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Abstract
The remarkably high theoretical energy densities of Li–O2 batteries have triggered tremendous
efforts for next-generation conversion devices. Discovering efficient oxygen reduction reaction
and oxygen evolution reaction (ORR/OER) bifunctional catalysts and revealing their internal
structure-property relationships are crucial in developing high-performance Li–O2 batteries.
Herein, we have prepared a nanoflower-like Ni5P4@NiSe2 heterostructure and employed it as a
cathode catalyst for Li–O2 batteries. As expected, the three-dimensional biphasic Ni5P4@NiSe2
nanoflowers facilitated the exposure of adequate active moieties and provide sufficient space to
store more discharge products. Moreover, the strong electron redistribution between Ni5P4 and
NiSe2 heterojunctions could result in the built-in electric fields, thus greatly facilitating the
ORR/OER kinetics. Based on the above merits, the Ni5P4@NiSe2 heterostructure catalyst
improved the catalytic performance of Li–O2 batteries and holds great promise in realizing their
practical applications as well as inspiration for the design of other catalytic materials.
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Future perspectives
To counter the excessive depletion of traditional fossil fuels
and environmental contamination, exploring new energy storage
systems has attracted more and more research interests. Li–O2

batteries with ultra-high energy density are expected to replace
Li-ion batteries in modern applications such as static electri-
city storage or electric vehicles. However, their poor rate cap-
ability, low specific capacities and inferior cycling stability have
largely hindered their practical applications. To solve those afore-
mentioned obstacles, designing and constructing efficient cath-
ode electrocatalysts are highly desired, and heterostructured elec-
trocatalysts not only accelerate the interfacial charge transport,
but also significantly regulate the adsorption strength to oxygen-
containing intermediates, thus boosting the reaction kinetics and
enhancing the electrocatalytic performance of Li–O2 batteries.
Therefore, developing heterostructures with fancy architecture is
of great importance to the field of electrocatalysis for Li–O2

batteries and other energy-related devices as well.

1. Introduction

Nowadays, the excessive consumption of fossil energy and ser-
ious environmental pollution has drawn our attention to devel-
oping energy storage devices with high energy densities [1–3].
It is evident that Li–O2 batteries hold great potential for next-
generation battery systems, mainly due to their extra-high the-
oretical energy density (3500 Wh kg−1), which is related to
the reversible redox reaction of 2Li+ + 2e− + O2 ↔ Li2O2

[4–6]. However, some problems still need to be solved, includ-
ing low specific capacities, inferior rate capacity, high dis-
charge/charge overpotentials and limited cycle life, which can
be generated from the slow reaction kinetics towards oxy-
gen evolution reaction (OER) and oxygen reduction reaction
(ORR) processes [7–9]. To overcome these obstacles, numer-
ous researches have been carried out in recent years, in which
the construction of efficient electrocatalysts can not only sig-
nificantly improve the sluggish kinetics towards ORR/OER,
but also limit the adverse parasitic reactions [10–12]. In other
words, exploiting appropriate catalysts is crucial for improv-
ing the performance of Li–O2 batteries.

Among them, noble metals (Pd, Pt, Au) [13–15] are con-
sidered as ideal cathode catalysts to mitigate polarization and
improve battery efficiency cycling performance, but the high
price and scarcity restrain their large-scale application. Vari-
ous alternatives have thus been extensively studied in Li–O2

batteries, such as carbon composites [16–18], alloys [19, 20],
transition metal oxides [21–23], nitrides [24–26], sulfides
[27–29], carbides [30–32] and phosphide [33–35], etc. Actu-
ally, it is well known that carbon materials are too sensitive
to generate unwanted by-products, which could largely deteri-
orate the battery performance. According to recent literature
reports, it is universally acknowledged that transition metal
compounds are promising catalyst materials for electrical stor-
age and electrocatalytic systems due to their excellent physi-
cochemical properties, including tunable active centers and
high catalytic activity. Among the transition metals, Ni ele-
ment aremoderately reserved andmore affordable thanCo ele-
ment, and Ni-based compounds exhibit high catalytic activity

