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Abstract
This short perspective summarizes recent findings on the role of residual lithium
present on the surface of layered Ni-rich oxide cathode materials in liquid- and
solid-electrolyte based batteries, with emphasis placed on the carbonate species.
Challenges and future research opportunities in the development of
carbonate-containing protective nanocoatings for inorganic solid-state battery
applications are also discussed.
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In recent years, Li-ion batteries (LIBs) have become the primary energy-storage
technology, enabling portable electronics and electrifying transportation.
State-of-the-art LIBs usually rely on the combination of a metal oxide cathode as
lithium source, a graphite anode, a porous polymer separator and an organic
carbonate based liquid electrolyte. To achieve high energy densities
(>250 Wh kg−1) on a cell level, layered Ni-rich oxide cathode active materials
(CAMs), such as LiNi1−x−yCoxMnyO2 (referred to as NCM or NMC in the
battery community), are commonly employed and currently represent a hot topic
in cathode R&D [1, 2]. However, it has been recognized both in academia and
industry that surface residuals, primarily carbonate and hydroxide species,
remaining from the synthesis (use of excess reagents) or formed during storage
and handling, play a critical role on their processability and cyclability [3–7].
Especially the carbonate contaminants have been thoroughly studied in the past
and shown to contribute to gas evolution via chemical (equation (1)) and/or
electrochemical decomposition (equation (2)), which can lead to problems with
battery performance and safety [4, 8–10]:

Li2CO3+ 2H+ → 2Li++H2O+CO2 (1)

2Li2CO3 → 4Li++ 4e−+ 2CO2+O2. (2)

Through a combination of in situ gas analysis and isotope labeling experiments, it
has been demonstrated that carbonate species are responsible for a large fraction
of the released CO2 in the initial cycle [11–14]. Nevertheless, their effect on CO2

evolution during long-term cycling is minor (depending on the cycling conditions

∗
Authors to whom any correspondence should be addressed.

Original Content from this work may be used under the terms of the Creative Commons Attribu-
tion 4.0 licence. Any further distribution of this work must maintain attribution to the author(s)

and the title of the work, journal citation and DOI.

2752-5724/22/023501+5$33.00 1 © 2022 The Author(s). Published by IOP Publishing Ltd
on behalf of the Songshan Lake Materials Laboratory

https://doi.org/10.1088/2752-5724/ac5b7d
http://crossmark.crossref.org/dialog/?doi=10.1088/2752-5724/ac5b7d&domain=pdf&date_stamp=2022-4-22
https://orcid.org/0000-0001-5817-6349
https://orcid.org/0000-0003-2828-7106
https://orcid.org/0000-0002-4336-263X
mailto:florian.strauss@kit.edu
mailto:torsten.brezesinski@kit.edu
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Mater. Futures 1 (2022) 023501 Perspective

and other relevant parameters). Besides, it has been shown that the
electrochemical oxidation of surface carbonates leads to the generation of reactive
oxygen (singlet oxygen, 1O2), see equation (2) [15]. Similarly, reactive (lattice)
oxygen is released from NCM cathodes at high degrees of delithiation or, in other
words, at high states of charge (⩾80%), due to unfavorable phase transitions
(layered to spinel and/or rocksalt) resulting from structural stability issues [8].
Apparently, this oxygen further contributes to CO2 evolution through follow-up
reactions with the liquid electrolyte [15–17]. It should be noted though that a
recent review article by Schürmann et al is questioning the electrochemical
generation of 1O2 [18]. Regardless, for the application of Ni-rich NCM-type
CAMs in high-performance LIBs, washing for the removal of residual lithium
(followed by drying or post-annealing), without adversely affecting the lithium
inventory and surface structure, is frequently required [12, 19–25].

In contrast to LIBs, surface carbonates on NCM have been shown to be
beneficial to the cycling performance and stability of inorganic solid-state
batteries (SSBs) with superionic lithium thiophosphate electrolytes [26, 27].
In particular, they act as a kind of protective buffer layer between solid electrolyte
and CAM, thereby mitigating electrochemical degradation of the former and
leading to improved reversibility and capacity retention. Via isotope labeling of
the carbonate species, it has been found that in SSBs, as somewhat expected,
carbonate contaminants are also responsible for CO2 evolution, while the
accompanying oxygen release seems to cause SO2 generation through gas–solid
reactions with the lithium thiophosphate (sulfide) electrolyte [27–31]. However,
unlike in LIBs, the carbonate species are getting stepwise decomposed and the
amount of gas evolution is much lower in SSBs [14, 28].

