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Abstract
The observation of superconductivity in hydride-based materials under ultrahigh pressures (for
example, H3S and LaH10) has fueled the interest in a more data-driven approach to discovering
new high-pressure hydride superconductors. In this work, we performed density functional
theory (DFT) calculations to predict the critical temperature (Tc) of over 900 hydride materials
under a pressure range of (0–500) GPa, where we found 122 dynamically stable structures with
a Tc above MgB2 (39 K). To accelerate screening, we trained a graph neural network (GNN)
model to predict Tc and demonstrated that a universal machine learned force-field can be used to
relax hydride structures under arbitrary pressures, with significantly reduced cost. By
combining DFT and GNNs, we can establish a more complete map of hydrides under pressure.

Supplementary material for this article is available online
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1. Introduction

The discovery of superconductors with a high transition tem-
perature (Tc) has been a long-standing goal in the con-
densed matter physics community. The highest measured
Tc for a Bardeen–Cooper–Schrieffer (BCS) [1, 2] conven-
tional superconductor (mediated by electron–phonon interac-
tions) in ambient conditions has been measured to be 39 K
for MgB2 [3]. These moderately low Tc values (signific-
antly less than liquid nitrogen) of traditional BCS super-
conductors can be overcome by applying ultra-high pres-
sures to hydrogen-rich compounds [4, 5]. Metallic hydrogen
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and hydrogen-rich compounds are ideal for high temperat-
ure superconductivity because hydrogen atoms provide strong
electron–phonon coupling (EPC) and high frequency phonon
modes [6, 7]. Recent experimental observation (within the past
decade) of conventional superconductivity in hydride-based
materials under high pressure has reinvigorated the interest
in searching for new hydride superconductors and minimiz-
ing the required pressure to sustain superconductivity at a
high temperature [4, 5].

This renowned interest in high pressure hydrides was
reignited in 2015with the experimental measurement of super-
conductivity at 203 K for H3S under pressure [8]. In addition
to H3S, a Tc above 250K has been experimentally observed for
LaH10 above 170 GPa [9–11], with several experimental and
computational studies confirming these results [9–14]. A Tc of
243 K has been observed for YH9 at 201 GPa [15] and super-
conductivity has also beenmeasured for ThH10 [16], YH4 [17],
LuH3 [18], zirconium polyhydrides [19], and tin hydrides [20]
under pressure. More recently, calcium superhydrides such as
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CaH6 have been measured to have a Tc of up to 210 K at
(160–190) GPa [21]. It has also been demonstrated that dop-
ing can play a role in enhancing Tc for hydride materials under
pressure [22–25]. Recent claims of room temperature super-
conductivity in Ca-H-S (under 190 GPa) [26] and Lu-H (under
10GPa) [27] systems have beenmet with scrutiny from the sci-
entific community, with [26] and [27] being retracted. Despite
the lack of reproducibility in these recent claims, the search
for new hydride superconductors with a high Tc continues on
the experimental and computational front.

In contrast to unconventional superconductors, where there
is not a well-defined theoretical framework to describe super-
conductivity, BCS theory can be utilized as a tool to screen
potential superconducting materials in conjunction with elec-
tronic structure methods such as density functional theory
(DFT). With the advancements in computing power, DFT
databases, and robust and efficient computational workflows,
high-throughput calculations (on the order of hundreds to
thousands) of superconducting properties are now in the realm
of possibility [28–35]. In addition, various machine learn-
ing and data-driven approaches have been used to aid in
the discovery of new and novel superconductors [36–48]. In
our previous works, we expanded the existing JARVIS (Joint
Automated Repository for Various Integrated Simulations)
[33, 35] DFT database to include calculations for over 1000
bulk [36] and 150 two-dimensional (2D) superconductors [37]
(all at zero pressure). We also developed a deep-learning tool
(trained on ourDFT dataset) to predict the EPC parameters and
Tc of anymaterial [36] at a significantly reduced cost. Wewent
on to utilize this deep-learning tool for forward and inverse
design of new superconductors [36, 45].

In addition to our own work, there has been a recent high-
throughput DFT and machine learning study which performed
EPC calculations for over 7000 superconducting candidates
[48] (all at zero pressure), which makes it one of the largest
high-throughput DFT study of conventional superconductors
to date. In contrast to the DFT and machine learning works
that span several material classes, there have been few high-
throughput computational efforts that have focused on high
pressure hydrides [46]. Recently, the Superhydra database was
created by Saha et al [49] to map superconductivity in high
pressure hydrides, but the DFT calculations have so far been
limited to binary compounds at a single pressure value of 200
GPa. In addition, Belli et al [50] analyzed the electronic and
structural properties of more than 100 hydride superconduct-
ors calculates with DFT (at several pressures ranging from
0 GPa to 500 GPa) and found a strong correlation between
Tc and electronic bonding network, establishing a clear path
to engineer the Tc [50]. In a seminal work in 2021, Shipley
et al [46] surveyed the landscape of binary hydrides up until
500 GPa for the entire periodic table and performed high-
throughput DFT calculations for the best candidates at pres-
sure values of 10, 100, 200, 300 and 500 GPa. From these res-
ults, they found 36 dynamically stable high pressure hydride
superconductors with a Tc above 100 K, with 18 of these
materials having a Tc over 200 K [46].