when used as redox reaction sites [36, 37]. Most importantly,
the presence of Ni3+ and Ni2+ redox couples could be eas-
ily obtained in the catalyst materials, realizing impressive
electrocatalytic activities through promoting the formation/
decomposition of Li2O2 [38]. Besides, Ni-based compounds
have been intensively investigated and evaluated as cathode
catalysts of Li–O2 batteries due to the environmental benig-
nity, high chemical and thermal stability, as well as facile fab-
rication protocols [39–41]. As reported, transition metal sel-
enides typically exhibit superior electrical conductivity due to
their exceptional D-electron configuration and suitable energy
position, which in turn leads to excellent electrocatalytic per-
formance [42, 43]. Yoo’s [44] groups demonstrated that FeSe
hollow spheroids delivered excellent stable cycle performance
without significant changes in the overpotentials during cyc-
ling in Li–O2 batteries, and the SeOx on the surfaces of FeSe
hollow spheroids contributed to facilitating ORR/OER bifunc-
tional catalytic activities. Notably, transition metal phosphide
surface polarization at the phosphorus terminus normally leads
to negatively charged phosphorus centers, and the P sites with
high electronegativity usually act as proton receptors, which
facilitates the adsorption and desorption of intermediate spe-
cies in oxygen electrocatalysis [35, 45]. For example, Du et al
[46] successfully synthesized concave polyhedrons CoPwith a
high-index facet (211), which presented favorable electrocata-
lytic ability in Li–O2 batteries.

Since electrochemical reactions in Li–O2 batteries occur
essentially at the three-phase interfaces, surface modifications,
including defect engineering, heterogeneous atom doping
and heterostructure construction, are proposed to effectively
improve catalytic performance. In recent years, heterojunc-
tion engineering has received considerable research interests
due to its unique physicochemical properties and practical-
ity in designing unique electrocatalysts [47–50]. First, the
built-in electric fields at the heterointerfaces could modulate
the interfacial electronic structure and promote the reaction
kinetics in the ORR/OER processes [51–53]. Besides, due
to the high difference of electronegativity between Se (2.55)
and P (2.19), the heterojunction interfaces could present two
electrical regions of opposite charges [54, 55]. The strongly
charged regions of Ni5P4 show the potential to optimize the
chemisorption of reaction intermediates, and the electron-
deficient regions of NiSe2 may act as active sites for continuity
and accessibility via electron transfer, thus positively affect-
ing the performance of Li–O2 batteries [56]. The conventional
strategies for forming heterogeneous interfaces, however, are
generally to employ the epitaxial growth methods in solution,
and they cannot be widely applied in practical production due
to the complicated processes [57, 58]. Therefore, it remains
a challenge to effectively fabricate heterostructured catalysts
with rich heterogeneous interfaces.

Herein, nanoflower-like Ni5P4@NiSe2 heterostructure was
prepared and acted as a cathode catalyst for Li–O2 batter-
ies, which delivered superior specific capacities and extended
cycling life, compared with the Ni5P4 and NiSe2 counter-
parts. The improved catalytic activity of the nanoflower-
like Ni5P4@NiSe2 heterostructure mainly stemmed from the
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built-in electric fields at the heterojunction interfaces, which
effectively enhanced the electrical conductivity and thus
improved the slow reaction kinetics in the charge and dis-
charge processes. Moreover, the disordered atomic arrange-
ment and the slight lattice distortion triggered by the Jahn-
Teller effect at the heterogeneous interfaces could enable
additional active sites to facilitate the regulation of the
adsorption of oxygen-containing intermediates, which signi-
ficantly improving the ORR/OER bifunctional catalytic activ-
ity. In addition, the constructed flower-like structure facil-
itated the construction of three-dimensional (3D) diffusion
paths of Li+/O2 and provided sufficient room for the stor-
age of discharge products. These results inspire promising
strategies to develop new sufficiently stable electrocatalysts
for Li–O2 batteries.

