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Abstract
Despite the efforts devoted to the identification of new electrode materials with
higher specific capacities and electrolyte additives to mitigate the well-known
limitations of current lithium-ion batteries, this technology is believed to have
almost reached its energy density limit. It suffers also of a severe safety concern
ascribed to the use of flammable liquid-based electrolytes. In this regard,
solid-state electrolytes (SSEs) enabling the use of lithium metal as anode in the
so-called solid-state lithium metal batteries (SSLMBs) are considered as the most
desirable solution to tackle the aforementioned limitations. This emerging
technology has rapidly evolved in recent years thanks to the striking advances
gained in the domain of electrolyte materials, where SSEs can be classified
according to their core chemistry as organic, inorganic, and hybrid/composite
electrolytes. This strategic review presents a critical analysis of the design
strategies reported in the field of SSEs, summarizing their main advantages and
disadvantages, and providing a future perspective toward the rapid development
of SSLMB technology.

Keywords: solid-state electrolytes, lithium metal batteries,
polymer electrolytes, safe batteries, inorganic solid electrolyte,
hybrid electrolyte, composite electrolyte

1. Introduction

Global energy consumption is currently strongly dependent on the combustion of
non-renewable fossil fuels, and this scenario is aggravated by the development of
our society and a growing energy demand. Moreover, it is foreseen that energy
consumption will increase nearly 50% by 2050, causing serious environmental
risks such as global warming, pollution, and continuous depletion of energy
resources [1]. All these facts together evince the urgency of finding an
environmentally sustainable energy supply to replace the excessively used
fossil fuels.

This need has tipped the balance in favor of electrochemical energy storage,
among which lithium-ion batteries (LIBs) have been extensively investigated as
the most suitable choice. Conventional LIBs are composed of a graphitized
material as negative electrode, a Li transition metal oxide as positive electrode,
and an organic carbonate-based liquid solution as electrolyte. However, this
technology is believed to be close to reach its theoretical energy density limit [2],
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Figure 1. Research tendency [i.e. number of publications vs. year] in the field of SSLMBs: (a) Li
batteries, (b) Li metal batteries, (c) SSLMBs, (d) SSLMBs utilizing either polymer or organic
plastic crystal electrolytes, (e) SSLMBs utilizing inorganic electrolyte, and (f) SSLMBs utilizing
either hybrid or composite electrolytes. The values were obtained via the keyword search in Scopus
database on the 28 February 2023.

which is still not enough to meet the current demand, and at the same time arises
a severe safety concern ascribed to the use of volatile organic solvents [3].

To go beyond LIB technology, Li metal (Li◦) anode has emerged as the most
promising alternative to graphite in current LIBs due to its ten times higher
theoretical capacity [3860 mAh g−1 (Li◦) vs. 372 mAh g−1 (graphite)] [4, 5].
Nevertheless, the extremely high reactivity of Li◦ implies severe security hazards,
especially when combined with a highly flammable liquid electrolyte. For that
reason, the deployment of Li◦ as an anode requires a complete concept shift
approach towards safer electrolytes. In this context, solid-state electrolytes (SSEs)
arise as the preferred replacement of alkyl carbonate-based liquid electrolytes due
to their intrinsic safety and the foreseen higher energy density of solid-state Li
metal batteries (SSLMBs) [6, 7]. SSEs can be classified as organic solid
electrolytes (where the most widely used ones are solid polymer electrolytes,
(SPEs)), inorganic solid electrolytes (ISEs), and the combination of both leading
to hybrid or composite electrolytes.

SSEs have attracted much interest in recent years from both the scientific
community and industry. As seen in figure 1, the number of publications per year
related to solid-state batteries has been increasing drastically in the last decade.
Moreover, recently, several companies dedicated to solid-state battery
technologies have been announced or funded [e.g. Prologium, Automotive Cells
Company, Welion, QuantumScape, etc.], and in particular solid-state Li metal
polymer batteries (SSLMPBs) have been successfully implemented as power
sources for electric vehicles by BlueSolutions demonstrating the potential
application of these electrolytes [8].

In this review, we propose a critical analysis of current status of the different
SSEs and their application in SSLMBs. Several recently published reviews have
tackled the general comparison of SSEs by means of physicochemical and
electrochemical properties, for that reason the present work aims to
present the main challenges found nowadays and the future outlook for
SSEs development [9, 10].

2. Features of SSEs

For rechargeable Li◦ batteries, an ideal electrolyte should allow rapid migration
of lithium-ion during charge/discharge processes and remain chemically inert
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Figure 2. Features of solid electrolytes developed for rechargeable Li metal batteries. (a) Organic
plastic crystal electrolyte, in which the ion transport is commonly realized via the ‘paddle-wheel’
mechanism. (b) Polymer electrolyte, in which the Li+ usually migrates via the segmental motion of
polymer chains. (c) Inorganic electrolytes, in which the transportation of Li+ is generally achieved
via the ‘ion-hopping’ mechanism.

against electrode materials [11–13]. In the case of non-aqueous liquid electrolytes,
the dissolution of Li salts in aprotic solvents affords an ionic solution with the
capability of transporting solvated Li+ [13]. Such scenarios change dramatically
when shifting to the field of solid lithium-ion conductors. For organic plastic
crystal electrolytes, the migration of Li+ generally occurs through the rotation of
crystal sites without positional changes (figure 2(a)). This is commonly known as
‘paddle-wheel’ processes, as described in previous work [14, 15].