Building on our previous efforts within JARVIS and
inspired by the recent efforts of other researchers focused

on hydrogen-based superconductors, we established a high-
throughput workflow to screen potential hydride supercon-
ductors. Specifically, we extended our search beyond binary
compounds. We ran DFT calculations for over 900 hydrogen-
based materials. These calculations involved relaxing the
hydride structures under various amounts of pressure and then
performing EPC calculations to determine superconducting
properties. We went on to further analyze dynamically stable
structures (containing all positive phonon frequencies in the
phonon density of states) with the highest Tc and the structures
that were not previously known to be superconducting. After
running these DFT calculations, we trained a deep learning
model (using the relaxed high-pressure structures and com-
puted Tc values) to predict Tc given a crystal structure, spe-
cifically tailored to high pressure hydrides. Such deep learning
models have shown remarkable potential for superconductor
design [36, 45, 48, 51–53]. After testing and benchmarking
our newly trained deep learning property prediction model, we
used a unified machine learning-based force-field to relax the
hydride structures under pressure, further reducing the num-
ber of DFT calculations needed to obtain a complete map of
superconducting properties under pressure.

2. Methodology

In order to compute the EPC and Tc of hydride materials, we
performed non-spin polarized density functional perturbation
theory (DFPT) [54, 55] with the Gaussian broadening (inter-
polation) method [56]. Similarly to our previous workflows
in [36], [37], and [45], we used the Quantum Espresso [57]
software package, Garrity–Bennett–Rabe–Vanderbilt (GBRV)
pseudopotentials [58] and the Perdew–Burke–Ernzerhof func-
tional revised for solids PBEsol [59]. For Lu, a Topsakal–
Wentzcovitch [60] pseudopotential was used. Due to the high-
throughput nature of this study, which is primarily focused
on screening potential high-pressure hydride candidates, we
used preconverged k-points from the JARVIS database [61], a
2× 2× 2 q-point grid and a kinetic energy cutoff of 610 eV
(45 Ry). It was demonstrated in [36] and [37] that these lower
q-point grids can still be effective for material screening pur-
poses. For structures not already in the JARVIS dataset (mater-
ials added from the literature), we used the automated k-point
convergence scheme in JARVIS [61].

The Eliashberg spectral function (α2F(ω)) [62] that
determines the EPC can be obtained from:

α2F(ω) =
1

2πN(ϵF)

∑
qj

γqj
ωqj

δ (ω−ωqj)w(q) (1)

where N(ϵF) is the density of states (DOS) at the Fermi level
ϵF, ωqj is the mode frequency, δ is the Dirac-delta function,
w(q) is the weight of the q point, and γqj is the phonon mode j
linewidth at wave vector q:

γqj = 2πωqj
∑
nm

ˆ
d3k
ΩBZ

|gjkn,k+qm|
2δ (ϵkn− ϵF)δ (ϵk+qm− ϵF) .

(2)
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The integral is over the first Brillouin zone, gjkn,k+qm is the
electron–phonon matrix element, and ϵkn and ϵk+qm are the
DFT eigenvalues with wavevector k and k+ q within the nth
and mth bands. The relation between γqj and the mode EPC
parameter is:

λqj =
γqj

πhN(ϵF)ω2
qj

. (3)

The EPC parameter can now be written as:

λ= 2
ˆ

α2F(ω)
ω

dω =
∑
qj

λqjw(q) (4)

where w(q) is the weight of a q point. The McMillan–Allen–
Dynes [63] formula can be used to approximate the supercon-
ducting transition temperature (Tc) and is written as:

Tc =
ωlog

1.2
exp

[
− 1.04(1+λ)

λ−µ∗ (1+ 0.62λ)

]
(5)

where

ωlog = exp

[´
dωα2F(ω)

ω lnω´
dωα2F(ω)

ω

]
(6)

In equation (5), the constantµ∗ is the effective Coulomb poten-
tial parameter, which we take to be 0.1. To generate our DFT
dataset, it took roughly 11 500 core hours. Approximately 7%
of the computational time was devoted to relaxing the struc-
tures under pressure while the remaining 93% of the compu-
tational time was devoted to DFPT calculations of the EPC.

To predict the superconducting properties of each high
pressure hydride material, we used the atomistic line graph
neural network (ALIGNN) [64]. Specifically, we trained an
ALIGNN model on our new high pressure hydride DFT data-
set, and trained an ALIGNN model on a combination of our
high pressure hydride DFT dataset and our bulk superconduct-
ing DFT dataset from [36]. It is important to note that both of
these ALIGNN models were trained on DFT relaxed struc-
tures under pressure. Within ALIGNN, the crystal structure is
represented as a graph (elements are nodes, bonds are edges).
Each node in the graph has nine input features, which include
block, electronegativity, valence electrons, group number,
electron affinity, ionization energy, atomic volume, and cova-
lent radius. The bond distances are the edge features and the
radial basis function cutoff is 8 Å. In addition, a periodic graph
construction with 12-nearest neighbors is used. The line graph
is constructed from the atomistic graph, using bond distances
as nodes and bond angles as edges. The node and edge fea-
tures are updated with edge-gated graph convolution using a
propagation function. One layer is composed of an edge-gated
graph convolution on the bond graph and an edge-gated convo-
lution on the line graph. The line graph convolution produces
bondmessages that propagate to the atomistic graph, where the
atom and bond features are updated further. For superconduct-
ing transition temperature, we used 300 epochs for training, a
80:10:10 split and a batch size of 16 (the test set was not used at
all during training). The hyperparameters were kept the same