2. Experimental section

2.1. Fabrication of Ni(OH)2 precursor

The precursor solution was obtained by dissolving 1 mmol
Ni(NO3)2·6H2O, 8 mmol CH4N2O and 3 mmol NH4F into
30 ml of deionized water at room temperature with stirring
for 20 min. Then, it was transferred into a 50 ml Teflon-lined
stainless-steel autoclave and heated at 120 ◦C for 24 h. After
cooling down to room temperature, the as-prepared Ni(OH)2
was washed with deionized water and ethanol three times and
dried at 50 ◦C for 12 h in a vacuum oven.

2.2. Synthesis of Ni5P4@NiSe2 nanoflowers

Ni5P4@NiSe2 nanoflowers were prepared by simultaneous
phosphorylation and selenization treatment. In brief, its fab-
rication was carried out in a tube furnace with as-prepared
Ni(OH)2 precursor at the downstream and a mixture of Se
powder and NaH2PO2 at the upstream at 350 ◦C for 2.5 h with
a heating rate of 2 ◦C min−1 under an Ar atmosphere.

2.3. Materials characterizations

Field-emission scanning electron microscope (FESEM, Hita-
chi, S-4800, Japan) coupled with energy-dispersive x-ray
spectroscope (EDX, Oxford Materials Analysis, UK) and
high-resolution transmission electron microscope (HRTEM,
JEOL-JEM 2100F, 200 kV, Japan) were used to investigate the
morphologies and structures of the samples. The crystalline
structures were recorded via x-ray diffraction (XRD, D/Max-
IIIC, 36 kV and 20 mA, Japan). The Brunauer–Emmett–
Teller (BET) specific surface areas and pore size distribution
were examined by nitrogen adsorption/desorption isotherm
(BET, Micromeritics ASAP2020). X-ray photoelectron spec-
troscopy (XPS, ESCALAB Xi+) was collected to character-
ize the surface chemical states, and all binding energies of
the XPS spectra were adjusted by the carbon peak (C 1s)
at around 284.8 eV. Exact two-phase ratio of Ni5P4@NiSe2
was obtained by inductively coupled plasma-atomic emission
spectrometer (ICP-AES, Agilent-5110, USA).

2.4. Electrochemical measurements

To evaluate the electrochemical performance of the cath-
ode catalysts for Li–O2 batteries, modified 2032 coin-type
cells with holes on the cathode lid were assembled. To pre-
pare the Ni5P4@NiSe2 cathodes, 40 wt % Ni5P4@NiSe2
powder, 40 wt % Ketjen black (KB) and 20 wt % poly-
1,1,2,2-tetrafluoroethylene were mixed in 3 ml isopropanol
under ultrasonic condition. The slurry was then uniformly dis-
persed on carbon papers and dried under vacuum at 120 ◦C
for 12 h. The Ni5P4 and NiSe2 cathodes were also pre-
pared by the same method as above for comparison. The
Li–O2 cells were assembled in a glovebox (Mbraun) with
the prepared cathodes, Li sheet anodes and glass fiber sep-
arators with 1 M lithium bis(trifluoromethanesulfonyl)imide
in triethylene glycol dimethyl ether (LTFSI/TEGDME) elec-
trolyte. The electrochemical performance was measured by
using a multi-channel cell test system (LAND CT 2001A).
Cyclic voltammetry (CV) and electrochemical impedance
spectroscopy (EIS) were performed on an electrochem-
ical workstation (CHI 660E, frequency region: 105–0.01 Hz,
amplitude voltage: 10 mV).

