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Abstract
Laser powder bed fusion is a mainstream additive manufacturing technology widely used to
manufacture complex parts in prominent sectors, including aerospace, biomedical, and
automotive industries. However, during the printing process, the presence of an unstable vapor
depression can lead to a type of defect called keyhole porosity, which is detrimental to the part
quality. In this study, we developed an effective approach to locally detect the generation of
keyhole pores during the printing process by leveraging machine learning and a suite of optical
and acoustic sensors. Simultaneous synchrotron x-ray imaging allows the direct visualization of
pore generation events inside the sample, offering high-fidelity ground truth. A neural network
model adopting SqueezeNet architecture using single-sensor data was developed to evaluate the
fidelity of each sensor for capturing keyhole pore generation events. Our comparative study
shows that the near infrared images gave the highest prediction accuracy, followed by 100 kHz
and 20 kHz microphones, and the photodiode sensitive to processing laser wavelength had the
lowest accuracy. Using a single sensor, over 90% prediction accuracy can be achieved with a
temporal resolution as short as 0.1 ms. A data fusion scheme was also developed with features
extracted using SqueezeNet neural network architecture and classification using different
machine learning algorithms. Our work demonstrates the correlation between the characteristic
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optical and acoustic emissions and the keyhole oscillation behavior, and thereby provides strong
physics support for the machine learning approach.

Keywords: machine learning, deep learning, defect detection, laser powder bed fusion,
additive manufacturing

1. Introduction

Laser powder bed fusion (LPBF) is a widely adopted metal
additive manufacturing technology known for its ability
to produce highly complex and precise parts [1, 2]. The
LPBF technology offers design freedom and weight reduction
opportunities, particularly in industries like aerospace, where
reduced weight can lead to reduced energy consumption and
pollution [3]. LPBF also offers advantages in productivity, on-
site and on-demand production, and streamlined supply chains
[4]. Over the years, LPBF has evolved from a rapid prototyp-
ing tool to a powerful technology for manufacturing end-use
parts [5]. In a typical LPBF process, a laser beam selectively
scans a thin layer of metal powder, melting and solidifying it
to create a part based on computer designs. The rapid heating
and cooling cycles involved in the printing process give rise to
various complex phenomena [6, 7].

At the site of laser-matter interaction, a vapor depression in
themelt pool, known as the keyhole, is formed due to the recoil
pressure from the evaporation of the metal when the laser flu-
ence is sufficient [8, 9]. Multiple reflections and absorptions
of the laser rays take place inside the keyhole, significantly
enhancing the overall absorption of the laser energy by the
metal. This, in turn, leads to increased energy efficiency and
improved build rates. The area near the keyhole (i.e. around
the laser beam) is hot, while the region away from the key-
hole is cooler. The Marangoni force, driven by the gradient
in surface tension, transports the liquid from the hot region
to the cooler region (assuming a positive dependence of sur-
face tension on temperature because of, say, thermal desegreg-
ation of solute), creating complex liquid flow patterns inside
the melt pool [6]. Due to the interplay among recoil pressure,
Marangoni force and capillary force, an unstable keyhole fre-
quently collapses, giving rise to gas bubbles [10, 11]. Some of
the bubbles can result in keyhole pore defects if captured by
the advancing solidification front.Monitoring such defects can
be notably challenging in risk-averse applications of LPBF,
such as those in aerospace and biomedical fields. The asso-
ciated technological barriers necessitate the development of
an accurate closed-loop control system for effective real-time
defect detection and manufacturing quality management [3].
By accurately localizing the occurrence of pore defects, the
interrogation region can be significantly narrowed down after
the printing process, thereby saving time and effort for product
qualification and certification.