For SPEs, the dissolution of Li salts is possible due to the strong solvating
ability of electron-donating groups in polyethers [e.g. poly(ethylene oxide),
(PEO)] or polyesters [e.g. polycaprolactone, (PCL)]; however, the motion of
solvated Li+ along with the solvation sheath is unlikely to take place as those in
liquid electrolyte, due to the significantly higher molecular weights of polymeric
solvents vs. small organic solvents [e.g. ca. 1 × 106 g mol−1 (PEO) vs.
90 g mol−1 (1,2-dimethoxyethane)]. The migration of Li+ becomes possible with
the segmental relaxation processes of polymer chains (figure 2(b)), following the
‘dynamic percolation’ model described by Ratner and Shriver [16]. For inorganic
electrolytes, the migration of Li+ tends to occur in the presence of certain defects
allowing ready accommodations of adjacent Li+, which is described as
‘ion-hopping’ mechanism [17, 18].

3. Organic-based SSEs

3.1. Organic plastic crystal electrolytes

Organic plastic crystals represent an exceptional and increasingly promising
family of SSEs for Li◦ batteries [19, 20]. These materials have a long-range
crystalline lattice but short range rotational and/or translational motion of the
molecules/ions, soft mechanical properties, and display one or more solid-solid
phase transitions before melting [21]. They can be classified in two different
groups: (1) molecular plastic crystals, known since the 1960s [22] and, (2) the
more recently known organic ionic plastic crystals (OIPCs) [23–26].

3.1.1. Plastic crystal electrolytes. The plastic crystal electrolytes composed of Li
salt and plastic crystals with solvation capability are particularly appealing
because of their distinctive thermal stability and ionic transport behavior [27].
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Figure 3. (a) Long-term cycling performance of Li◦||NMC532 cells using SN-based electrolytes
with different PEO concentration. (b) SN-based electrolyte using 15% PEO and 25% PEO under a
current density of 1 mA cm−2 and areal capacity of 1 mAh cm−2. Reprinted from [30], Copyright
(2021), with permission from Elsevier. (c) Cycling performance of the Li metal symmetric cells of
in-situ and ex-situ prepared SN-based electrolytes. (d) Digital photo images of a homogeneous
solution before (left) and after polymerization (right). © Long-term cycling performance of the full
cell using NMC-83 as active material in the voltage range of 2.7−4.3 V at 30 ◦C. Reproduced from
[31], with permission from Springer Nature.

Succinonitrile (SN) is the most used plastic crystal that can dissolve various Li
salts and facilitates rapid ion transport due to the high polarity of nitrile groups
[28, 29]. Moreover, the SN-based plastic crystal electrolytes present high voltage
stability and, additionally, benefit from the properties of nonflammability and
nonvolatility, which makes them an attractive matrix in SSEs. However, they are
unstable against Li◦ due to the side reactions, namely, the polymerization of
nitriles catalyzed by Li◦. To overcome this drawback, the utilization of polymer in
plastic crystal electrolyte was suggested [30], in which a PEO-based polymer in
SN electrolyte was designed to achieve relatively stable cathode/electrolyte and
anode/electrolyte interface simultaneously through strong intermolecular
interactions as revealed by microstructural analysis. By FTIR and Raman, it was
demonstrated that Li+ interacted with SN, PEO and TFSI anion, simultaneously.
Therefore, the reduction of free SN on Li◦ is restricted due to these strong
intermolecular interactions. The as-obtained electrolyte allowed stable operation
of Li◦ symmetric cells for 700 h at 1 mA cm−2 and also endowed lithium nickel
manganese cobalt oxide [Li(NiMnCo)O2, NMC]-based cell with a high discharge
capacity of 169 mAh g−1 and long-term cycling stability, as seen in figures 3(a)
and (b). Another strategy is the in-situ crosslinked plastic crystal electrolyte that
leads to high-energy-density battery systems with superior safety and temperature
tolerance behavior [27]. This can be achieved by: (1) mixing Li salts with SN that
can serve as an efficient ion transport medium, (2) mixing a robust polymer
monomer with high polar groups on the chain segments [i.e. ethoxylated
trimethylolpropane triacrylate (ETPTA) or poly(ethylene glycol) diacrylate]
(PEGDA) and, (3) introducing a certain amount of fluorinated additive segments
[i.e. fluoroethylene carbonate] (FEC) to further reinforce the electrode/electrolyte
interphase [28, 31]. Lee et al suggested the in-situ crosslinking of a SN-based
polymer electrolyte that presented high ionic conductivity (1.10× 10−3 S cm−1 at
20 ◦C) and excellent performance of Li◦ symmetric cells, being able to cycle at a
current density of 10 mA cm−2 for more than 1500 h. Moreover, the NMC-based
full cells delivered a high capacity of 1.1 mAh cm−2 with a coulombic efficiency
of 99.4% at 0.5 mA cm−2 after 100 cycles at 30 ◦C (figures 3(c)–(e)) [31].

3.1.2. Organic ionic plastic crystal electrolytes. OIPCs, a class of solid-state
analogues of ionic liquids at room temperature, have been pursued as
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next-generation solid electrolyte materials due to their good thermal stability,
nonflammability, non-volatility, and excellent electrochemical stability [32, 33].
OIPCs are composed of small organic cations and anions with short-range
molecular rotational/orientational motions and long-range crystalline structures.
These structural features as well as performance-controllability through the
design of anion and cation could give OIPCs several unique properties. For
instance, the ionic conductivity of OIPCs is highly associated with the motional
modes of cations, anions, and their correlation to defect formation [e.g.
vacancies] during structural rearrangement [34, 35]. For this reason, the
understanding of the relationship between phase behaviors and ion transport is
critical for the design of high-performance OIPC-based electrolytes [36, 37].

In the last years, Forsyth et al have dedicated a great effort to investigating the
impact of the anion structure on the properties of OIPCs. They discovered that
some OIPCs with rigid anions [e.g. PF6−, BF4−] show high thermal stability
and can keep their solid-state nature at high temperatures; however, the
low-temperature conductivity is not suitable for battery application. On the other
hand, systems with more flexible anions [e.g. CF3SO2N(−)SO2CF3 (TFSI−),
FSO2N(−)SO2F (FSI−)] present high ionic conductivity at room temperature,
while they are too soft to be used as free-standing electrolytes [20, 38]. For these
reasons, and to apply the OIPCs in practical devices, composite OIPC-based
electrolytes have been proposed by several groups in the last decade [39–41].