3. Result and discussion

Here, heterostructures can be described as the unique struc-
tures that consist of heterointerfaces formed by different
materials through chemical or physical combinations. It is
evident that the different work function (Φ) of Ni5P4 andNiSe2
are 4.97 and 6.88 eV, respectively [59, 60]. Meanwhile, NiSe2
presents semiconductor characteristics with a wide band gap
energy (Eg) of about 1.96 eV, while Ni5P4 shows metallic
properties due to the Femi level of Ni5P4 passed through the
conduction band [61, 62]. Therefore, when they contactedwith
each other closely, a thermodynamic equilibrium was gained,
and a space charge region would be formed, in which elec-
trons were injected from NiSe2 to Ni5P4 [63]. And the built-
in fields work mechanism of interfacial NiSe2 and Ni5P4 in
equilibrium as shown in scheme 1. As a result, the surface of
Ni5P4@NiSe2 heterostructure exhibits enriched electron dens-
ity, and this implies a significant increase in electrical conduct-
ivity, which can further improve the electrocatalytic activity
of the cell. The synthetic process of the Ni5P4@NiSe2 het-
erostructure was schematically illustrated in scheme 1, and
its fabrication photograph was included in figure S1. First,
Ni(NO3)2·6H2O, CH4N2O and NH4F were ultrasonically dis-
persed in deionized water under stirring, and the precursor of
Ni(OH)2 was achieved after the hydrothermal treatment, evid-
enced by the data in figure S2. It was then further conver-
ted to Ni5P4@NiSe2 heterostructure by a simultaneous phos-
phorylation and selenization process at 350 ◦C under the Ar
atmosphere for 2.5 h. For comparison, Ni5P4 and NiSe2 nano-
flowers were also obtained via the same fabrication route with
phosphorylation or selenization, respectively.

It can be observed in figure S3 that the precursors were
assembled in a nanoflower-like structure with an average dia-
meter of 5 µm, consisting of many smooth nanosheets with the
thickness of 3–5 nm. Compared with the smooth and granular
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Scheme 1. Synthetic procedure for Ni5P4@NiSe2 heterostructure.

Figure 1. (a), (b) SEM images, (c) EDS profiles, (d), (e) TEM images with corresponding (f) SAED pattern and (g)–(k) element mapping
images of Ni5P4@NiSe2 heterostructure.

nanosheets of Ni5P4 in figure S4 and NiSe2 in figure S5, those
of the Ni5P4@NiSe2 heterostructure in figures 1(a) and (b)
shows smooth surfaces with many nanopores and large avail-
able space, which could be conducive to effective electrolyte
penetration, boosted mass transfer and effective discharge
products accommodation [64–66]. The N2 adsorption/
desorption isotherms (figure 2(b)) of Ni5P4@NiSe2 hetero-
structure show the IV-type H3 hysteresis loop. In the observed
isotherms, the hysteresis curves exhibit a saturated adsorption
plateau, indicating homogeneous pore formation [4, 67]. Its
pore size distribution result demonstrates that the pores are

mainly mesoporous, which could provide abundant mass dif-
fusion tunnels and expose more active sites for LOBs. The
overall molar ratio of Ni5P4/NiSe2 is approximately 57/43
according to EDX result in figure 1(c), which is close to those
of XPS and ICP-AES results in figure S6. The EDX-elemental
mapping images of Ni5P4@NiSe2 heterostructure suggest that
the Ni, P, and Se elements are uniformly dispersed on the
whole architecture.