Acoustic and optical emission sensing are commonly
employed to capture process signatures indicative of various
physical phenomena during the LPBF process [12]. Konoenko
et al developed an operando crack detection approach for
LPBF by sensing structural-borne acoustic emissions [13],

allowing them to distinguish crack acoustic emission events
from background noise. Simonds et al designed an integrat-
ing sphere system to measure time-dependent reflected laser
[14], which was then converted into time-resolved absorptance
data, providing insights into the laser-matter interaction pro-
cess. In recent years, there has been growing interest in
combining machine learning approaches into defect detection
approaches [15–17]. Scime and Beuth, for instance, developed
an algorithm for detecting and classifying defects during the
powder spreading stage of LPBF process [18]. This algorithm
employed an unsupervised machine learning approach and
utilized optical images collected from commercial printing
systems. Mondal et al proposed a physics-informed machine
learning approach to produce crack-free parts, evaluating vari-
ables related to cracking physics derived from bothmechanical
models and experimental measurements [19].

However, most work existing in this field focused on distin-
guishing between keyhole-prone and non-keyhole-prone con-
ditions, rather than achieving localized detection with high
spatiotemporal resolution. For instance, Liu et al developed
a physics-informed machine learning model for porosity pre-
diction in LPBF [20]. They calculated physical effects, like
energy density distribution, based onmachine settings and cor-
related these effects with porosity measured from x-ray com-
puted tomography scans of printed parts. Energy density was
correlated with pore size ranges. Shevchik et al explored the
feasibility of using acoustic emission for monitoring during
the LPBF process [21]. They captured acoustic emission data
using a fiber Bragg grating and employed a spectral convo-
lutional neural network to predict print quality in terms of
porosity concentration, based on acoustic emission features.
Recently, approaches for localized keyhole pore detection
were reported, but with generally millisecond-scale temporal
resolutions. Tempelman et al proposed a keyhole pore detec-
tion system by using a microphone and machine learning [22].
The scanned printed samples with x-ray imaging to label the
pore location in the time-series acoustic signals. Their study
found that the high-frequency components of the signals were
particularly important for pore detection, with window size
ranging from 2.5 ms to 7.5 ms. Pandiyan et al tackled a sim-
ilar problem using deep learning with signals from multiple
sensors, incorporating variable time scales [23]. They used
operando x-ray imaging to label time-series signals, enabling
the study of smaller window sizes ranging from 0.5ms to 4ms.
Working on a similar problem, Gorgannejad et al recently
developed a data fusion machine learning model by labeling
the thermal and acoustic time-series signals with synchro-
tron x-ray imaging information. They achieved a prediction
accuracy on the pore generation events of 94% at a time res-
olution of 2 ms [24].
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Nevertheless, a comprehensive understanding of the char-
acteristic acoustic and optical signals associated with key-
hole pore generation in LPBF has not yet been achieved.
The industry has been increasingly interested in developing
advanced in-situ approaches for defect detection in the print-
ing process [25]. To address these challenges, a machine
learning-aided process sensing approach for localized detec-
tion of keyhole pore generation in LPBF was developed in
this study. By using synchrotron x-ray imaging as the ground
truth labelling, the capability of using near-infrared (NIR) ima-
ging, ultrasonic and audible frequency microphones, and a
backscattered laser sensitive photodiode data to detect keyhole
generation events were evaluated. Also, the machine-learning-
aided prediction results with multi-sensor data using differ-
ent combinations of the four sensors were analyzed. In addi-
tion, the inherent connection between the optical and acous-
tic emissions was established, as well as their correlation with
the oscillation behaviors of the keyhole. This work unraveled
the physics that support the accurate predictions enabled by
machine learning models.

2. Materials and methods

2.1. Materials

Commercial Ti–6Al–4V (Grade 5, McMaster-Carr, USA)
plate samples were sectioned utilizing electrical discharge
machining. Subsequently, the samples were mechanically pol-
ishedwith a 1200-grit sandpaper, resulting in a final dimension
of 50mm× 3.21mm× 0.48mm. In synchrotron experiments,
the x-ray beam penetrated through the sample along the thin-
nest thickness.