The doping of salt increases the concentration of defects in OIPCs, resulting on
a substantially increased conductivity [42–46]. Jin et al proved that the addition
of 4 mol% of lithium bis(fluorosulfonyl)imide (LiFSI) in triisobutyl(methyl)
phosphonium bis(fluorosulfonyl)imide (P1444FSI) results in a conductivity
increase of more than 3.5 orders of magnitude in the solid phase (0.26 mS cm−1

at 22 ◦C), as compared to the pristine material [47]. At the C-rate of
0.1 mA cm−2, a discharge capacity of ca. 160 mAh g−1 was achieved at 20 ◦C for
Li◦||LiFePO4 (lithium iron phosphate) cells. The discharge capacity exceeded a
respectable value of ca. 130 mAh g−1 at higher C-rates, figures 4(a) and (b). This
remarkable performance was the first example of an OIPC electrolyte system
performing at practical rates at room temperature. However, the use of a porous
polyethylene separator was needed for battery assembly due to the weak
mechanical properties of the electrolyte.

Another strategy to improve the mechanical properties and/or the ionic
conductivity of OIPCs, is the addition of polymers [e.g. polyvinylidene fluoride
(PVDF), PEO] [48]. Howlett et al demonstrated that the use of PVDF fibers
presents promising electrochemical and mechanical properties of OIPC
electrolytes [49, 50], obtaining self-standing membranes with an order of
magnitude higher conductivity than that of the bulk material. However, the
understanding of the mechanism of polymer surface effects remains unresolved
due to the complicated geometry of the fibers [51]. To overcome this issue, PVDF
nanoparticles with controlled particle size have been added into OIPCs to analyze
the effect of the interfacial region on the composite properties [52, 53]. The
addition of PVDF nanoparticles showed an increase in the ionic conductivity
compared to the composites using PVDF nanofibers. Moreover, it was observed
that with increasing loading of PVDF nanoparticles, higher Li+ transference
number (TLi

+) could be obtained due to the higher specific contact area between
PVDF and OIPCs depressing the mobility of the anions in a fluorophilic effect
[19]. The cycling performance for the Li◦||NMC111 cells using composite OIPCs
with PVDF nanoparticle and fibers were compared. It was observed that the cell
containing PVDF nanoparticles showed a much better discharge capacity
retention than that with PVDF fiber at 50 ◦C, figures 4(c) and (d) [48]. Guan et al
proposed the use of PEO-based membranes reinforced with an OIPC
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Figure 4. (a) Temperature dependent conductivity data for pure, LiFSI doped P1444FSI and (b) cell
capacity retentions at different charging-discharging rate. Reproduced from [47] with permission
from the Royal Society of Chemistry. (c) Reported ionic conductivity of [C2mpyr][FSI]with
different LiFSI concentration, and PVDF fibers or PVDF particles and (d) Comparison of discharge
capacities of Li◦||LiNMC111 full cells cycling at 1 ◦C at 50 ◦C with glass fibre50, PVDF-based
composites at a rate of 1 ◦C at 50 ◦C, and PVDF fiber-based electrolyte at a rate of C/15 at RT.
Reprinted from [48], Copyright (2021), with permission from Elsevier. © Charge and discharge
profiles of the first, 30, and 120 cycles of Li◦|PEO-LiFSI-30% C2epyrFSI| LiFePO4 cell at 0.2 C at
50 ◦C, and (f) specific discharge capacity and coulombic efficiency evolution with the number of
cycles. Reprinted from [40], Copyright (2021), with permission from Elsevier.

[N,N-diethylpyrrolidinium bis(fluorosulfonyl)imide (C2epyrFSI)] as electrolyte
for Li batteries [40, 41]. The as-prepared electrolyte exhibited high ionic
conductivity of 3.02 × 10−4 S cm−1 at 50 ◦C, an extremely wide
electro-chemical window (5.1 V), and decent mechanical properties. The Li◦

symmetric cells could cycle for 2000 h at a current density of 0.1 mA cm−2

without short circuiting at 50 ◦C. Furthermore, the LiFePO4-based cells delivered
a high initial discharge specific capacity of 157.3 mAh g−1 at 0.2C and a capacity
retention rate of 96% after 120 cycles, figures 4(e) and (f) [40].

In short, OIPCs are an emerging family of solid-state ion conductors that are
potential candidates to replace traditional ceramic and polymer-based electrolytes
[25]. They have been demonstrated to be safe and stable electrolytes in several
electrochemical devices. Moreover, their enhanced interphacial stability and
ability to form stable, low resistance interfaces at electrodes after
charge–discharge processes has increased the research interest on OIPCs [20].
Their favorable plasticity, which can highly improve the solid/solid contact,
favors the formation of a highly conductive and stable solid electrolyte interphase
(SEI) layer able to suppress the growth of lithium dendrites [40]. However,
further improvement in the solid-state conductivity and transport of the target ions
while suppressing the transport of the counter anions are needed. One alternative
that is currently pursued is the use of single Li+ conducting fibers or particles
combined with OIPCs to obtain conducting composites with improved
mechanical properties, making use of the interface to dope the OIPC and provide
a conductive pathway for Li+ [20]. On the other hand, the cathode design is a key
factor to achieve practical all-solid-state and high energy density devices. OIPCs
are good candidates to replace traditional PVDF binders in cathodes due to their
high flexibility which could lead to the improvement of electrode/electrolyte
contact. Nevertheless, the cost of the OIPCs needs to be reduced in order to
commercialize cost-effective technology.
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Figure 5. Key properties of the different polymers used as polymer matrices for SPEs as Radar
Plots: (a) PEO, (b) poly(dimethylsiloxane) (PDMS), (c) poly(acrylonitrile) (PAN), (d) poly(ethylene
carbonate) (PEC), and © poly(ε-caprolactone) (PCL). Explanations of the indicators are given
below: ionic conductivity (σ), Li+ transference number (TLi

+), electrochemical stability window
(ESW), compatibility towards Li metal (Li◦ compatibility).

