen Q, Li Y and Mezzenga R 2020 Amyloid-polyphenol hybrid nanofilaments mitigate colitis and regulate gut microbial dysbiosis ACS Nano 14 2760-76
    [201]
    Li C et al 2019 A proresolving peptide nanotherapy for site-specific treatment of inflammatory bowel disease by regulating proinflammatory microenvironment and gut microbiota Adv. Sci. 6 1900610
    [202]
    Qiao L et al 2022 Dietary supplementation with biogenic selenium nanoparticles alleviate oxidative stress-induced intestinal barrier dysfunction npj Sci. Food 6 30
    [203]
    Zhang Z, Pan Y, Guo Z, Fan X, Pan Q, Gao W, Luo K, Pu Y and He B 2024 An olsalazine nanoneedle-embedded inulin hydrogel reshapes intestinal homeostasis in inflammatory bowel disease Bioact. Mater. 33 71-84
    [204]
    Javed I, Cui X, Wang X, Mortimer M, Andrikopoulos N, Li Y, Davis T P, Zhao Y, Ke P C and Chen C 2020 Implications of the human gut-brain and gut-cancer axes for future nanomedicine ACS Nano 14 14391-416
    [205]
    Du Y, Gao Y, Hu M, Hou J, Yang L, Wang X, Du W, Liu J and Xu Q 2023 Colonization and development of the gut microbiome in calves J. Animal Sci. Biotechnol. 14 46
    [206]
    Kers J G, Velkers F C, Fischer E A J, Hermes G D A, Stegeman J A and Smidt H 2018 Host and environmental factors affecting the intestinal microbiota in chickens Front. Microbiol. 9 235
    [207]
    Fan P, Bian B, Teng L, Nelson C D, Driver J, Elzo M A and Jeong K C 2020 Host genetic effects upon the early gut microbiota in a bovine model with graduated spectrum of genetic variation ISME J. 14 302-17
    [208]
    Fang M, Hu W and Liu B 2023 Effects of nano-selenium on cecum microbial community and metabolomics in chickens challenged with ochratoxin a Front. Vet. Sci. 10 1228360
    [209]
    Zhang Z, Shan J, Shi B, Dong B, Wu Q and Zhang Z 2023 Senps alleviates bde-209-induced intestinal damage by affecting necroptosis, inflammation, intestinal barrier and intestinal flora in layer chickens Ecotoxicol. Environ. Saf. 262 115336
    [210]
    Yan Y Q et al 2024 Optimum doses and forms of selenium maintaining reproductive health via regulating homeostasis of gut microbiota and testicular redox, inflammation, cell proliferation, and apoptosis in roosters J. Nutr. 154 369-80
    [211]
    Yadav S and Jha R 2019 Strategies to modulate the intestinal microbiota and their effects on nutrient utilization, performance, and health of poultry J. Animal Sci. Biotechnol. 10 1-11
    [212]
    Shehata A A et al 2022 Probiotics, prebiotics, and phytogenic substances for optimizing gut health in poultry Microorganisms 10 395
    [213]
    Gangadoo S, Bauer B W, Bajagai Y S, Van T T H, Moore R J and Stanley D 2019 In vitro growth of gut microbiota with selenium nanoparticles Animal Nutr. 5 424-31
    [214]
    Alagawany M, Qattan S Y A, Attia Y A, El-Saadony M T, Elnesr S S, Mahmoud M A, Madkour M, Abd El-Hack M E and Reda F M 2021 Use of chemical nano-selenium as an antibacterial and antifungal agent in quail diets and its effect on growth, carcasses, antioxidant, immunity and caecal microbes Animals 11 3027
    [215]
    Nouri A 2019 Chitosan nano-encapsulation improves the effects of mint, thyme, and cinnamon essential oils in broiler chickens Br. Poult. Sci. 60 530-8
    [216]
    Hosseini S A and Meimandipour A 2018 Feeding broilers with thyme essential oil loaded in chitosan nanoparticles: an efficient strategy for successful delivery Br. Poult. Sci. 59 669-78
    [217]
    Taha-Abdelaziz K, Yitbarek A, Alkie T N, Hodgins D C, Read L R, Weese J S and Sharif S 2018 PLGA-encapsulated CPG ODN and campylobacter jejuni lysate modulate cecal microbiota composition in broiler chickens experimentally challenged with c Jejuni. Sci. Rep. 8 12076