2.2. Laser melting process

The scanning laser melting and process sensing experiment
was carried out at the 32-ID-B beamline of the advanced
photon source (APS) at Argonne National Laboratory
(figure 1). The laser scanning setup utilized an ytterbium
fiber laser (IPG YLR-500-AC, USA) in conjunction with a
galvo laser scanner (intelliSCANde 30, SCANLAB GmbH,
Germany) [9, 10, 26]. The Gaussian laser operated at a
wavelength of 1070 nm and exhibited a spot size of ∼82 µm
(1/e2) on the sample surface plane when defocused by 2 mm.
Prior to each laser scan, the samples were positioned inside
the build chamber and subsequently purged and refilled with
high purity Argon gas to atmospheric pressure. A 4 mm
single straight line was scanned on the plate sample using
continuous-wave (CW) mode laser. The position of the line
was chosen strategically to cover the field-of-view (FOV) of
the x-ray detector in the center, which is 2 mm wide. This
enabled the capture of a representative melting state devoid
of interferential factors such as initial laser power and speed
ramping, as well as the abrupt laser-off at the end of the track.

Figure 2(a) summarizes all P-V conditions studied in this
work. In the keyhole porosity region, many large pores were
generated (figure 2(b)). Near the keyhole porosity region, a

Figure 1. Schematic and photo of simultaneous high-speed
synchrotron x-ray imaging and process sensing experiment on
LPBF of Ti–6Al–4V. (a) The laser beam had a Gaussian profile and
scanned along a single straight line on a bare Ti–6Al–4V plate
sample. The multi-sensor system was composed of a NIR camera,
ultrasonic (100 kHz) and audible (20 kHz) microphones, and a
photodiode. (b) Photo of the corresponding experiment setup in the
APS 32-ID-B beamline. The inset photo is the setup inside the
sample chamber.

few small pores were generated (figure 2(c)). In the stable key-
hole region, no pore was generated (figure 2(d)). Two scen-
arios were designed to investigate the efficacy of keyhole pore
detection under various collections of laser power-scanning
velocity (P-V) conditions. Scenario Large (labelled as ‘L’),
denoted as orange dots in figure 2(a), spanned over a relat-
ively large range of scanning velocity (i.e. 250–2000mm s−1).
There were 133 experiments in this collection. Scenario Small
(labelled as ‘S’), denoted as blue dots in figure 2(a), cov-
ers a relatively smaller range of scanning velocity (i.e. 300–
800 mm s−1) near the keyhole porosity boundary. There were
64 experiments in this collection.

2.3. High-speed synchrotron x-ray imaging

TheAPS 32-ID-B high-speed x-ray imaging beamline consists
of two essential components: the x-ray source and the detector
[27]. Polychromatic x-rays, with the first harmonic energy
at 24.1 keV, were generated using a short-period undulator
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Figure 2. P-V conditions of scanning laser melting of Ti–6Al–4V plate samples studied in this work. (a) Each point represents a single
straight line scan experiment. The dashed line marks the keyhole porosity boundary. The green zone covers the unstable keyhole or keyhole
porosity conditions, while the red zone covers conditions without pore generation. (b)–(d) Representative x-ray image under different P-V
conditions: (b) P = 330 W, V = 250 mm s−1; (c) P = 350 W, V = 500 mm s−1; (d) P = 370 W, V = 1000 mm s−1.

(18 mm) with a gap of 12 mm. The x-ray detector was an
optical high-speed camera with accessory optics. A 100-µm
thick LuAG:Ce scintillator and a Photron FastCam SA-Z cam-
era (Photron USA, Inc) were used. Visible light emission from
the scintillators were coupled to the high-speed detectors via
a 45◦ reflection mirror, a 10× objective lens (NA = 0.28,
Mitutoyo Corp., Japan), and a tube relay lens (Mitutoyo Corp.,
Japan). The x-ray imaging system was operated at a frame rate
of 50 kHz, with an exposure time of 1 µs and a spatial resolu-
tion of 2 µm pixel−1.