3.2. Solid polymer electrolytes

Due to their high molar mass and consequently high thermal stability, polymers
are considered a safe alternative to replace conventional carbonate-based liquid
electrolytes. Since the first proposal of PEO as a solvating matrix for different
ions, several chemical groups have been suggested (figure 5): polymers based on
siloxane (−Si−O−Si−), nitrile (−CN), and carbonyl (−C=O) functionalities.
However, high performance requirements remain a challenge for this class of
electrolytes. An amorphous polymer with low glass transition is required to
promote segmental motion, which is one of the main parameters that govern
transport mechanisms within the polymer matrix. Another key parameter is the
contribution of Li+ to the total ionic conductivity, defined as TLi

+, since it is the
only ionic species that will contribute to the electrochemical reactions within the
cell. However, most of the polymer electrolytes exhibit TLi

+ values below 0.5,
denoting that the ionic conductivity is mainly accomplished by the anion. These
phenomena are ascribed to the intra- or inter-coordinating sites for Li+ along the
polymer chains that reduce its diffusivity. In addition, high voltage stability of the
polymer electrolyte is desired to achieve high energy density. This requirement is
compromised by the chemical functionalities on the polymer chain and the anion
chemistry/concentration. In addition, the implementation of Li◦ as negative
electrode requires the control of Li dendrite growth. The role of the polymer in
this regard is to provide mechanical strength. At the same time, compatibility,
good interfacial contact, and adhesion need to be guaranteed.

As can be observed from figure 5, each polymer chemistry has its own virtues
and defects. The high crystallinity of ethylene oxide-based polymers [e.g. PEO]
and its narrow chemical stability, limits the application to standard
LiFePO4-based cathode at high temperature (>60 ◦C) [54, 55]. At this
temperature, the polymer is molten and good contact between the electrolyte and
the electrodes is ensured. Siloxane-based polymers [e.g. poly(dimethylsiloxane)
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Figure 6. (a) Temperature dependence study of mechanically reinforced PEaMA-g-Jeffamine® in
Li|SPE|LiFePO4 cell at C/10. Reprinted from [66], Copyright (2019), with permission from
Elsevier. and (b) Li◦|SPE|NMC622 cell cycling at 70 ◦C and at C/20 with dual-layer polymer
electrolyte (DLPE) approach. Reprinted with permission from [67]. Copyright (2022) American
Chemical Society.

(PDMS)] also provide low and stable interfacial resistances due to the extremely
high segmental motion [56]. However, the mechanical properties are not
sufficient to stop the Li dendrite growth and the Si–O bond is cleaved by Li◦.
Nitrile-based [e.g. poly(acrylonitrile) (PAN)] and carbonyl-based [e.g.
poly(ethylene carbonate) (PEC) and PCL] polymers, due to the high anodic
stability (4.5 V vs. Li/Li+) are suitable for high voltage battery application
[57–60]. In addition, the high dielectric constant provided by these chemical
groups improves the TLi

+ number compared to ethylene oxide-based SPEs
(TLi

+ ≈ 0.5 vs. 0.2) [57, 59]; however, they are also not stable towards Li◦ [61].
Considering all chemistries and their characteristics, a tailor-made polymer

should be designed according to its final use in the battery: as an electrolyte
(separator) or as a catholyte (binder). The polymer electrolyte should have
sufficient ionic conductivity at the target temperature and should effectively
prevent the growth of Li dendrites, while the catholyte should provide enough
cathodic stability within the working potentials of the positive electrode material.

One of the main challenges of polymer electrolytes is to decrease the operating
temperature of the battery. In the case of PEO-based SPEs, different strategies
have been proposed to decrease crystallinity. Aldalur and co-workers developed
brush polymers, in which polyether side chains (so-called Jeffamine®) were
grafted to poly(ethylene-alt-maleic anhydride) (PEaMA), with the aim of
surpassing the limited ionic conductivity of PEO-based SPEs at temperatures
below 70 ◦C [62, 63]. By balancing the ratio between propylene oxide and
ethylene oxide units present in Jeffamine® crystallinity was curtailed and
sufficient ionic conductivity was ensured at room temperature using both LiFSI
and lithium bis(trifluoromethane)sulfonimide (LiTFSI) as Li+ source. Generally,
an increase in ionic conductivity leads to a deterioration in mechanical properties,
which impairs the ability to stop Li dendrites. Although, these systems can be
used as a buffer layer to improve the interfacial resistance [64], different
approaches have been described to improve the mechanical properties: (1)
polymer blending; (2) copolymer synthesis; or (3) cross-linking. Some of these
strategies have been applied to PEaMA-g-Jeffamine® polymers enabling
self-standing SPE membranes. On the one hand, polystyrene (PS) blocks were
introduced into the aforementioned polymer matrix structure where the soft
Jeffamine® chains guarantee the ionic conductivity, and the hard PS blocks
reinforce the mechanical properties without intervening into the Li+ transport
mechanism [65]. On the other hand, PVDF nanofibers were fabricated to
mechanically reinforced Jeffamine® based polymer by blending, figure 6(a) [66].
Even if the ionic conductivity decreased slightly, the practical application of the
self-standing SPE was confirmed in Li◦|SPE|LiFePO4 based cell, which delivered
a decent discharge capacity of 145 mAh g−1 at 50 ◦C.
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Despite the high ionic conductivity and excellent stability against Li◦,
polymers containing ethylene oxide units (EO) suffer from low anodic stability
restricting their use to low voltage cathode active materials, and thus leading to
SSLMPBs with limited energy density. Hence, it is required to explore polymers
delivering higher voltage stability such as, for example, the ones based on
carbonyl or nitrile functionalities. Mindenmark et al thoroughly investigated the
possible application of copolymers based on poly(ε-caprolactone)-co-poly
(trimethylcarbonate) increasing the voltage range operation [58], and Zhang et al
demonstrated the potential application of PPC as SPE with LiFe0.2Mn0.8PO4 high
cut-off voltage cathode active material, with no sign of oxidation after 100 cycles
[68]. However, some works have demonstrated the degradation of the carbonyl
group in the presence of the highly basic/reducing nature of Li◦, attributing the
high ionic conductivity to the plasticizing effect of the decomposition product
[69]. This concern recommends the use of carbonyl-based polymers in contact
with cathode materials (as catholyte) and a Li◦ stable polymer as an electrolyte
matrix: i.e. the design of a double-layer polymer electrolyte (DLPE).