To further investigate the more detail microstructure of
Ni5P4@NiSe2 heterostructure, the TEM image in figure 1(d)
shows 3D hierarchical porous nanoflower-like morphology,
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Figure 2. (a) XRD patterns of different samples; (b) N2 adsorption-desorption isotherms with the pore size distribution, (c) XPS survey and
(f) high-resolution P 2p spectra of Ni5P4@NiSe2 heterostructure; XPS high-resolution (d) Ni 2p and (e) Se 3d spectra of Ni5P4@NiSe2 and
NiSe2 samples.

which is well consistent with the SEM results. In figure 1(e),
the lattice fringes with well-defined interfacial distances of
0.223 nm can be clearly described to the spacing of the
(210) crystal planes of Ni5P4, meanwhile the lattice fringes
of approximately 0.299 nm can be consistent with the (200)
planes of NiSe2. Interestingly, figure 1(e) also depicts clear
interfacial regions owing to the mismatch of the different
phases, and the resulting strong electronic interaction between
Ni5P4 and NiSe2 may lead to an increase in the active sites [43,
68, 69]. Figure 1(f) exhibits the corresponding selected area
electron diffraction pattern of Ni5P4@NiSe2 heterostructure,
which can be unambiguously indexed into (002), (201), (211),
(302), (204) planes of the Ni5P4 and (200), (211) planes of the
NiSe2, respectively, further demonstrating that Ni5P4@NiSe2
heterostructure was successfully synthesized.

The crystalline structure and phase of Ni5P4@NiSe2, Ni5P4
and NiSe2 were tested by XRD measurement. As depicted
in figure 2(a), all diffraction peaks of Ni5P4@NiSe2 hetero-
structure correspond perfectly to hexagonal Ni5P4 (JCPDS.
no 18-0883) and cubic NiSe2 (JCPDS. no 89-3058), which is
identical to the HRTEM data. As we all know, electrocata-
lytic reactions in Li–O2 batteries generally mainly occur at
the three-phase interfaces, and it is thus critical to analyze
the surface elemental states of different samples [70]. XPS
testing was used to study the bonding configuration and ele-
mental composition of Ni5P4@NiSe2 and NiSe2. Figure 2(c)
reveals the presence of C, O, Ni, P and Se elements on the as-
prepared Ni5P4@NiSe2 heterostructure. Its Ni 2p spectrum in
figure 2(d) shows two spin-orbit peaks, which are assigned to
2p3/2 and 2p1/2 signals. Moreover, the peaks can be respect-
ively fitted to Ni3+ (855.9 and 873.9 eV), Ni2+ (852.7 and
869.8 eV) and the associated satellite (861.1 and 879.6 eV)
peaks. Compared with those of pure NiSe2, the two-orbit

doublets in theXPS spectrum ofNi5P4@NiSe2 heterostructure
are slightly shifted to negative binding energies [55], which
can be attributed to electronic structure changes caused by
the interfacial charge redistribution of Ni5P4 and NiSe2. The
high-resolution XPS spectrum of Se 3d (figure 2(e)) splits into
two-component peaks at about 54.5 and 53.5 eV, related to Se
3d3/2 and Se 3d1/2 of Se2−. The Se 3d peak of Ni5P4@NiSe2
is normally accompanied by a 58.5 eV characteristic peak
assigned to the Se–O bond, confirming that the surfaces of
some Se species were oxidized to SeOx during the synthesis
route [44, 66]. As can be seen in the high-resolution XPS spec-
trum of P 2p in figure 2(f), the peak of Ni5P4@NiSe2 hetero-
structure at 129.35 eV is ascribed to the Ni–P bond, and the
peak at 133.7 eV demonstrates the presence of oxidation on
the material surfaces [55, 71].

The electrocatalytic activity of Ni5P4@NiSe2 heterostruc-
ture was measured in Li–O2 batteries placed in a testing box
purchased from NJZH (Shenzhen) Scientific Ltd, as displayed
in figure S7. CV profiles of Ni5P4@NiSe2, Ni5P4, NiSe2 and
pure KB cathodes within 2.35–4.5 V at 0.15 mV s−1 are
depicted in figure 3(a). The Ni5P4@NiSe2 cathode exhibits the
highest ORR/OER current densities, proving that it can sig-
nificantly promote the electrocatalytic reaction kinetics. Spe-
cifically, the Ni5P4@NiSe2 cathode distinctly exhibits two
negative peaks for OER, which are attributed to the different
decomposition stages of discharge products [72–74]. It is pro-
posed that the peak at ∼4.2 V is attributed to the delithiation
process of Li2O2 (Li2O2 → Li2−xO2 + x Li+ + x e−), while
the lower peak at 3.78 V is ascribed to a further delithiation
process (Li2−xO2 → O2 + (2 − x) Li+ + (2 − x) e−) [7, 8].