as the original ALIGNNpaper by Choudhary andDeCost [64].
ALIGNN was designed to be a flexible framework that could
be applied to any material class for an incredibly diverse range
of material properties. In fact, this formalism has been tested
on over 52 properties for materials and molecules that range
the entire periodic table, with great success [64]. Extensive
benchmarking and testing of model parameters such as node
features, optimized hyperparameters, number of epochs and
batch size are presented in [64]. For consistency and due to
the fact that we have a similar dataset size [36], we used the
same number of epochs and the same batch size as our pre-
vious superconducting work [36], in addition to the same set
of hyperparameters. In addition to the several follow-up stud-
ies which use ALIGNN [35] (including our previous super-
conducting work [36]) which used the same nine node fea-
tures, we used the same nine node features in the current work.
It is entirely possible that adding an additional descriptor to
ALIGNN can improve the model to cater to the characterist-
ics of BCS superconductors under pressure, but that is some-
thing beyond the scope of this work. ALIGNN is implemented
in PyTorch [65] and the deep graph library [66]. To train our
ALIGNN models for our newly generated hydride dataset and
a combination of our hydride dataset and previous dataset, it
roughly took 4 and 7 GPU hours, respectively.

3. Results and discussion

3.1. High-throughput DFT results

Figure 1 depicts our full high-throughput workflow used to
investigate high pressure hydride superconductors. The first
step involves screening the existing JARVIS-DFT database,
which contains over 80 000 materials and millions of com-
puted properties. The first task was to screen materials that
contain hydrogen and have a unit cell of 8 or less atoms
(structures where the EPC can feasibly be computed, with
the exception of certain binary superhydrides such as LaH10).
After this first round of screening, we screened certain DFT
computed properties from JARVIS-DFT such as the forma-
tion energy per atom (Eform), the energy above the convex
hull (EHull), the electronic band gap (Egap), and the magnetic
moment per atom (M). To ensure the superconducting candid-
ate materials were the most thermodynamically stable, metal-
lic and nonmagnetic, the criteria we established (similar to our
previous work [36, 37, 45]) was Eform < 0 eV/atom, EHull <
0.5 eV/atom, Egap < 0.05 eV, and M < 0.05 µB. These prop-
erties in the JARVIS-DFT database are calculated with the
Opt-b88-vdW [67] functional, which tends to underestimate
the band gap. This band gap underestimation is not of con-
cern for screening purposes since we only wish to identify
metallic structures. We chose such a generously high EHull

cutoff due to the possibility of applied pressure stabilizing
structures (it is possible that a structure at 0 GPa could lie
very far above the hull but at higher pressure could lie on the
hull). In addition to pulling candidate structures from JARVIS-
DFT, we added candidate structures from literature. These
included H-based structures from the 3DSC [47] database. In
addition, several binary compounds from the work of Shipley
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Figure 1. The full workflow for new high pressure hydride superconductors using JARVIS, DFT, and ALIGNN. This workflow involves
screening structures from the JARVIS-DFT database (filtering structures that contain H, are thermodynamically stable, nonmagnetic and
metallic) and adding structures from literature, then performing DFT calculations at applied pressures of 0 GPa to 500 GPa and computing
Tc. The ALIGNN model is then trained on DFT data to predict Tc with lower cost, enabling enhanced screening of candidate
superconductors.

et al [46] were included in our calculations. After identify-
ing the potential hydride superconductors, we applied pres-
sures of (0, 100, 200, 300 and 500) GPa to each material
and relaxed the structure. To be consistent with our previous
work [36], we performed our newDFT calculations (taking H-
based structures from JARVIS, 3DSC [47] and Shipley et al
[46]) with the same workflow and settings as in [36] (same
PBEsol functional, pseudopotential, etc). After obtaining the
final structure under pressure, we performed DFPT calcula-
tions to obtain the EPC and then used the McMillan–Allen–
Dynes equation to estimate Tc. In addition to obtaining res-
ults for over 900 EPC calculations for Tc, we used our DFT
data to train an ALIGNN model from scratch to predict Tc

specifically for hydride structures under pressure. By obtain-
ing a well-trained deep learning model for Tc, we can elimin-
ate the need for expensive DFT calculations. Specifically, we
can use ALIGNN as a screening tool to identify potential can-
didates outside of the training set, which we can verify with
DFT (see figure 1).

Figure 2(a) depicts a full summary of the over 900 DFT cal-
culations performed in this study. These calculations were per-
formed for the same set of materials at (0, 100, 200, 300 and
500) GPa (500 GPa was selected as an example of extreme
pressure). Figure 2(b) depicts a subset of figure 2(a), which
includes the dynamically stable structures with a Tc above
MgB2 (39 K). Figure 2 also depicts reference experimental
values for MgB2 (39 K at ambient pressure), H3S (203 K at
150 GPa) and LaH10 (250 K at 170 GPa) and the dotted line

represents the boiling point of liquid N2 at ambient pressure
(77 K). Table 1 and table S1 (supplementary) display the con-
tents of figure 2(b) in tabulated form, with additional details of
where the initial structure originated before external pressure
was applied in our DFT calculations. It is important to note
that a few simulations were performed at intermediate pres-
sures of 50 GPa and 250 GPa. These are included in the tables
but omitted from figure 2 for visual purposes.