When developing the DLPE, the solvating ability of the used chemical groups
needs to be considered. Several studies revealed that Li salt coordinates
preferentially with ethylene oxide units rather than with carbonyl-based systems
[70, 71]. This feature provokes a salt migration from the less solvating chemical
group to the more preferential matrix. To avoid this issue, Arrese-Igor et al
introduced a single-ion conducting polymer electrolyte into the poly(propylene
carbonate) (PPC)-based catholyte and in the PEO-based electrolyte. As shown in
figure 6(b), the NMC622 cell could be cycled with a DLPE approach at 70 ◦C for
80 cycles with a high-capacity retention (>80%) [67, 72].

Overall, as can be seen in table 1, further research is needed in the field of high
energy density polymer-based batteries. Yet, the areal loading, charge/discharge
time and the operational temperature are limited by electrolyte chemistry. The
DLPE strategy or the addition of a buffer layer will open new battery
configurations that overcome the limits of energy densities. Moreover, when
considering the use of Li◦ as negative electrode as well as high voltage active
materials in the positive electrode it is necessary to control the SEI and cathode
electrolyte interphase that it is formed. Having stable and conductive interphases
with a decrease interfacial resistance will help to improve the cell performance.
This cannot be only attained with polymer chemistry, but the selection of the
employed Li salt will also play a pivotal role. On this regard, several examples
can be found in literature where LiFSI is commonly used salt for SEI formation.
However, a rational design of new Li salts and additives is still required.

4. Inorganic-based SSEs

Inorganic SSEs are inorganic materials that can allow for the diffusion of Li+

through their lattice. In these inorganic materials, as opposed to the conduction in
polymer and liquid electrolytes, there is only Li+ diffusion taking place, the TLi+
is theoretically equal to 1. Sufficient Li+ conductivity is achieved through a
highly interconnected network of wide ion-channels and/or defects that can
accommodate the Li+. In this section three promising and well-known families of
ISEs are introduced and the issues and strategies on how to mitigate them
are discussed.

4.1. Oxide-type inorganic SSEs

Two well studied types of oxide materials are NASICON and garnets. NASICON
(Sodium Super Ionic Conductor) materials for SSLMBs can be described as
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Figure 7. (a) The approximate range of conductivity and reduction/oxidation limits reported for
sulfur, halide, oxide and borohydrate type SSE, (b) a selection of the reported capacity and number
of cycles reported for different full cell configurations using sulfur, halide and oxide SSEs [77–88].
Full cell capacity retention of (c) Li◦|HSE/Li7La3Zr2O12|LiFePO4. Reprinted from [80], Copyright
(2018), with permission from Elsevier. (d) Li-In|Li2.25Fe0.25Zr0.75Cl6|LCO, Reprinted from [82],
Copyright (2018), with permission from Elsevier. And (e) Li◦|Li6PS5Cl|LiNbO3(NMC811),
Reprinted from [87], Copyright (2018), with permission from Elsevier.

Li1+xTi2xMx(PO4)3 (M = Al, Cr, Ga, Fe, Sc, In, Lu, Y, La), were the highest
conductivities have been reached when using Al or Sc [89]. The conductivity can
reach up to 1.12 × 10−3 S cm−1 and was achieved for Li1.4Ti1.6Al0.4(PO4)3
(LATP) using plasma sintering to reach a nano-sized ceramic material [90].
However, due to the reduction instability of Ti4+, the electrochemical stability
window (2.65–4.60 V) [91] is too narrow to be used with Li◦ [92]. By
substituting the Ti4+ with Ge4+, forming Li1+xAlxGe2x(PO4)3 (LAGP) the ESW
can be improved to 1.85−4.9 V [91] vs. Li/Li+, which means that a protective
layer is still necessary if LAGP is used with Li◦ [89]. Garnets, such as the Li+

containing Li7La3Zr2O12 (LLZO), have several interesting properties; doping the
Zr4+-sites with Nb5+ enables a wider electrochemical window, reaching 0 V vs.
Li/Li+, and enabling Li◦ anode to be used without protective layers [93, 94].
Doping with Ga, La or Sc has also been shown to increase the conductivity at
room temperature to up to 1.3 × 10−3 S cm−1 [92, 95, 96]. LLZO also has good
mechanical properties such as a shear modulus of 61 Gpa [97] or 15 times higher
than that of Li◦, which in theory should prevent Li dendrites [98]. However, Li
dendrite growth is still a common problem for LLZO electrolytes due to electron
tunneling/metal nucleation within the ceramic at the grain boundaries [99]. But as
seen in figure 7(b), cycling has been achieved to up to 400 cycles at RT using a
NMC523 cathode by adding a thin graphite layer between the Li◦ and garnet,
reducing the interfacial resistance and Li dendrite growth.