The discharge/charge plots of Li–O2 batteries based
on various cathodes were tested at the current density
of 100 mA g−1 with the voltage range of 2.35–4.5 V
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Figure 3. (a) CV curves, (b) initial discharge/charge profiles, (c) rate capability and (e) cycling performance of different cathodes; (d) rate
performance and (g) cycling stability with (f) corresponding typical discharge/charge profiles of the Ni5P4@NiSe2 cathode.

versus Li+/Li. It is apparent in figure S8 that the ini-
tial discharge/charge specific capacities of carbon paper
cathodes are negligible, which proves their contribution
mainly comes from the active materials. As presented in
figure 3(b), the Ni5P4@NiSe2 cathode exhibits the largest
discharge/charge capacities of 19 090/19 031 mAh g−1

at 100 mA g−1, while those of Ni5P4, NiSe2 and pure
KB cathodes are 16 831.5/14 153.5, 12 469.5/12 284 and
6689.75/5519.25 mAh g−1, respectively, with correspond-
ing columbic efficiencies of 99.7%, 84.1%, 98.5% and
82.5%, illustrate superior eletrocatalytic activities of com-
posite cathode. Moreover, the discharge/charge potentials of
Ni5P4@NiSe2 cathode are about 2.74/4.20 V with the over-
potentials of 0.20/1.26 V, respectively, which are significantly
lower than those of Ni5P4 (0.25/1.42 V), NiSe2 (0.20/1.45 V)
and pure KB (0.32/1.47 V) counterparts. Figure 3(c) shows
the rate performance of Ni5P4@NiSe2, Ni5P4, NiSe2 and pure
KB cathodes under different current densities with the cut-
off capacity of 1000 mAh g−1. It can be seen that at cur-
rent densities of 100, 200, 400, 800, 1000 and 100 mA g−1,
the Ni5P4@NiSe2 cathode exhibits the largest/lowest ter-
minal discharge/charge voltages. When the current density
returns to 100 mA g−1, the terminal voltages remained almost
unchanged compared to the initial values. Those differences
in electrochemical properties demonstrate that the built-in
electric fields with charge redistribution on heterostructure
could improve the electrical conductivity of the cathode cata-
lyst materials, thus effectively facilitating the formation and

decomposition of discharge products [69]. In addition, the
disordered atomic arrangement and the slight lattice distor-
tion triggered by the Jahn-Teller effect at the heterogeneous
interfaces could increase the reaction activity centers to boost
electrocatalytic reactions [75–77]. It is thus concluded that the
synergy of these two factors endowed the heterostructure cath-
odes excellent electrocatalytic performance. Figure 3(d) fur-
ther shows the rate capability of Ni5P4@NiSe2 cathodes at
different current densities under the voltage window of 2.35–
4.5 V, and the pure KB cathode (figure S9) was also tested
under the same conditions. As the current densities increased
from 100 to 800 mA g−1, the ORR/OER overpotentials of
Ni5P4@NiSe2 cathode increased to 0.20/1.45 V, and impress-
ive discharge/charge specific capacities of 19 090/19 031,
18 026/17 802, 16 620/15 788 and 14 379/12 844 mAh g−1

at the current densities of 100, 200, 400 and 800 mA g−1 were
also yielded, respectively. Moreover, the voltage platforms
in the galvanostatic ORR/OER profiles of the Ni5P4@NiSe2
cathodes match well with the peaks of CV curves.