    [218]
    Kaikabo A A, AbdulKarim S M and Abas F 2017 Evaluation of the efficacy of chitosan nanoparticles loaded phikaz14 bacteriophage in the biological control of colibacillosis in chickens Poult. Sci. 96 295-302
    [219]
    Lin M et al 2023 Nano-encapsulation of halofuginone hydrobromide enhances anticoccidial activity against eimeria tenella in chickens Biomater. Sci. 11 1725-38
    [220]
    Swain P S, Rao S B N, Rajendran D, Dominic G and Selvaraju S 2016 Nano zinc, an alternative to conventional zinc as animal feed supplement: a review Animal Nutr. 2 134-41
    [221]
    Liu H, Bai M, Xu K, Zhou J, Zhang X, Yu R, Huang R and Yin Y 2021 Effects of different concentrations of coated nano zinc oxide material on fecal bacterial composition and intestinal barrier in weaned piglets J. Sci. Food Agric. 101 735-45
    [222]
    Zhang H et al 2022 Dietary carbon loaded with nano-zno alters the gut microbiota community to mediate bile acid metabolism and potentiate intestinal immune function in fattening beef cattle BMC Vet. Res. 18 425
    [223]
    Qu J et al 2023 Effect of two particle sizes of nano zinc oxide on growth performance, immune function, digestive tract morphology, and intestinal microbiota composition in broilers Animals 13 1454
    [224]
    Wang C, Wang M Q, Ye S S, Tao W J and Du Y J 2011 Effects of copper-loaded chitosan nanoparticles on growth and immunity in broilers Poult. Sci. 90 2223-8
    [225]
    Wang M Q, Du Y J, Wang C, Tao W J, He Y D and Li H 2012 Effects of copper-loaded chitosan nanoparticles on intestinal microflora and morphology in weaned piglets Biol. Trace Element Res. 149 184-9
    [226]
    Sawosz E, Binek M, Grodzik M, Zielinska M, Sysa P, Szmidt M, Niemiec T and Chwalibog A 2007 Influence of hydrocolloidal silver nanoparticles on gastrointestinal microflora and morphology of enterocytes of quails Arch. Animal Nutr. 61 444-51
    [227]
    Engel P and Moran N A 2013 The gut microbiota of insects—diversity in structure and function FEMS Microbiol. Rev. 37 699-735
    [228]
    Jang S and Kikuchi Y 2020 Impact of the insect gut microbiota on ecology, evolution, and industry Curr. Opin. Insect Sci. 41 33-39
    [229]
    Chen H, Yang L, Zhou J, Liu P, Zhu S, Li Y, Huang S, Xu H and Zhang Z 2023 Enhanced insecticidal activity of chlorfenapyr against spodoptera frugiperda by reshaping the intestinal microbial community and interfering with the metabolism of iron-based metal-organic frameworks ACS Appl. Mater. Interfaces 15 36036-51
    [230]
    Li M, Li F, Lu Z, Fang Y, Qu J, Mao T, Wang H, Chen J and Li B 2020 Effects of tio(2) nanoparticles on intestinal microbial composition of silkworm, bombyx mori Sci. Total Environ. 704 135273
    [231]
    Cheng X, Wang C, Yang J, Liu D, Liao Y, Wang B, Han S, Zhang X, Zheng H and Lu Y 2023 Nanotransducer-enabled wireless spatiotemporal tuning of engineered bacteria in bumblebee Small 19 e2301064
    [232]
    Deng Y, Yang X, Chen J, Yang S, Chi H, Chen C, Yang X and Hou C 2023 Jute (corchorus olitorius l.) nanocrystalline cellulose inhibits insect virus via gut microbiota and metabolism ACS Nano 17 21662-77
    [233]
    Bharani R S A and Namasivayam S K R 2017 Biogenic silver nanoparticles mediated stress on developmental period and gut physiology of major lepidopteran pest spodoptera litura (fab.) (lepidoptera: noctuidae)—an eco-friendly approach of insect pest control J. Environ. Chem. Eng. 5 453-67
    [234]