4.2. Sulfide-type inorganic SSEs

Sulfides are of interest due to the higher Li+ conductivity compared to both
halides and oxides, explained by the lower electronegativity of the sulfur and
larger galleries allowing for a faster Li+ diffusion [100]. Sulfides also form
long-range disordered structures which also greatly facilitates Li+ diffusion
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[101], reaching Li+ conductivities up to 2.5 × 10−2 S cm−1 at room temperature
for Li9.54Si1.74P1.44S11.7Cl0.3 [85]. Sulfide synthesis generally requires milder
conditions than oxides and can be prepared at room temperature by high-power
ball milling [102]. On the other hand, sulfides are more reactive, and have a
narrower ESW (approx. 1.5−2.5 V vs Li/Li+) than oxides and halides [103, 104],
as illustrated in figure 7(a). This makes protective coatings necessary for both Li◦

and high-voltage cathodes, which impacts the performance. Sulfides are also very
sensitive to water, releasing toxic H2S when in contact with humidity, making
large dry rooms necessary [103].

4.3. Halide-type inorganic SSEs

Halides have received increased attention due to high Li+ conductivity, relatively
mild synthesis and processing conditions required [105]. The general formula is
Li3MX6 (M = Trivalent rare-earth element, in with X = F, Cl, Br and I) and can
form a wide range of structures [106]. In general, the highest conductivity is found
for halides with the monoclinic structure, reaching up to 7.3 × 10−3 S cm−1 [83].
The electrochemical stability depends mainly on the choice of halide ion and
affects the oxidation stability roughly according to F− > Cl− > Br− > I− [105].
Fluorine containing halide electrolytes show a good oxidation stability up to
6.5–7 V vs. Li/Li+, but their conductivity is too low [105]. Chlorine and bromine
containing halides offer a good middle of the road stability up to 4 V and good
ionic conductivity [107]. Stability against Li◦ is also a problem for halides and
protective layers or the use of alloys are necessary for stable cycling [108].

4.4. Other promising inorganic SSEs

LiPON is an interesting material free of expensive and rare elements [109].
Bulk-type LiPON (Li3.6PO3.4N0.6) have shown a conductivity of 10−6 S cm−1 at
70 ◦C and a wide potential window of 0–5 V vs. Li/Li+ [110]. But the most
interesting aspect of LiPON is that it can be sputtered as thin-films and serve as a
protective layer to a more sensitive solid electrolyte such as sulfides or LATP
[109, 111, 112]. Finally, Lithium borohydrides have shown promising properties
[113] such as an ionic conductivity of 6.4 × 10−3 S cm−1 for Li(BH4)1/4(NH2)3/4
at 40 ◦C and good cycling stability in LTO half-cells. However, a narrow ESW of
1–2 V vs. Li/Li+ limits practical applications [114]. LiBH4 has also been found
to work as an additive to 0.75Li2S∙0.25P2S5, producing a composite that is stable
against Li◦ and with a factor of ten improvement in ionic conductivity compared
to neat 0.75Li2S∙0.25P2S5 [115].

To conclude the state-of-art description of the inorganic SSEs, a side-by-side
comparison with respect to some important parameters can be seen in figure 8,
summarizing the discussion above.

Overall, there are distinctive issues that needs to be resolved for SSEs to be
applied in commercial products, for oxides the issues are in many ways related
the grain boundaries: they facilitated dendrite growth and the high temperature
required to sinter the electrolyte, up to 1200 ◦C for 36 h for LLZO [116] and
1300 ◦C for LAGP [117], makes large-scale commercial production difficult.
Sol-gel, microwave and plasma assisted techniques has been suggested as
methods to lower the synthesis temperature of oxides [89]. The formation of Li
dendrites has also been shown to rely on the properties of the grain boundaries
which is also related to the processing conditions. It has been shown that applying
a force perpendicular to the dendrite growth direction effectively prevents them
from short-circuiting the cell [118], the same paper suggests that this could be
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Figure 8. Radar plot of key properties of different classes of inorganic materials: sulfides, oxides
and halides. Explanations of the indicators are given below: ionic conductivity (σ), the ability to
withstand contact with air without affecting material properties (air stability), electrochemical
stability at high/low potentials (oxidation/reduction stability), the need of scarce elements
to produce the electrolyte (scarce materials), how easy the electrolyte is to synthesis and
prepare (processability).

achieved by making the thermal expansion coefficient non-homogenous in the
electrolyte by e.g. doping.

The electrode/electrolyte interfaces are often an issue with oxides, for example
the interphase between the Li◦ and the electrolyte is critical to avoid dendrite
formation so some of the results in figure 7 uses drops of liquid electrolyte at both
electrolyte/electrode interfaces, to improve the contact which is not viable for an
all-solid-state battery (ASSB). But there are also examples of solid-state
approaches such as polymer and graphite layers, showing very good results, as
shown in figure 7(b). For the cathode interface the problem is to achieve good
contact and good Li+ conductivity through the cathode composite, since most
materials cannot tolerate the high sintering temperatures of oxides. To improve the
cathode interface mixing the cathode composite with other solid Li+ conducting
materials, such as a polymer [80], instead of the oxide have been suggested.