2.4. Process sensing system

The process sensing system consisted of two major compon-
ents: NIR camera and non-spatially-resolved sensors. The NIR
imaging system included several optical components: a wide-
band reflection mirror (protected silver mirror, Thorlabs Inc.,
USA), a 1070 nm notch filter (Edmund Optics Inc., USA), a
760 nm long-pass filter (Newport Corp., USA), and a high-
speed optical camera [26]. Specifically, the camera used for
NIR imaging was the Photron FASTCAMNOVA S9 (Photron
Inc., Japan), equipped with a Resolv4K zoom lens (Navitar,
Inc., USA). The view-angle was set to ∼50◦. The NIR cam-
era operated at a spatial resolution of ∼9 µm pixel−1, with an
exposure time of 0.33 µs and a frame rate of 250 kHz.

The non-spatially-resolved sensing suite was integrated
into a data acquisition NI cDAQ-9185 (DAQ) (National
Instruments Corp., USA). This DAQ system was equipped
with two microphones and one photodiode. The first micro-
phone 378C01 (PCB Piezotronics Inc. USA), referred to as
the ultrasonic microphone, had a frequency response up to
100 kHz. The second microphone 130F22 (PCB Piezotronics
Inc. USA), referred to as the audible microphone, had a
frequency response up to 20 kHz. Both microphones had an

integral preamplifier. The distance between each microphone
and the melt pool was approximately 20 mm. The reflec-
ted laser was collected by a high OH fiber (NA = 0.22,
Thorlabs, Inc. USA) positioned close to the sample. The fiber
went through a vacuum feedthrough to an externally moun-
ted photodiode. The photodiode was an amplified switchable
gain silicone detector PDA100A2 (Thorlabs, Inc. USA) with a
1070 nm bandpass filter (Thorlabs, Inc. USA). The photodiode
was positioned at ∼45◦ angle with the sample surface and the
gain was set to 0 in the experiment. The microphones and pho-
todiode were sampled at a rate of 1 MHz for synchronization
and data acquisition.

2.5. Data synchronization

The triggering signals for the x-ray camera, NIR camera, pho-
todiode, and twomicrophones were synchronized in the exper-
iments. The triggering mode of the two Photron cameras was
set to ‘Random Reset’, i.e. first frame was collected instantan-
eously (only 1.25 µs delay) once the trigger signal is received.
The collection of photodiode and microphones data were con-
trolled by the DAQ which has a response time less than 1 µs.
Therefore, the jittering time (uncertainty in data synchroniz-
ation) in the experiment is about two orders shorter than the
time scale discussed in this work.

The power of the IPG laser took maximum 20 µs to ramp
up to the set power, and the laser scanner was set to sky-
writing mode, i.e. laser was powered ON when the scanner
reached the set velocity [28]. In each experiment, the laser
scanning path was set to be 4 mm, while the x-ray image win-
dow was 2 mm wide set to observe the middle 2 mm of the
laser melting. Therefore, the laser power and scanning speed
ramping occurred outside the x-ray FOV, which is irrelevant
to the analysis.
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2.6. Data processing and machine learning

Signal processing: signals collected with the non-spatially-
resolved sensors (microphones and photodiode) were recor-
ded as time-series data using the DAQ system. When correlat-
ing the acoustic emission data with optical emission, the time
delay (∼0.06 ms) induced by the propagation of acoustic wave
was considered. For theNIR images, the time-series signal was
obtained from NIR images by calculating the average intens-
ity of pixels within each image that were larger than the preset
threshold, and this process was repeated for the entire image
sequences. The preset threshold was optimized based on the
prediction accuracy. If the threshold was too low, melt pool
region away from the keyhole was captured, which dimin-
ished the characteristic keyhole oscillation. If the threshold
was set to too high, insufficient information about keyhole
was recorded with even frames showing no intensity. The ana-
lysis of the time-series signals was performed usingMATLAB
(MathWorks, USA). To analyze the frequency components
of the time-series signals, the fast Fourier transform (FFT)
(MATLAB function, fft) was applied [26]. The FFT converts
the signal from the time domain into the frequency domain,
providing information about the spectral content of the signal
at different frequencies. In addition to the FFT operation, sca-
lograms were generated using the continuous wavelet trans-
form (MATLAB function, cwt) applied to time-series signals
[29]. A scalogram displays both time and frequency informa-
tion, providing a visual representation of the keyhole oscilla-
tion within a short time window. This allows for the identific-
ation of oscillatory patterns or changes in the keyhole dynam-
ics that may not be captured by the FFT alone, since FFT only
provides an amplitude spectrum for the entire scan. Detailed
information about selecting the wavelet transform parameters
can be found in appendix A.