At this stage, it is important to discuss the successes and
limitations of our theoretical calculations within the context
of this work. The goal of this work is to use high-throughput
DFT to (1) identify new high pressure hydride superconduct-
ors and (2) generate a substantial amount of data to train
a reliable deep learning model to predict Tc]. Due to the
high-throughput nature of these calculations and limitations
to the theoretical framework, accuracy of the results may be
impacted. There are two main sources of variation that can
arise when calculating Tc. The first type of potential variation
stems from the underlying DFT calculations, where calcula-
tion parameters such as the size of the q-point grid, choice
of exchange–correlation functional, and choice of pseudopo-
tential can impact the accuracy of the result. The second type
of variation can occur from the theoretical framework used to
estimate the Tc. Two types of approaches are normally used to
estimate Tc from the underlying DFT results for EPC, either
solving theMigdal–Eliashberg equations directly [68] or plug-
ging theDFPT computedλ andωlog into theMcMillan–Allen–
Dynes equation (as we did in this work, equation (5)). Both of
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Figure 2. The DFT calculated Tc for the entire dataset at applied pressures of 0–500 GPa. For reference, experimental values for MgB2,
H3S and LaH10 are given. The dotted line represents the boiling point of liquid N2 at ambient pressure. (a) Depicts all of the DFT results
while (b) depicts the dynamically stable structures with a Tc above MgB2 (39 K).

these approaches utilize the empirical constant µ∗, which can
introduce variations in the Tc results. In our previous work [36,
37], we found that varying µ∗ from 0.03 to 0.18 can change
the Tc by up to 40%, depending on the material, with the vari-
ation being more apparent for structures with a higher Tc. At
larger EPC strengths, the variation between results obtained
from the Migdal–Eliashberg equation and results obtained
with the McMillan–Allen–Dynes equation begin to diverge,
with the McMillan–Allen–Dynes approach underestimating
the Tc [12, 46]. In fact, it was demonstrated that the variations
arising from µ∗ combined with the variations arising from the
Migdal–Eliashberg vs. McMillan–Allen–Dynes approach can
be up to 100 K for materials with large λ [46]. An example of
this includes the underestimation of our DFT results vs. exper-
imental values for the Tc of H3S and LaH10 (we computed a
max Tc of (160–187) K at (200–250) GPa for LaH10 and a Tc of
154 K at 200 GPa for H3S). Nonetheless, important qualitative
trends can be identified from these calculations and previously
unidentified superconductors can be revealed. This can motiv-
ate future, more in-depth studies of selected superconducting
materials, with the goal of achieving quantitative experimental
accuracy for a smaller, focused subset of materials (rather than
screening hundreds, or thousands of candidates with a less
computationally costly approach). In order to achieve even
higher accuracy and eliminate empirical biases, methods such
as Superconducting-DFT and explicit calculations of µ∗ with
the random phase approximation can be performed [69–71].

It is clear from table 1 and table S1 that the majority of the
structures that have a high Tc come from the dataset of Shipley
et al [46], which were recalculated with our workflow. The
main motivation for adding the previously discovered struc-
tures from Shipley et al [46] was to provide high-Tc data
for our deep learning model. All of the structures shown in
table 1 and table S1 are dynamically stable (possess positive
phonon frequencies in the phonon density of states). In addi-
tion to dynamical stability of these hydride compounds, we
assessed the thermodynamic stability of these structures by
computing the formation energy of each material (added to

table 1 and table S1). Each formation energy value is computed
by subtracting the respective energies of the most energetic-
ally favorable elemental solids from the total energy of each
hydride compound. For an accurate reference point, we calcu-
lated the total energy of each elemental solid under pressure
(i.e. to calculate the formation energy of CaH6 at 100 GPa, we
subtracted off the energies of elemental Ca and H at 100 GPa).
We observe that all of structures in table 1 and most structures
in table S1 possess negative formation energy. By obtaining
these formation energy results, we can easily compute the con-
vex hull [72, 73] for selected compounds to observe how ther-
modynamically stable a given phase is with respect to other
reported phases (see figure 4, discussed in the next paragraph).
Due to a lack of formation energy data for hydride-based struc-
tures at pressures above 0 GPa in most DFT databases [28–30,
33, 35], constructing a convex hull for a given hydride super-
conductor has been a challenging task.We hope that by provid-
ing a large set of formation energy data for a wide variety
of hydride structures under various amounts of pressure can
allow others to create their own phase diagrams for compounds
of interest (similar to those reported in figure 4). We acknow-
ledge that it is possible for a material to exhibit strong EPC
and also have a band gap, which would destroy the chances of
the candidate material to be superconducting. To investigate
this, we calculated the band gap of all of our materials using
the PBEsol functional. We found that out of all of the nearly
900 computations we performed, only 41 structures possessed
a band gap. Out of these 41 structures, 30 have a band gap and
a finite Tc (almost all of these structures have a Tc less than
MgB2). These structures are listed in table S2.