For sulfides the electrochemical stability needs to be improved [119] and the
reactivity towards moisture should be reduced. The overall poor performance of
the sulfides seen in figure 7(b) could be explained by the extra coating needed on
the cathode material. The only example where a high capacity is reached is for the
low potential cathode TiS2. In figures 7(c)–(e) it is also clear that the protective
layer affects the performance at higher C-rates, despite the sulfide having the
highest conductivity of these three materials. There have been some
improvements regarding the oxidation and environmental stability by including
oxygen in the material, at the cost of a lower conductivity [120]. It is also
interesting to note that the highest capacity over extended cycling in figure 7(b) is
a composite between a halide and a sulfide [81]. Another practical issue with
sulfides is that the synthesis can be quite complicated for industrial applications.
With sulfide electrolytes the interfacial challenges are different compared to oxide
electrolytes, since no sintering is necessary the electrodes can be pressed together
with the electrolyte, ensuring an intimate contact. However, the sensitivity to both
reduction and oxidation makes interphacial modifications necessary to protect the
electrolyte. Polymer coatings are mostly used to stabilize the interface between
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the Li◦ and the electrolyte [121], besides good stability vs. reduction these layers
should be thin, robust and have good Li+ conductivity. For the cathode material
mainly, inorganic materials are used to protect the electrolyte [87, 88], these
materials should have a high Li+ conductivity and be thin.

Finally, halides are promising in many aspects but, like sulfides, more work
needs to be done on improving the reduction stability to be able to use Li◦ as
anode material. However, the most important issue to resolve is the use of very
rare and expensive elements [105], some work has been done on substituting
these elements with cheaper elements such as iron [82]. Computational methods
could be a useful tool to evaluate different substitution strategies and their effect
on conductivity and electrochemical stability. The interfacial properties of halide
electrolytes are more like sulfides than oxides since they do not need to be
sintered. For the cathode interface the main issue is to ensure good contact.
However, protective layers are still necessary if Li◦ is used as an anode due to the
reduction sensitivity of the transition metal component.

5. Organic/inorganic hybrid SSEs

The combination of inorganic and organic SEs forms the so called organic/
inorganic hybrid electrolyte. With different volume ratios of organic and
inorganic phases, these electrolytes are classified as ceramic-in-polymer (organic
material >50 vol%) and polymer-in-ceramic (>50 vol% inorganic phase) [122,
123]. Both approaches aim to improve the properties of polymer or inorganic
electrolytes alone.

5.1. Ceramic-in-polymer hybrid SSEs

Ceramic-in-polymer hybrid SSEs decrease the crystallinity of the organic phase,
consequently increasing the amorphous phase compared to that of the polymer
alone, enhancing its ionic conductivity (figure 9(a)) [124]. This effect is highly
dependent on the type, amount and size of inorganic particles [125, 126]. These
particles may be inactive [i.e. Al2O3] or active [i.e. NASICON, garnet],
depending if they participate in the Li+ conduction or not. Inactive fillers do not
contribute to the conduction of Li+ cations, but their surface chemistry may
impact the ionic conductivity of the electrolyte [127, 128]. Active inorganic
particles present a higher Li+ conductivity than the polymer phase, as described
in previous sections; however, the combination in organic/inorganic hybrid SSEs
leads to complex Li+ diffusion mechanisms. This diffusion will likely occur in
the organic phase [122, 129]; additionally, the interfacial resistance between both
phases will limit their Li+ exchange [108, 130–132]. The interface between the
negative electrode and the ceramic-in-polymer electrolyte is not expected to differ
from the properties of the polymer electrolyte alone.

5.2. Polymer-in-ceramic hybrid SSEs

Polymer-in-ceramic hybrid electrolytes allow to improve the mechanical
properties and processing of the inorganic phase, reducing the brittleness
discussed in section 4 [133]. The higher ratio of inorganic phase increases the
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Figure 9. Radar plot of main properties of (a) ceramic-in-polymer, (b) polymer-in-ceramic and
(c) vertically aligned ceramic hybrid electrolytes. Explanations of the indicators are given below:
ionic conductivity (σ), Li+ transference number (TLi

+), ESW, compatibility towards Li metal.

ESW generally to values above 4.5 V vs. Li/Li+ (figure 9(b)) [133, 134]. In
addition, the formation of a 3D percolation network creates a pathway for Li+

transport [122]. Consequently, the resulting hybrid SSE may lead to higher ionic
conductivity compared to the sole polymer matrix ought to the higher contribution
of the inorganic phase to the ionic conductivity [131, 135]. Nevertheless, the
overall ionic conductivity is lower than for the inorganic phase alone, possibly
due to the mentioned high organic/inorganic interfacial resistance, the tortuosity
of the inorganic pathway and the grain boundaries [130, 131]. Additionally, the
interface between the negative electrode and the polymer-in-ceramic electrolyte is
complex and may be reactive, depending on the selected ceramic species.

5.3. Structurally ordered hybrid SSEs

In recent years, several studies aimed to circumvent the high organic/inorganic
interfacial resistance and the tortuosity of the ceramic phase in hybrid SSEs.
These works intended to create direct and vertical Li+ pathways between the
electrodes, usually in the inorganic phase, maintaining a certain polymer content
as binder (figure 9(c)). The analysis of tortuosity suggests that vertically aligned
structures are the optimal configuration to create pathways with high ionic
conductivity, while the polymer phase provides mechanical support and flexibility
[136]. These ordered structures generally show improved ionic conductivity
(10–4 S cm–1 at room temperature) and (TLi

+ ∼ 0.7) compared to randomly
distributed inorganic fillers in any ratio [137–139]. This is attributed to the low
tortuosity and fast Li+ transportation in the inorganic phase, without any
organic/inorganic interface.

The resistivity of the interface between the negative electrode and structurally
ordered hybrid SSE will depend on the inorganic ratio; thus, it will show a similar
behavior as its parent composition: ceramic-in-polymer or polymer-in-ceramic
composites. Nevertheless, due to the structural complexity of ordered structures,
their processing and integration into practical devices remains to be investigated.

There are three different approaches in the literature for vertically aligned
hybrid SSEs (table 2): (1) orienting inorganic particles, usually via ice-template
processing [136, 140], (2) growing aligned 3D structures [137, 141–143], and (3)
orienting inorganic nanowires [138, 141, 143]. The latter shows promising
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results, as all the current density is concentrated in the nanowires, which offer
ionic conductivity values up to 10–2 S cm–1 [144]. Nevertheless, no works have
reported ionic conductivity values for hybrid SSEs higher than those of the
inorganic phase alone so far (10–3 S cm–1).