The cycle stability of different cathodes were evaluated
with the fixed capacity of 1000 mAh g−1 at 200 mA g−1,
as shown in figure 3(e). The terminal discharge/charge plots
of Ni5P4@NiSe2 cathode was the most stable during cyc-
ling and can be effectively cycled up to 128 cycles, while
those of Ni5P4, NiSe2 and pure KB cathodes dropped down
quickly after 64, 28 and 20 cycles, respectively. Moreover,
the excellent cycling performance of 202 cycles at a lower
limiting capacity of 600 mAh g−1 with 100 mA g−1 was
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Figure 4. (a) XRD patterns, (b) EIS plots, (c) initial discharge/charge plots with (d)–(f) corresponding high-resolution Li 1s spectra and
(g)–(i) FESEM images of Ni5P4@NiSe2 cathodes at different states.

also included in figure 3(f). Table S1 shows a comparison
of the battery performance in this work with previously
reported similar counterparts. It can be well noticed that
the Ni5P4@NiSe2 cathode exhibits long cycle stability and
ultra-high discharge specific capacities, compared to those
of transition metal phosphide and selenide cathodes. It is
believed that the nanoflower-like Ni5P4@NiSe2 heterostruc-
ture with more free space and nanopores could construct a
large amount of 3D channels for the fast Li+/O2 transport.
Additionally, the built-in electric fields between Ni5P4 and
NiSe2 can largely improve the slow redox kinetics of the cath-
ode reactions, resulting in excellent electrochemical perform-
ance of Li–O2 batteries.

To explain the formation/decomposition mechanism and
reason for the excellent electrocatalytic performance of
Ni5P4@NiSe2 cathodes, ex-situ XRD, XPS and EIS at dif-
ferent stages during cycling were characterized. Figure 4(a)
shows the XRD patterns of the Ni5P4@NiSe2 cathode at dif-
ferent stages, where two new diffraction peaks located at 32.9
and 35.0◦ after first discharging, indexed to (100) and (101)
planes of Li2O2 (JCPDS. no 09-0355), respectively, and those
of the fresh carbon paper cathode was also given in figure S10
for comparison. After 1st and 60th recharging, the diffraction
peaks of Li2O2 fully disappeared, and almost no peaks of high
crystalline by-products were traced. Meanwhile, EIS testing
was carried out to measure the intrinsic kinetics characteristic
at different discharge/charge stages. Typically, the EIS dia-
gram contains two parts, the semicircle at high-frequency is

associated with charge-transfer resistance (Rct), and the diag-
onal line at low-frequency is related to the ion diffusion prop-
erties. The date was fitted using the equivalent series cir-
cuit (inset of figure 4(b)). As shown in figure 4(b), the semi-
circles in the Ni5P4@NiSe2-based cell were greatly enlarged
from 14.5 to 82.5 Ω after first discharging, mainly due to
the coverage and accumulation of insulating Li2O2 [18, 23].
Besides, it also shows that after first recharging and even after
100 cycles of prolonged cycling, theRct of Ni5P4@NiSe2 cath-
ode is close to its initial stage, demonstrating that the discharge
products were almost decomposed. To further shed light on
the composition of discharge products on Ni5P4@NiSe2 cath-
ode, ex situ XPS experiments were studied, and the dis-
charge/charge profiles with corresponding selected states are
listed in figures 4(c)–(f). For discharged figure 4(e) relative
to the initial stage, indicates that the main discharge products
were Li2O2 and almost no by-products generation at this stage.
After recharging (figure 4(f)), this peak no longer appeared,
whereas the Se 3d3/2 and Se 3d1/2 peaks of the pristine cathode
(figure 4(d)) can be detected at 54.5 and 53.5 eV. Those res-
ults further explain the ultra-long cycle life and stable cycling
performance of Ni5P4@NiSe2 cathodes.