    Barathi S, Sabapathi N, Kandasamy S and Lee J 2024 Present status of insecticide impacts and eco-friendly approaches for remediation-a review Environ. Res. 240 117432
    [235]
    Matsuzaki R, Gunnigle E, Geissen V, Clarke G, Nagpal J and Cryan J F 2023 Pesticide exposure and the microbiota-gut-brain axis ISME J. 17 1153-66
    [236]
    Zhang T, Xu X, Pan Y, Yang H, Han J, Liu J and Liu W 2023 Specific surface modification of liposomes for gut targeting of food bioactive agents Comprehensive Rev. Food Sci. Food Saf. 22 3685-706
    [237]
    Rosenblum D, Joshi N, Tao W, Karp J M and Peer D 2018 Progress and challenges towards targeted delivery of cancer therapeutics Nat. Commun. 9 1410
    [238]
    Sun J, Ogunnaike E A, Jiang X and Chen Z 2021 Nanotechnology lights up the antitumor potency by combining chemotherapy with sirna J. Mater. Chem. B 9 7302-17
    [239]
    Nguyen T L, Vieira-Silva S, Liston A and Raes J 2015 How informative is the mouse for human gut microbiota research? Dis. Model. Mech. 8 1-16
    [240]
    Li C and Zhang X 2022 Current in vitro and animal models for understanding foods: human gut-microbiota interactions J. Agric Food Chem. 70 12733-45
    [241]
    Sufian M M, Khattak J Z K, Yousaf S and Rana M S 2017 Safety issues associated with the use of nanoparticles in human body Photodiagnosis. Photodyn. Ther. 19 67-72
    [242]
    Cui X, Bao L, Wang X and Chen C 2020 The nano-intestine interaction: understanding the location-oriented effects of engineered nanomaterials in the intestine Small 16 e1907665
    [243]
    Sanchez-Lopez E et al 2020 Metal-based nanoparticles as antimicrobial agents: an overview Nanomaterials 10 292
    [244]
    Jeong G N, Jo U B, Ryu H Y, Kim Y S, Song K S and Yu I J 2010 Histochemical study of intestinal mucins after administration of silver nanoparticles in sprague-dawley rats Arch. Toxicol. 84 63-69
    [245]
    Ali S and Rytting E 2014 Influences of nanomaterials on the barrier function of epithelial cells Adv. Exp. Med. Biol. 811 45-54
    [246]
    Chen J et al 2020 Crosstalk of gut microbiota and serum/hippocampus metabolites in neurobehavioral impairments induced by zinc oxide nanoparticles Nanoscale 12 21429-39
    [247]
    Yamashita K et al 2011 Silica and titanium dioxide nanoparticles cause pregnancy complications in mice Nat. Nanotechnol. 6 321-8
    [248]
    Yu W J, Son J M, Lee J, Kim S H, Lee I C, Baek H S, Shin I S, Moon C, Kim S H and Kim J C 2014 Effects of silver nanoparticles on pregnant dams and embryo-fetal development in rats Nanotoxicology 8 85-91
    [249]
    Yang H, Du L, Tian X, Fan Z, Sun C, Liu Y, Keelan J A and Nie G 2014 Effects of nanoparticle size and gestational age on maternal biodistribution and toxicity of gold nanoparticles in pregnant mice Toxicol. Lett. 230 10-18
    [250]
    Bolan S et al 2024 The distribution, fate, and environmental impacts of food additive nanomaterials in soil and aquatic ecosystems Sci. Total Environ. 916 170013
    [251]
    Rui M et al 2017 Phytotoxicity of silver nanoparticles to peanut (arachis hypogaea l.): physiological responses and food safety ACS Sustain. Chem. Eng. 5 6557-67
    [252]
    Schlich K, Hoppe M, Kraas M, Fries E and Hund-Rinke K 2017 Ecotoxicity and fate of a silver nanomaterial in an outdoor lysimeter study Ecotoxicology 26 738-51
    [253]
    Liu S, Zhang X, Zeng K, He C, Huang Y, Xin G and Huang X 2023 Insights into eco-corona formation and its role in the biological effects of nanomaterials from a molecular mechanisms perspective Sci. Total Environ. 858 159867
    [254]
    Zhang C, Chen X and Ho S H 2021 Wastewater treatment nexus: carbon nanomaterials towards potential aquatic ecotoxicity J. Hazard Mater. 417 125959