Overall, organic/inorganic hybrid SSEs present promising prospects;
nevertheless, their high complexity Li+ conduction mechanisms and preparation
routes are important setbacks for their development and stability. Further
electrochemical characterization is required to understand the transport
mechanisms and advantages of these aligned structures, particularly focused in
understanding the Li+ transport mechanisms across the electrolyte.

6. Commercialization of SSLMB

A common issue that is relevant for SSLMBs is the cell assembly procedure,
which differs significantly from the cell assembly with liquid electrolytes.
Tailor-made cell assembly lines will be necessary depending on the type of
material. The main difference is the applying of pressure to the cell to densify
the electrolyte and ensure an adequate contact between the electrodes
and the electrolyte.

The ease of designing cost-effective materials and their up-scaling and
processability will set the direction for SSLMBs and the speed of
commercialization. When designing a new material, there are several parameters
to consider: (1) cost-effectiveness, (2) scalability, (3) processability, (4), air
stability/sensitivity. When it comes to the cell assembly, other indicators are of
relevance, which are also related to the selected material: (1) contact, (2) pressure,
(3) the need for a tailor-made cell design and process, (4) air sensitivity. Not all
the material chemistries mentioned in the review are at the same level of maturity
and require different development routes before commercialization.

Organic electrolytes are the most cost-effective and easiest materials to process
[20]. Polymers have been processed for multiple applications in the plastic
industry. For example, extrusion, injection, or 3D printing, can be implemented
for the processing of SPEs or composites. For inorganic electrolytes the pressure
normally needs to be higher, so the calendaring used for electrodes with liquid
electrolytes is normally not enough, and uniaxial or preferably isostatic pressing
is recommended which is generally more expensive [145]. Besides, inorganic
electrolytes are generally air sensitive materials. Large, high-quality dry rooms
could also be necessary to minimize exposure to the atmosphere, making the
factories more expensive and energy consuming.

7. Future perspectives

In the present topic review, we give a brief outline on the development of various
kinds of lithium-ion conducting SSEs for safe rechargeable Li metal batteries
(RLMBs). On the basis of the literature survey and our accumulation in this
domain, it is anticipated that the following aspects could be further strengthened
in future work.

(1) In terms of organic SSEs, the chemical structures of organic molecules play a
decisive role in determining the overall properties of the electrolytes and the cor-
responding cell performances. Presently, intensive attention has been paid to the
cycling performances of Li metal cells, but the assessment on the inherent char-
acteristics of salt anions and solvents/polymers is still insufficient. For example,
the decomposition processes of the sulfonimide anions (e.g. FSI−) on the sur-
face of Li metal remain to be elucidated, especially as these anions seem to be
very effective in improving the stability of electrode-electrolyte interphases.
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(2) With respect to inorganic SSEs, an intense focus has been put on improving the
ionic conductivity which has led to some impressive results. However, signi-
ficant work is required in the chemical and electrochemical interfacial stability
with Li metal electrodes. Future development of inorganic SSEs will explore the
fabrication of dense electrolyte pellets free of grain boundaries, further increas-
ing Li conductivity and promoting interfacial stability against Li metal, prevent-
ing dendrite formation. Sulfides, halides, and other new chemistries will enable
a transition from current processing and interfacial issues toward scalable and
electrochemically stable electrolytes.

(3) For organic/inorganic hybrid SSEs, the addition of ceramic particles (<50 wt%)
may improve mechanical and electrochemical properties of the organic SSE.
For increased inorganic content, the tortuosity of the inorganic percolating net-
work is the major limitation in terms of ionic conductivity. The implementation
of vertically ordered inorganic structures in hybrid SSEs provides an interest-
ing alternative due to their increase in ionic conductivity. Nevertheless, signi-
ficant research is required in the electrode-electrolyte interphases, particularly
with Li metal.

It has to be highlighted that a common problem for the development of
SSLMBs is the interphases/interfaces and physical contact between the SSEs and
the electrodes, despite the significant progress that has been achieved in the
improvement of optimization ionic conductivity and electrochemical stability of
SSEs. The interphases/interfaces should be carefully designed and regulated:
(1) by implementing different additives (e.g. new anions or SEI forming
additives) in the electrolyte design; (2) by including an additional layer to
promote the compatibility of the SSEs and the electrodes (e.g. double layer
electrolytes); and/or (3) by surface treatment of the electrodes (e.g. thin protective
layers, or particle coatings). The design and implementation of these improved
interfaces must follow the principles of avoiding scarce or toxic materials, and
offer a competitive cost. The former would limit the use of rare-earth elements
and additives which would make cells inappropriate for commercialization (e.g.
LiAsF6). The latter refers to the fabrication cost of these additives, which should
not represent a significant increase in the unit cell price. This is directly related to
the discussion offered in the previous section (6. Commercialization of SSLMB).

From 2020, lithium is considered a critical raw material, meaning that it is
among the most economically important and presents a high supply risk.
Therefore, the connection between lithium-based systems and other cation-based
rechargeable batteries (e.g. sodium batteries, potassium batteries, magnesium
batteries, etc) still needs to be reinforced in future work, particularly considering
the importance of these complementary battery technologies to avoid excessive
use of lithium. This effectively requires further experimental verifications in other
kinds of rechargeable batteries, to testify to the effectiveness of the know-how
accumulated in the lithium-based systems.

In summary, with intensive research activities dedicated to the fundamentals
of solid-state conductors, the key properties of SSEs required by practical
solid-state RLMBs will be significantly enhanced, thereby promoting
the commercialization of cost-effective and safe battery technologies for
emerging applications.
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