Data Labelling: the scalograms obtained from the continu-
ous wavelet transform were labeled with simultaneous oper-
ando x-ray images as the ground truth [26]. The x-ray image
sequence was processed using ImageJ software [30]. A back-
ground image captured before the laser entered the FOV was
subtracted from each frame of the image sequence. This oper-
ation enhances the contrast of the keyhole region in the sub-
sequent analysis. After background subtraction, the keyhole
morphologies were extracted from the processed images. The
timestamp of each image was used to identify the keyhole
pore generation moments, which corresponded to the separ-
ation of a bubble from the keyhole that eventually formed a
keyhole pore. The scalograms were labeled as either ‘Pore’
or ‘Non-pore’ based on whether a keyhole pore generation
moment or moments were observed within the specific time
window of the scalogram or not. Only pores with a diameter
larger than 25µmwere labelled because it has been proven that
small spherical pores have little or no impact on the material
properties [31]. Those cases where bubbles were recaptured
by subsequent keyhole drilling were not labelled as ‘Pore’.

Such labeling provided the ground truth data for training and
evaluating the machine learning models. The goal for real time
control is to achieve a temporal resolution as high as possible;
accordingly, the effect of time window length was investig-
ated in this paper. For simplicity and uniformity, ‘segment’
is used to represent the time window length. For example,
the 0.5 ms segment means each piece of raw data spanning
0.5 ms time period was used as a single datum point in
machine learning models.

Methods to deal with imbalanced dataset: in reality, non-pore
cases are often more prevalent than pore cases which makes
the class ratio deviate from 1:1. This problem becomes worse
for smaller segments. For example, the 0.1 ms segment data
has a ratio of non-pore to pore cases of 20:1. For an imbal-
anced dataset, a machine learning model generally does not
work well for identifying theminority class, which in our work
is class ‘Pore’. To solve this problem, the ‘down sampling’
strategy was used which reduced the number of samples in
non-pore class to create a balanced dataset. The down sampled
non-pore dataset was randomly chosen from the entire non-
pore dataset. This data selection procedure was repeated 10
times every time the training was performed. The reason why
oversampling (i.e. data replication) was not chosen was that
if the model made one mistake in classifying one pore case,
the mis-prediction would be repeated for all the identical pore
cases and thereby decrease the accuracy.

Deep learning with single-sensor data: choosing neural net-
work architecture is one of the key topics in deep learn-
ing. Only by adapting the right neural network, can validity
and fidelity of the model be promised. AlexNet, SqueezeNet,
GoogLeNet, ResNet-50, etc. are commonly used neural net-
works for various computer vision applications including
image classification. In this work, we chose SqueezeNet
developed by Forrest N. Iandola et al for our binary image
classification problem (‘Non-pore’ and ‘Pore’) [32]. Detailed
information about the neural network selection can be found
in appendix B. SqueezeNet is a convolutional neural network
with 68 layers, 75 connections and 1.2 M total learnables.
The original architecture is designed for the 1000 categor-
ical image classification problem. For our binary classification
problem, the ‘conv10′ and ‘ClassificationLayer_predictions’
layers were replaced accordingly.