In addition to adding previously discovered high-Tc to our
dataset, our workflow revealed some hydride-based structures
in JARVIS to be superconducting. These includedMgH2 (82K
at 100GPa), AsHO (62 to 78K at 200 to 300GPa), ScH3 (69 K
at 100 GPa), and KAlH3 (52 K at 0 GPa). Figure 3 depicts
some of the selectedmaterials from JARVIS that were revealed
to be superconductors, in addition to some of the correspond-
ing Eliashberg spectral functions. Along with this manuscript,

5



Mater. Futures 3 (2024) 025602 D Wines and K Choudhary

Table 1. A summary of DFT results, including structure (chemical
formula), applied pressure, superconducting critical temperature
(Tc), formation energy per atom (Eform) at each respective pressure,
and the source of the original structure (JARVIS-DFT, 3DSC [47],
or Shipley et al [46] dataset) for dynamically stable structures with
the highest Tc. A continuation of this data is in table S1.

Structure Pressure (GPa) Tc (K) Eform (eV/atom)
Source of
structures

MgH12 500 296 −10.9 Shipley et al
NaH6 500 282 −14.4 Shipley et al
SrH10 500 270 −13.2 Shipley et al
MgH12 300 255 −6.7 Shipley et al
NaH6 500 242 −12.0 Shipley et al
NaH6 300 234 −4.0 Shipley et al
NaH9 500 234 −11.3 Shipley et al
MgH6 300 231 −7.5 Shipley et al
NaH6 200 225 −5.4 Shipley et al
LiH6 300 223 −6.4 Shipley et al
LiH3 500 222 −10.9 Shipley et al
MgH6 200 221 −3.4 Shipley et al
MgH10 500 218 −11.1 Shipley et al
MgH6 500 214 −11.8 Shipley et al
CaH6 200 210 −5.9 Shipley et al
LiH6 500 207 −10.5 Shipley et al
LiH2 300 205 −7.2 Shipley et al
NaH6 100 204 −1.9 Shipley et al
MgH10 300 204 −6.9 Shipley et al
LiH2 500 202 −11.2 Shipley et al
CaH6 300 198 −8.3 Shipley et al
YH9 300 196 −5.7 Shipley et al
LiH2 200 190 −3.1 Shipley et al
LiH6 200 188 −3.6 Shipley et al
LiH3 300 188 −6.9 Shipley et al
YH9 500 188 −9.5 Shipley et al
LaH10 250 187 −4.7 JVASP-149370
KH10 500 186 −15.6 Shipley et al
LaH10 300 185 −5.7 JVASP-149370
NaH9 300 185 −7.2 Shipley et al
CaH15 500 179 −11.3 Shipley et al
CaH6 100 178 −3.5 Shipley et al
MgH13 100 173 −1.8 Shipley et al
H3S 200 166 −5.7 JVASP-79487
MgH13 200 164 −3.6 Shipley et al
CaH15 300 164 −6.8 Shipley et al
LiH3 200 162 −3.4 Shipley et al
LaH10 200 160 −3.8 JVASP-149370
ScH12 500 159 −11.2 Shipley et al
Na2H11 500 159 −12.1 Shipley et al
H3S 250 154 −3.9 JVASP-79487
KH10 300 154 −9.3 Shipley et al
Na2H11 500 154 −12.1 Shipley et al
CaH10 300 148 −7.3 Shipley et al
ScH14 500 146 −11.0 Shipley et al
ScH6 100 144 −2.0 Shipley et al
YH9 200 143 −3.9 Shipley et al
MgH13 300 143 −6.7 Shipley et al
H3S 300 143 −8.1 JVASP-79487
MgH14 500 143 −10.8 Shipley et al
MgH12 200 142 −3.6 Shipley et al
SrH15 500 140 −12.1 Shipley et al
H3S 500 138 −12.6 JVASP-79487
Na2H11 100 137 −1.9 Shipley et al
ScH6 200 137 −3.9 Shipley et al
KH10 200 137 −6.2 Shipley et al
CaH15 200 136 −4.7 Shipley et al