According to previous reports in the literature, the mor-
phology of Li2O2 plays an essential role in affecting the sub-
sequent charging process. Whether discharge products Li2O2

formed film- or disc-shaped was controlled by the adsorp-
tion energy of LiO2. The disc-shaped Li2O2 grew through
the solution growth model due to the weak adsorption energy
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of the LiO2 intermediate, while the film-shaped Li2O2 was
formed via a surfacemechanismwith strong adsorption energy
of LiO2. As can be seen in figure 4(h), the surfaces of
the Ni5P4@NiSe2 cathode were covered with film-like dis-
charge products with great contact after being fully discharged
distinct different from that at the fresh stage in figure 4(g).
It is noteworthy that the evenly deposited film-like discharge
products could facilitate the establishment of a good contact
interface with the Ni5P4@NiSe2 cathode, which can make
fully utilized of active centers and maximize the synergistic
effect between Ni5P4, NiSe2 and the heterogeneous interfaces
[7]. At the following recharging in figure 4(i), the film-like
discharge products completely disappeared, showing almost
the same nanoflower-like morphology as initial appearance,
indicting the excellent reversibility of Li–O2 batteries with
Ni5P4@NiSe2 cathodes.

Based on the above results, the superior electrocatalytic
performance of Ni5P4@NiSe2 cathodes would be attributed
to their unique architecture. The 3D nanoflower-like structure
with self-assembled nanosheets not only promoted the diffu-
sion of O2/Li+ throughout the cathode, but also provided suf-
ficient active sites for storing the discharge products. Besides,
the excellent electrical conductivity of the heterostructure
can accelerate the charge transfer during the charge/discharge
processes and enhance the electrochemical reaction kinetics
[78, 79]. More importantly, the unique heterostructure shows a
significant effect on the electron redistribution and disordered
atomic arrangement, which can provide additional active sites
to improve the ORR/OER bifunctional catalytic activity [66].
Additionally, the Ni5P4 and NiSe2 heterostructure can mod-
ulate the growth pathway of Li2O2 and induce their tight
coating with low crystallinity structure along the 3D self-
assembled nanosheets, building homogeneous low-impedance
cathode/Li2O2 interfaces and promoting the efficient form-
ation/decomposition of Li2O2 [80]. The possible formation/
decomposition mechanisms of the Li2O2 on the Ni5P4@NiSe2
cathode are shown in figure S11. First, O2(sol) was adsorbed to
the active sites to form adsorbed oxygen (O2

∗, ∗ represents
surface adsorbed species) based on equation (1):

O2 + surface active sites→ O2
∗. (1)

Second, O2
∗.captured one electron and reacted with Li+ to

generate LiO2
∗ based on equation (2):

O2
∗ + e− + Li+ → LiO2

∗. (2)

Third, Li2O2
∗ was formed by electrochemical reduction of

LiO2
∗ based on equation (3):

LiO2
∗ + e− + Li+ → Li2O2

∗. (3)

4. Conclusion

In summary, the nanoflower-like Ni5P4@NiSe2 heterostruc-
ture was successfully synthesized via hydrothermal method
combining simultaneous phosphating/selenization treatment.
The 3D hierarchical porous structure of Ni5P4@NiSe2 het-
erostructure can facilitate barrier-free Li+/O2 transport and

provide sufficient specific surface area for the storage of dis-
charge products.Moreover, the unique heterostructure shows a
significant effect on the electron redistribution and disordered
atomic arrangement, which can provide additional active sites
to perfect the ORR/OER bifunctional catalytic activity. The
Ni5P4@NiSe2 cathode delivered superior electrochemical per-
formance, including an ultra-high discharge/charge specific
capacity of 19 090/19 031 mAh g−1 and extended cycling
life of 202 cycles at 100 mA g−1. The above results demon-
strate that interfacial electron structure modulation by the con-
struction of the heterogeneous structure with rational architec-
ture design is a promising way of developing highly-efficient
bifunctional electrode materials, which can also be expected
to be employed in other energy catalytic applications.
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