For the SqueezeNet training, the labeled 2D scalograms
were resized to fit the input of SqueezeNet and then randomly
divided into training and testing data with a ratio of 8:2. Every
accuracy was an average of 10 repeated runs to ensure robust-
ness and reliability. In order to speed up the training proced-
ure, transfer learning was adapted by loading a version of the
network that was pre-trained on more than a million images
from the ImageNet database. Stochastic gradient descent with
momentum (SGDM) algorithmwas used to improve the neural
network training. Some hyperparameters like MiniBatchSize,
MaxEpochs, InitialLearnRate were tuned to get the best accur-
acy. The overall workflow for the deep learning workflow

5



Mater. Futures 3 (2024) 045001 Z Ren et al

Figure 3. Chart describing the deep learning workflow for detecting keyhole pores in the LPBF process using single-sensor data. (a) The
time-series signals were obtained from the sensing data, which were then converted into scalograms. These scalograms were labeled as
either ‘Pore’ or ‘Non-pore’ based on operando synchrotron x-ray images. The labeled scalograms were randomly divided into training and
testing data sets with a ratio of 8:2. The trained model derived from the training process was assessed using standalone testing data, which
were never involved in the training process. (b) The confusion matrix of our deep learning approach.

for detecting keyhole pores using single-sensor data is
shown in figure 3.

Machine learning with multi-sensor data: the overall work-
flow for the machine learning approach using multi-sensor
data is shown in figure 4. For the feature extraction,
SqueezeNet neural networks were trained separately for dif-
ferent types of signals. The features were extracted from the
‘pool10′ layer from the trained SqueezeNet neural network.
Two features could be extracted from each sensor. The extrac-
ted features were stacked together to generate a single data
matrix, which was used as the input for the classification.
Several machine learning algorithms including support vec-
tor machine (SVM), K-Nearest Neighbors (KNN), ensemble,
Naïve Bayes, decision tree and preset neural networks were
applied to the classification problem. Bayesian optimization
was used to select their hyperparameter values. To rule out
the effect of randomness, every accuracy was an average of
ten repeated runs to ensure robustness and reliability. Due
to the flexibility of the feature fusion framework, the input
data could be combinations of different sensor signals. During
the training for neural networks and classification machine
learning algorithms, only the training dataset was used to

make sure that none of the testing dataset was included in
the training process.

Evaluation metrics: instead of using the conventional para-
meters (i.e. accuracy, precision, recall, F-1 score) to eval-
uate model performance, here we used the overall accur-
acy, true positive rate which was ‘Non-pore’ prediction
accuracy and true negative rate which was ‘Pore’ predic-
tion accuracy as the evaluation metrics because the non-
pore and pore prediction accuracy are the most import-
ant information needed for the community. The confu-
sion matrix is present in figure 3(b). The accuracy is
calculated as TP+TN

TP+TN+FP+FN , which represents the overall cor-
rectness of the predictions. The ‘Non-pore’ prediction accur-
acy (true positive rate) is calculated as TP

TP+FN . The ‘Pore’ pre-
diction accuracy (true negative rate) is calculated as TN

TN+FP .
All the analyses were performed using MATLAB R2023b

with Wavelet Toolbox version 23.2, Deep Learning Toolbox
version 23.2, and Statistics and Machine Learning Toolbox
version 23.2. They were run on a computer with an AMD
Ryzen Threadripper PRO 5995wx 64-CORES, 2701 MHz,
64 Cores, 128 Logical Processors processor using 512 GB of
RAM and NVIDIA RTX 6000 Ada Generation GPU.
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Figure 4. Schematic diagram of the machine learning workflow for detecting keyhole pores in the LPBF process using multi-sensor data.
The features extracted from different sensors were stacked together to form one matrix. The matrix was used to as the input for different
machine learning classification algorithms (SVM, KNN, ensemble, Naïve Bayes, decision tree and preset neural networks). The trained
model was assessed using a separate set of testing data. By fusing features extracted from different sensors, the prediction accuracy for
different sensor combinations could be evaluated.