all relaxed structures and full DFT calculations are available
for further analysis and future utilization. Figure 4 depicts the
computed phase diagrams for a few of the selected materi-
als previously mentioned (using pymatgen [72, 73]), and we
see that all of these structures lie on the respective convex
hulls. Specifically in figures 4(a) and (b)), we demonstrate how
the phase diagram of Mg-H changes with pressure. Although
figure 4 depicts phase diagrams of binary systems, it is possible
to construct these phase diagrams for ternary systems using
pymatgen. Interestingly, when pressure is added to KAlH3, a
metal-to-semiconductor transition is induced from (100–500)
GPa, quenching the superconducting properties (see table S2).
To our knowledge, there have been no experimental reports
of superconductivity in KAlH3. In addition, we found that
the SiH4 (identified from 3DSC [47]) structure possesses a
Tc of 71 and 72 for 200 GPa and 300 GPa respectively. It is
important to note a different phase of ScH3 has experiment-
ally and theoretically been reported to be superconducting [18,
74] (with a Fm3̄m space group), but to our knowledge, the
phase of ScH3 (with a Cm space group) reported in our manu-
script is identified as a superconductor with DFT for the first
time. With regards to MgH2, the phase reported in our work
has a space group of Fm− 3m, which differs from the more
stable reported α-MgH2 with a space group of Pnma [75].
α-MgH2 (Pmna) undergoes a semiconductor to metal trans-
ition with higher pressures above 170 GPa, reaching a Tc up
to 23 K [75]. Our reported MgH2 structure (Fm− 3m), which
has been found to be metastable [76, 77], retains its metal-
licity from (0–500) GPa. To our knowledge, previous stud-
ies have not explored the superconducting capabilities of the
metastableMgH2 structure (Fm-3m) in detail (besides our pre-
vious work at 0 GPa [36]). SiH4 (Silane) is a material that
has been previously studied in great detail experimentally and
through first-principles, with a variety of phases and pressure-
induced phase transitions being reported [78–84]. In this work,
we obtained a structure for SiH4 (space group P21/c) from the
3DSC [47] database (which maps entries of the experimental
Supercon database to Materials Project entries). This structure
is found in both JARVIS and Materials Project (JVASP-5281,
mp-23739). Although this P21/c structure of Silane is insulat-
ing at zero pressure, our calculations indicate that the applic-
ation of large pressure results in an insulator-to-metal trans-
ition, making superconductivity possible. Although it has been
demonstrated theoretically that the thermodynamic stability
of P21/c can vary with pressure (i.e. the C2/c phase is more
stable than the P21/c phase for pressure ranges below 400GPa
[78–81]), we find thatP21/c Silane possesses strong supercon-
ducting properties at (200–300) GPa. To our knowledge, DFT
calculations for Tc at 200–300 GPa have not been carried out
for P21/c Silane prior to this study and the superconducting
properties ofP21/c Silane have not been experimentallymeas-
ured at these pressure values. Although our DFT results show
dozens of potential high pressure hydride superconductor can-
didates, very few of our predicted structures have been exper-
imentally realized. In fact, only a handful of materials from
our dataset have been synthesized under pressure including
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H3S [8], LaH10 [9–11], CaH6 [21], YH9 [15], and polyhydra
of Li-H (LiH2 and LiH6) [85, 86]. In addition, polyhydra of
Sr-H [87] and Na-H [88] with different stoichiometry than our
DFT calculations have been synthesized (SrH2, NaH3, NaH7).

Our plethora of DFT data on hydride materials under
extreme pressures allows us to analyze certain trends in the
results. Figure 5 depicts a thorough analysis of DFT results
for selected materials at various pressures. Figures 5(a) and
(b) depicts how the phonon density of states changes when
pressure is applied. From figures 5(a) and (b), we observe
that the phonon DOS is blueshifted, and the application of
high pressure can cause the first peak in the phonon DOS
to change from negative to positive (triggering an unstable-
to-stable transition), as is the case for LaH10, H3S, MgH12,
MgH6, SrH10. Figure 5(c) depicts how Tc changes with respect
to applied pressure. It is clear from the figure that there is
not necessarily a linear relationship between applied pres-
sure and an increase in Tc. In fact, for certain materials such
as LaH10 and H3S, Tc increases up to some critical value
of pressure and then decreases. This enforces the point that
the relationship between superconductivity and applied pres-
sure is entirely material dependent and cannot be described by
simple models or equations (i.e. linear or polynomial fitting).
Figure 5(d) depicts the Eliashberg function of LaH10 under dif-
ferent amounts of pressure. As expected, the area under the
curve is directly proportional to the change in Tc at each pres-
sure value (see equation (4)).

3.2. Machine learning results

The main outputs of this effort are (1) a high quality and
diverse set of DFT data for hydride materials under pressure
and (2) a well-developed deep learning model to predict Tc at a
lower computational cost. Themotivation to train a deep learn-
ing model to predict Tc for hydrides under various amounts of
pressure stems from the fact that (1) each DFT calculation (for
the structural relaxation under pressure and the DFPT calcula-
tion for the EPC) can be incredibly computationally expensive
and (2) (as previously mentioned) there is no clear relationship
between superconductivity and applied pressure, where it is
entirely material dependent and cannot be described by simple
models or equations. To address these two main concerns, we
trained an ALIGNN model on our DFT data to predict Tc. A
similar procedure was carried out in [36], where an ALIGNN
model was trained on 1000 bulk materials. The Tc model of
[36] achieved an MAE of 1.84 K, but the maximum Tc in
this dataset was 33 K. In this work, we trained two separate
ALIGNN models on different datasets (the datasets consisted
of relaxed structures under pressure and Tc value). One model
was trained on purely the hydride dataset (over 900 structures)
and the other model was trained on the hydride dataset plus the
dataset from [36] (900+1000 structures). Figures 6(a) and (b)
depict the performance of both of these ALIGNN models on
a random 10% test set for each dataset (the random test set
is different for each model to minimize bias that arises from