    [255]
    Liu Z, Cai M, Wu D, Yu P, Jiao Y, Jiang Q and Zhao Y 2020 Effects of nanoplastics at predicted environmental concentration on daphnia pulex after exposure through multiple generations Environ. Pollut. 256 113506
    [256]
    Kakakhel M A, Wu F, Sajjad W, Zhang Q, Khan I, Ullah K and Wang W 2021 Long-term exposure to high-concentration silver nanoparticles induced toxicity, fatality, bioaccumulation, and histological alteration in fish (cyprinus carpio) Environ. Sci. Eur. 33 1-11
    [257]
    Kabir E, Kumar V, Kim K H, Yip A C K and Sohn J R 2018 Environmental impacts of nanomaterials J. Environ. Manage. 225 261-71
    [258]
    Ma Y B, Xie Z Y, Hamid N, Tang Q P, Deng J Y, Luo L and Pei D S 2023 Recent advances in micro (nano) plastics in the environment: distribution, health risks, challenges and future prospects Aquat. Toxicol. 261 106597
  • Related Articles

    [1]Minh Tam Hoang, Junxian Liu, Yang Yang, Maciej Klein, Wei-Hsun Chiu, Yongyue Yu, Ngoc Duy Pham, Paul Moonie, Ajay Pandey, Liangzhi Kou, Hongxia Wang. Lead (II) fluoride additive modulating grains growth of water-processed metal halide perovskites for enhanced efficiency in solar cells[J]. Materials Futures, 2025, 4(2): 025103. DOI: 10.1088/2752-5724/adc8c0
    [2]Muhammad Shahid Sharif, Zuhra Tayyab, Sajid Rauf, Muhammad Ahsan Masood, MAK Yousaf Shah, Muhammad Tayyab, Abdullah N Alodhayb, Bin Zhu. Redefining electrolyte efficiency: bridging the gap with a systematic samarium–copper co-doping approach for optimized conductivity in advanced semiconductor ionic fuel cell[J]. Materials Futures, 2025, 4(2): 025102. DOI: 10.1088/2752-5724/adbcc9
    [3]Qingqing Ding, Zhongtian Wu, Yanfei Gao, Yuefei Zhang, Xiao Wei, Ze Zhang, Hongbin Bei. Excellent mechanical properties from the synergy of carbon partitioning, L12-nano-precipitation and TRIP effects in Fe-Ni-Al-Ti-C steels[J]. Materials Futures, 2025, 4(2): 025002. DOI: 10.1088/2752-5724/adda68
    [4]Ruolin Shi, Xiangyi Wu, Yuanjin Zhao, Shegan Gao, Gaofeng Liang. Tailoring esophageal tumor spheroids on a chip with inverse opal scaffolds for drug screening[J]. Materials Futures, 2024, 3(3): 035402. DOI: 10.1088/2752-5724/ad5f47
    [5]Xiao-Lei Shi, Shuai Sun, Ting Wu, Jian Tu, Zhiming Zhou, Qingfeng Liu, Zhi-Gang Chen. Weavable thermoelectrics: advances, controversies, and future developments[J]. Materials Futures, 2024, 3(1): 012103. DOI: 10.1088/2752-5724/ad0ca9
    [6]Yanqing Zhu, Min Hu, Mi Xu, Bo Zhang, Fuzhi Huang, Yi-Bing Cheng, Jianfeng Lu. Bilayer metal halide perovskite for efficient and stable solar cells and modules[J]. Materials Futures, 2022, 1(4): 042102. DOI: 10.1088/2752-5724/ac9248
    [7]Kehui Wu, Ying Jiang. Advanced scanning probe techniques and materials research[J]. Materials Futures, 2022, 1(4): 040201. DOI: 10.1088/2752-5724/aca0ae
    [8]Rui Xu, Jianfeng Guo, Shuo Mi, Huanfei Wen, Fei Pang, Wei Ji, Zhihai Cheng. Advanced atomic force microscopies and their applications in two-dimensional materials: a review[J]. Materials Futures, 2022, 1(3): 032302. DOI: 10.1088/2752-5724/ac8aba
    [9]H J Kong, T Yang, T L Zhang, B X Cao, C T Liu. Nanostructured steels for advanced structural applications[J]. Materials Futures, 2022, 1(1): 013501. DOI: 10.1088/2752-5724/ac376d
    [10]Zehao Chen, Zhendong Lv, Zhen Zhang, Yuhui Zhang, Wenguo Cui. Biomaterials for microfluidic technology[J]. Materials Futures, 2022, 1(1): 012401. DOI: 10.1088/2752-5724/ac39ff

Catalog

    Article Metrics

    Article views (40) Full Text (4) PDF downloads (14) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return