3. Results and discussion

3.1. Process sensing of keyhole oscillation

Our previous work established a strong correlation between
the keyhole oscillation behavior and pore generation [26].
Specifically, the keyhole pores are associated with the per-
turbative oscillation of an unstable keyhole, which is caused
by the stochastic collapsing of the protrusions in front
and rear keyhole walls. Therefore, the detection of a pore
generation is essentially the probing of keyhole oscillation
frequency and modes.

Optical and acoustic signals serve as valuable indicators of
the laser melting process. The keyhole oscillation is charac-
terized by a distinct fluctuation observed in the NIR images.
On the extracted NIR intensity curve, the call-out of NIR
images corresponded to the three consecutive crests and the
two troughs between them (figure 5(a)). Assuming a uni-
form emissivity near the keyhole region, the optical emis-
sion captured by the NIR imaging provides an estimation of
the temperature distribution around the keyhole [26]. Brighter
NIR intensity indicates a hotter temperature, while dimmer
NIR intensity corresponds to a colder temperature. Previous
studies [33, 34] have demonstrated that the vapor plume velo-
city is directly related to the temperature. A higher temperat-
ure is associated with a faster vapor plume velocity, and vice
versa. The variation in the plume displaces the surrounding

gas, leading to the generation of sound [35]. The acoustic
emission during the laser melting process could be detected
by the microphones and used to characterize the process itself
(figure 5(a)). Notably, the acoustic signal was in phase with
the NIR intensity. This is because a high-temperature key-
hole induced stronger plume variations, resulting in louder
sound generation, which was confirmed by the presence of
plume structures in the three call-out NIR images corres-
ponding to the crests of the acoustic intensity curve. In con-
trast, a low-temperature keyhole generated weaker plume vari-
ations, leading to quieter sound. This was supported by the
absence of plume structures in the two call-out NIR images
corresponding to the troughs of the acoustic intensity curve.
The result shown here is consistent with a previous work
discussing the interplay between the plume structure and
keyhole dynamics [36].

It is important to note that the laser scan in figure 5(a) was
conducted with the chamber door open (i.e. laser melting in
air). Another laser scan (figure 5(b)) with the same P-V con-
dition was performed with the chamber door closed (i.e. laser
melting in Ar). The consistent results reveal that the gas envir-
onment, as well as the ambient light and sound conditions
at the beamline, had no major effects on the sensor data. In
figure 5(b), the signals in all four modalities are presented in a
column. It is evident that the signal from the ultrasonic micro-
phone well aligns with the NIR signal, exhibiting matching
peaks. By contrast, the audible signal exhibits fewer peaks
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Figure 5. Comparison of time-series signals in different modalities. (a) Alignment of time-series signals between NIR and ultrasonic
microphone with the LPBF chamber door open. Data at certain time steps were called out with corresponding NIR images. (b) Alignment of
time-series signals in all modalities with the chamber door closed. The laser spot size was ∼82 µm, the laser power was 200 W, and the scan
speed was 600 mm s−1.

within the examined time window. This can be attributed to the
higher maximum frequency response of the ultrasonic micro-
phone (100 kHz), compared to the dominant frequency of the
keyhole oscillation (∼34 kHz in the case shown in figure 5).
The maximum frequency response of the audible microphone
was only 20 kHz, which was lower than the keyhole oscillation
frequency. As a result, the ultrasonic microphone was more
responsive to the keyhole oscillation than the audible micro-
phone. The photodiode signal appears dissimilar to the signals
from the other modalities, which will be discussed in the next
section. However, the generally good alignment between most
of the modalities confirms the inherent connection between
optical and acoustic signals.