partitioning the data into train:test:validation). The MAE for
the ALIGNNmodel trained on the hydride dataset is 12 K and
the MAE for the ALIGNN model trained on the hydride plus
the JARVIS dataset from [36] is 8 K. We find the mean abso-
lute deviation (MAD) of the ALIGNN model trained on the
hydride dataset to be 32 K while the MAD of the ALIGNN
model trained on the hydride plus the JARVIS dataset from
[36] is 19 K. The MAE values of these models are much lar-
ger due in part to the fact that the maximum Tc in the datasets
are much larger (over 280 K). Figures 6(a) and (b) also demon-
strates that the addition of data in these deep learning models
can reduce the overall MAE. Ideally, if an additional, larger
DFT dataset of high-pressure hydride materials was developed
(that was consistent with our calculation method, in terms of
DFT functional and pseudopotential), it could be used to aug-
ment the training set and could potentially improve perform-
ance. Figure 6 also depict some of the outlying ALIGNN pre-
dictions on the test set, which can be attributed to random
model error. Figures S1–S3 depict additional details regard-
ing both ALIGNN models. Figure S1 shows the training and
validation MAE for Tc (K) as a function of the number of
epochs. Figure S2 shows the performance of both ALIGNN
models on the training and validation sets. Due to the fact that
the MAE values could be somewhat inflated because a large
portion of the data lies under 50 K, we plotted the data separ-
ately for Tc above 50 K and below 50 K and computed each
MAE separately for both ALIGNN models (see figure S3). In
our previous work in [36], we computed Tc by predicting λ
and ωlog separately with ALIGNN and plugged both quant-
ities into equation (5). We found that this only resulted in a
4% increase in accuracy. For this reason, we decided to dir-
ectly predict Tc with ALIGNN. We hope that other research-
ers can utilize this ALIGNN model specifically fine tuned for
high-pressure hydrides to screen the broader materials space
for high-Tc hydride candidates prior to verifying with DFT (as
shown in the workflow in figure 1). It is apparent from figure 6
and figure S3 that the errors in Tc prediction from ALIGNN
are relatively high. Despite this limitation of the model, we
believe that it can be useful for the classification of potential
high-Tc superconductors. The goal is not to outright replace
DFT predictions, but to aid in the screening of potential can-
didates prior to verification by DFT.

Motivated by this idea, we went on to quantify the clas-
sification of superconductors for both ALIGNN models. Our
first classification metric is whether or not ALIGNN can pre-
dict if a structure is superconducting or not (Tc > 0.1 K). We
define a false positive as when ALIGNN predicts a Tc > 0.1 K
while DFT predicts a Tc < 0.1 K, and a false negative as when
ALIGNN predicts a Tc < 0.1 K while DFT predicts a Tc >
0.1 K. In the few cases where ALIGNN erroneously predicts
a negative Tc value with magnitude larger than 0.1 K (unphys-
ical result), these entries are counted as both false positive and
false negative. For the ALIGNN model trained only on the
hydride DFT dataset, the test set contained 95 materials. Out
of these 95 structures, there were 8 false positives and 4 false
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Figure 3. (a)–(d) Selected structures from JARVIS that were revealed to be superconducting. (e) and (f) depict selected Eliashberg spectral
functions.

negatives (with 3 entries being counted for both categories as
unphysical results). For the ALIGNN model trained on the
hydride+JARVIS-SC DFT dataset, the test set contained 199
materials. Out of these 199 structures, there were 31 false
positives and 9 false negatives (with 8 entries being counted
for both categories as unphysical results). Our second clas-
sification metric is whether or not ALIGNN can predict if a
structure is a high temperature superconducting or not (Tc >
50 K). We define a false positive as when ALIGNN predicts
a Tc > 50 K while DFT predicts a Tc < 50 K, and a false
negative as when ALIGNN predicts a Tc < 50 K while DFT
predicts a Tc > 50 K. For the ALIGNN model trained only

on the hydride DFT dataset, we identified 0 false positives
and 5 false negatives (16 materials in the test set have a DFT
Tc > 50 K). For the ALIGNN model trained on the hydride
DFT+JARVIS-SC dataset, we identified 2 false positives and
3 false negatives (17 materials in the test set have a DFT Tc >
50 K). These metrics demonstrate that although the prediction
errors are relatively high in figure 6, these ALIGNN models
can be useful in classification tasks for Tc, especially for high-
Tc materials. By adding the ALIGNN model to the screening
workflow for high pressure hydrides, the number of DFT cal-
culations for superconducting properties can be significantly
reduced.
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Figure 4. Phase diagrams for some of the selected compounds reported in this work: Mg-H at (a) 100 GPa, (b) 300 GPa and (c) Sc-H at 100
GPa. Formation energy data and code to produce these phase diagrams are available with this manuscript for users to construct their own
phase diagrams and add their own DFT data.