Lithium based transition metal oxide nanocoatings are typically applied to the
CAM secondary particles’ surface prior to their use in SSBs, with the most
prominent example being LiNbO3 [32–35]. In general, protective coatings help to
mitigate the formation of detrimental decomposition interfaces (similar to the
anode and cathode solid electrolyte interfaces in LIBs) by preventing direct
contact between solid electrolyte and CAM [30, 36, 37]. Sol–gel chemistry is a
relatively simple and versatile tool for the preparation of nanocoatings. In this
case, alkoxides commonly serve as precursors in low boiling solvents, such as
alcohols, followed by heating at temperatures in the range 300 ◦C–500 ◦C to
produce the oxide [32, 38–40]. Higher temperatures are avoided to prevent cation
migration and interdiffusion [41–43].

Until recently it has been believed that a pure (clean) LiNbO3 coating is
formed by wet chemical deposition. However, the surface layer rather has a
hybrid structure consisting of LiNbO3 nanoparticles embedded in an amorphous
matrix made from mostly Li2CO3, especially when the heating is done in air
[26, 37]. Altering the preparation conditions and the Li:Nb ratio in the synthesis,
the carbonate content in the protective coating has been successfully varied while
keeping the Nb content constant. Ultimately this allowed for the identification of
a sweet spot for maximum cell performance [44]. However, the authors of this
study concluded that heating in oxygen is more beneficial. This is because the
carbonate content is difficult to control precisely under (unstable) ambient
atmosphere conditions. In addition, its effect on both coating microstructure and
interfacial chemistry is not well understood and needs further study.

Previous literature reports revealed that this hybrid coating concept is also
compatible with other materials than LiNbO3, for example, Li2ZrO3 and Li3BO3,
demonstrating the great versatility in terms of chemical composition (coating
formulation) and properties [45–47]. In all of these cases, the coating was capable
of suppressing to different extents interfacial decomposition of the solid
electrolyte at the contact points with the CAM secondary particles, which
otherwise would lead to impedance buildup due to formation of insulating
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degradation products (oxygenated sulfur and phosphorus species etc) and
capacity fade.

Taken together, these findings demonstrate the beneficial effect that
carbonate-containing hybrid coatings may have on the cathode performance.
However, their properties have largely been unexplored, but require thorough
investigation to rationally improve cyclability, kinetics and lifetime. This also
includes engineering of the micro- and nanostructures. From an analytical
perspective, the particular role of the carbonate species remains unclear, possibly
acting as a network former and adding mechanical flexibility to the coating and/or
providing good bonding to the substrate (e.g. via the surface oxygen), without
negatively affecting interfacial charge transport. Flexibility and bonding are
important given that NCM CAMs, especially when rich in Ni, undergo distinct
volume changes during cycling and the volumetric strain induced by unwanted
side reactions [48–52]. Both can not only lead to particle fracture and mechanical
separation between solid electrolyte and CAM, but can cause delamination of the
coating, thereby generating reactive surfaces and facilitating lattice oxygen
release. Apart from the increased (electro)chemical resistance and the potential
impact on the chemo-mechanics, carbonate-containing hybrid coatings seem to
enable high interfacial ionic conductivity, providing a multitude of parameters for
tailoring the critical properties of protective coatings.

In summary, herein we have described recent findings on the introduction of
carbonate species into coatings on CAMs, recently recognized to play a pivotal
role in the performance of thiophosphate based SSBs. Surface contaminants
cannot be neglected, but must be considered carefully in tailoring the coating
chemistry and interfacial properties. Practically this can be achieved by taking
advantage of the residual lithium during post-treatment of the surface layer or
through direct reactions with reactive precursors, either in the liquid or gas phase
[53–55]. However, detailed multiscale characterization (prior to and after battery
operation) to gain insights into the efficiency and functionality of the nanocoating
as well as into related cathode failure modes is challenging. Suitable analytical
methods include differential electrochemical mass spectrometry, time-of-flight
secondary ion mass spectrometry, x-ray photoelectron spectroscopy, x-ray
absorption spectroscopy and advanced electron microscopy, to name a few.
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