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Abstract
This vision summarizes the recent advancement of nanostructured steels for
advanced structural applications, foresees possible challenges and pinpoints future
directions as well as opportunities in this new era of industrial revolution 4.0.
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The recent advancement of steel metallurgy has pushed the yield strength of the
conventional steels to over 2 GPa together with an extraordinary ductility and
toughness, especially important for the automotive and advanced aerospace
industries where a light weight often comes to the priority [1, 2]. As we step into
the new era of industrial revolution 4.0, the conventional alloy production has
started to transform into a smarter manufacturing system focusing on the
decentralized production with emphases on digitization, automation, and
man–machine integrations. The current 2 GPa grade steels are developed based
on the conventional steel production methodologies with complex processing
routes such as hot working and cold rolling which are essentially impractical in
today’s advanced alloy production through additive manufacturing. The
development of novel advanced steel design strategies is thus necessary.
Advanced steels should also possess good mechanical properties in applications
involving extreme operating conditions such as the nuclear fusion power plants
and space exploration. Advanced steels that demonstrate a shape memory effect
are also important in smart structural applications particularly in anti-seismic
dampers and self-adjusting turbine blades. The continual development of
advanced steels is crucial in pushing the social economy forward.

Conventionally, ultrahigh strength steels rely on heavy carbon additions which
often lead them brittle and non-weldable [3–5]. Steels with a superior weldability
is important in nowadays modern laser-based additive manufacturing. In the case
of high carbon steels, the rapid cooling during the laser printing process can result
in cold cracking [3]. On the other hand, nanostructured steels strengthened by
densely dispersed nanoscale precipitates are highly weldable due to their low
carbon content [6, 7], especially suitable for the modern additive manufacturing
and re-manufacturing of structural parts of complex geometries in automotive,
locomotive, and marine industries. Nanostructured steels are defined as advanced
steels consisting of nanoscale features with a large interfacial area to volume ratio
over 0.04 nm−1 [8]. Traditionally, the development of nanostructured steels
mainly focuses on the grain refinement such as the production of nanostructured
steels with nanometer-sized grains through severe plastic deformation [5, 9].
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Recently, by carefully tuning the chemistry of nanostructured steels, it is possible
to develop a new class of 2 GPa grade low-carbon nanostructured steels with
densely dispersed nanoscale precipitates [10–12]. Readers are advised to refer to
the comprehensive reviews by Jiao et al [6] and Kong et al [7, 13] for the detailed
processing, microstructure, and properties of this new class of nanostructured
steels. Unfortunately, at this present stage, the precipitate strengthened steels
produced by additive manufacturing have a relatively low yield strength in the
range of ∼1000 MPa, possibly due to the formation of soft austenite or
coarsening of microstructure due to the repetitive thermal cycling during the
printing process [14, 15]. Besides, additive manufacturing does not involve the
forging process as in the conventional manufacturing process, causing large grain
sizes. Refined grain size is important in providing additional strengthening to
nanostructured steels due to the Hall–Petch strengthening [16]. A new
nanostructured steel recipe for advanced manufacturing is thus needed for an
improved thermal stability and refined grain size.

Apart from the room temperature applications, nanostructured steels can be
used in extreme environments, including the nuclear power plants and space
vehicles that experience extreme temperature gradients. Literature indicates that
highly disperse nanoscale precipitates in nanostructured steels can serve as
vacancy traps and reduce swelling under irradiation conditions [17]. SpaceX has
also started to shift to stainless steels for the construction of space vehicles for a
cost reduction [18]. The current operating temperatures of nanostructured steels
fall into around 400 ◦C–500 ◦C; above which the precipitates will start to grow or
dissolutionize [13]. At high temperatures, dislocations can climb over the
precipitates easily, resulting in softening and creep deformations [19]. For the
successful use of nanostructured steels in extreme environments, the discovery of
new precipitates that can resist growth, dissolution, and impede dislocation
motion at elevated temperatures is highly important. Moreover, nanostructured
steels have a low impact toughness at cryogenic environments due to the
segregation of embrittling elements at prior austenite grain boundaries after peak
aging at 400 ◦C–500 ◦C [20]. Grain boundary engineering to control elemental
segregations at the prior austenite grain boundaries together with the grain
refinement can be a possible solution for enhancing the cryogenic toughness of
nanostructured steels [7, 21–23].

Steels are crystallographically complex and can transform into various
structures such as pearlite, bainite, martensite, and ferrite depending on the steel
chemistries and thermal histories. As demonstrated in the Fe–Mn–Al [24],
Fe–Ni–Co–Ti [25], Fe–Pd [26], and Fe–Pt [27] alloy systems, thermoelastic or
reversible martensitic transformation which leads to a super-elasticity in
iron-based shape memory alloys is possible with a careful composition
adjustment. Recent studies [24, 25] indicate that a ‘right’ chemistry can induce
nanoscale precipitation of coherent ordered particles, resulting in thermoelastic
martensitic transformation with a low thermal hysteresis. Recent researchers
[25, 28, 29] believe that these ordered precipitates with a high coherency with the
matrix enhance the tetragonality of the Body Centered Tetragonal martensite
while strengthening the martensite and therefore discourage slip in martensite,
leading to a reversible mobile austenite/martensite interface during the
martensitic transformation. Tanaka et al [25] discovered that the additions of Ta is
important for obtaining the super-elasticity in the Fe–28Ni–17Co–11.5Al–2.5Ta
alloy system as Ta additions increase the volume fraction of the ordered
γ′-(Ni,Fe,Co)3(Al, Ta) precipitates. On the other hand, some researchers [30]
argued that the precipitate size also plays an influential role in super-elasticity. A
mechanistic understanding of the effects of alloying elements on the nanoscale
precipitation and the resultant super-elasticity of various iron-based alloy systems
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is certainly needed for the development of low-cost shape memory alloys with
enhanced properties for cost-conscious applications.

In essence, the development of the nanostructured steels is still in its infancy
stage. Revolutionary design strategies for advanced manufacturing of
nanostructured steels with exceptional properties are further needed to satisfy the
stringent requirements of advanced structural industries.
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