In the previous paragraph, we discussed how ALIGNN
trained on DFPT calculations for Tc can accelerate the pre-
diction of Tc. Although this is an extremely useful tool, the
ALIGNN model for Tc assumes that the relaxed structure
under pressure is provided. In addition, if only the relaxed
structure with zero applied pressure is provided, it will usu-
ally yield a low value for Tc, which may result in the struc-
ture being disregarded as a candidate for a potential super-
conductor. Although the DFPT computation of the EPC is
much more computationally expensive than the DFT struc-
tural relaxation under pressure, this relaxation can still be a
time consuming endeavor. One way to circumvent this and
eliminate the cost of DFT structural relaxation is to use a uni-
versal machine learned force field (such as ALIGNN-Force-
Field [89], M3GNET/MatGL [90] and GemNet-OC [91]) to
relax the structure prior to ALIGNN prediction of Tc. In
this work, we used the pretrained ALIGNN-Force-Field (FF)
[89] (universal machine learning force field) with the Atomic
Simulation Environment (ASE) [92] FIRE [93] optimizer to
relax the hydride-based structures under various amounts of
pressure. Pressure was induced in each structure by com-
pressing the volume and allowing the atoms and bond angles
to relax under that constant volume value. ALIGNN-FF was

developed to handle chemically and structurally diverse crys-
talline systems, where the entirety of the previous JARVIS-
DFT dataset was used as training, (which contains 4 million
energy-force entries for 89 elements of the periodic table,
307113 which are used for training) [89]. It is important to
note that none of the high pressure calculations in this work
were used to train this ALIGNN-FF.

TheALIGNN-FF+ALIGNN-Superconducting (ALIGNN-
SC) results along with DFT are depicted in figure 7.
Specifically, we tested both ALIGNN-SC models (one model
trained on the hydride dataset, the other trained on the hydride
dataset plus the dataset from [36]) on the relaxed structures
from ALIGNN-FF under pressure. As seen in figure 7 there
is good qualitative agreement between DFT and ALIGNN
and meaningful trends can be extracted from the purely
machine learning results. Regardless if the structures under
pressure were in the training, validation or test sets dur-
ing ALIGNN training, there were no DFT calculations per-
formed at intermediate pressure values such as (50, 150, 250,
and 400) GPa (with the exception of DFT calculations for
LaH10 at 50 GPa and 250 GPa). From figure 7, we observe
that ALIGNN-FF+ALIGNN-SC can interpolate reasonably
well to intermediate values of pressure that were not part
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Figure 5. An analysis of DFT results for select materials at various pressures: (a) the overlapping phonon density of states for LaH10, (b)
the shift of the first peak in the phonon density of states with respect to applied pressure (points below the red dotted line indicate dynamical
instability), (c) Tc as a function of pressure, and (d) the overlapping Eliashberg function for LaH10.

Figure 6. The performance of two separate ALIGNN models for Tc on the test set (random 10% of each dataset). (a) Is the ALIGNN model
trained on the hydride dataset and (b) is the ALIGNN model trained on dataset which contains the hydride dataset and the JARVIS
superconductor dataset from [36]. The mean absolute error (MAE) and R2 value are depicted in the inset for each model and the dotted line
is shown for reference.

of the original dataset, which allows us to reliably compute
Tc for a larger number of pressure values and obtain a finer
map of how superconducting properties change with pressure,
avoiding unnecessary DFT calculations. This can also give us

an indication of where the critical pressure value lies (pres-
sure value which results in the maximum value of Tc) and is a
cheaper alternative to brute-force DFT calculations at several
values of pressure.
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Figure 7. Tc results from DFT (red) along with Tc results from ALIGNN-SC (green for the ALIGNN-SC model from figure 6(a), blue for
the ALIGNN-SC model from figure 6(b)) that were obtained using ALIGNN-FF relaxed structures at various pressures.

4. Conclusion

In this work, we have computed the superconducting prop-
erties of over 900 hydride-based materials with DFT under
ultrahigh pressures (0 GPa–500 GPa). In addition to adding
previously discovered high-Tc materials to our dataset and
revealing previously undiscovered superconductors from the
JARVIS database, we trained an ALIGNNmodel to predict Tc

with reasonable accuracy. We took this one step further and
coupled our ALIGNN model for Tc to the ALIGNN-FF uni-
versal force-field to relax the structures with minimal com-
putational cost prior to ALIGNN Tc prediction. By utilizing
these deep learning tools for structural relaxation under pres-
sure and property prediction, enhanced materials screening
can be enabled and the number of DFT calculations (and over-
all computational cost) can be significantly reduced, allowing
for a broader search of material space for new high pressure
hydride superconductors.

5. Future perspectives

Data-driven discovery and design of novel high pressure
hydride superconductors is a rapidly changing and excit-
ing field of physics and materials science. Coupling high-
throughput first-principles (DFT) simulations with machine
learning techniques can allow for a more broad search of

the high pressure superconductor landscape. Most import-
antly, these machine learning models can be used as effect-
ive classification tools to screen candidate systems prior to
more in-depth theoretical calculations and eventual experi-
mental synthesis. In order for this field to progress, the amount
of publicly available and unique high-throughput DFT data
must increase, which can be one of the most effective routes
to improving the accuracy of these machine learning mod-
els. Collaborative efforts such as the JARVIS-Leaderboard
[94], which allows users to view and contribute materials sci-
ence data and machine learning models and assess accuracy/
fidelity (while enhancing transparency and reproducibility)
and OPTIMADE (Open Databases Integration for Materials
Design) [95], which allows for the easy and interoperable
access to information across different materials databases in
a uniform format can play an important role in granting access
to relevant data andmetrics with the goal of advancing the field
of materials design.

Data availability statement

Software packages mentioned in the article can be found
at https://github.com/usnistgov/jarvis. All code and data spe-
cific to this work can be found at https://doi.org/10.6084/m9.
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https://pages.nist.gov/jarvis_leaderboard/.
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Notes
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