An FFT was performed on the time-series signals
(figures 6(a)–(j)) to gain more insights in the frequency
domain (figures 6(b)–(k)). In the FFT spectra of the NIR
signal (figure 6(a)), a single dominant frequency of 34 kHz
is visible, indicating the presence of a well-defined keyhole
oscillation. This frequency corresponds to the periodic oscil-
lation observed in the NIR intensity curve in figure 5, and the
period of 0.029 ms matches well with the estimated period
obtained by subtracting the timestamps of consecutive crests
in figure 5. This frequency is also consistent with previous
literature [26, 37]. This is the intrinsic keyhole oscillation
defined in our previous work [26], which is primarily caused
by the varying balance between Marangoni convection, sur-
face tension, and recoil pressure.

The dominant frequency of the ultrasonic microphone sig-
nal (figure 6(e)) is the same as that of the NIR signal. This
observation is in line with the good alignment between the

ultrasonic and NIR signals in figure 5. Although the FFT of
the audible microphone signal reveals multiple influential fre-
quency components, the 34 kHz frequency representing the
intrinsic oscillation is still noticeable (figure 6(h)). This is due
to the high data collection rate of 1 MHz, which far exceeds
the required sampling rate according to the Nyquist–Shannon
theorem. However, because the frequency response of the aud-
ible microphone is limited to 20 kHz, it is less sensitive to the
high-frequency components of the keyhole oscillation.

A recent paper proposed that the microphone signal col-
lected during the LPBF process were associated with both the
vapor plume variation and the keyhole geometry [38]. That
study considered the keyhole as a whistle, which could gen-
erate sound in certain frequency when a vapor flow was ejec-
ted out. It was found that the characteristic frequency of the
acoustic signal was strongly dependent on the keyhole mor-
phology. This might be able to explain the differences in fre-
quencies between acoustic signal and optical signal observed
in our study to some extent. Indeed, a comprehensive under-
standing of the acoustic emission from the LPBF process
demands more research efforts. It is particularly important to
develop an approach to distinguish the characteristic acoustic
frequency (airborne pressure wave) and the event frequency
(keyhole oscillation).

The time-series signal from the photodiode appears differ-
ent from the other modalities at first glance. However, its FFT
spectrum (figure 6(k)) reveals that the photodiode also cap-
tured the 34 kHz intrinsic oscillation to a certain extent. The
photodiode in our experiment primarily measured the back
reflection of the processing laser, which might be qualitatively
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Figure 6. Time-series signals (left column), FFT spectrum (middle column), and wavelet analyzes (right column) of single-track scanning
laser melting of Ti–6Al–4V plate samples. (a)–(c) NIR. (d)–(f) ultrasonic microphone. (g)–(i) audible microphone. (j)–(l) photodiode. The
laser spot size was ∼82 µm, the laser power was 200 W, and the scan speed was 600 mm s−1.

correlated with the keyhole morphology and thereby could
serve as an indicator of keyhole oscillation. The dissimilarity
between the photodiode signal and the other modalities could
be attributed to two factors. Firstly, the photodiode detected the
reflected laser from only a specific solid angle rather than cov-
ering the entire angle range, so it was less sensitive to the mor-
phological change of the keyhole and laser absorptivity than
using a device like integrating sphere [14, 37]. Secondly, the
photodiode also detected optical emissions from the hot melt
pool within the narrow spectrum of the bandpass filter, which
was associated with the keyhole oscillation but might not be
in phase with the laser back reflection.

To capture both temporal details and frequency informa-
tion, wavelet analysis was performed on the time-series sig-
nals, resulting in 2D scalograms (figures 6(c)–(l)). Unlike FFT,
which calculates frequency based on the entire length of sig-
nal without specifying the corresponding time intervals, the
scalogram reveals the frequency components and their time

evolution. The scalogram of the NIR intensity (figure 6(c))
shows that the signal oscillates at a relatively constant fre-
quency of ∼34 kHz as the time progresses. Such single-
frequency characteristic suggests a stable keyhole condition
with defined intrinsic oscillation.

The scalogram of the ultrasonic microphone (figure 6(f)) is
very similar to that of the NIR signal, indicating a strong cor-
relation between these two modalities. In comparison, the sca-
logram of the audible signal (figure 6(i)) exhibits different fre-
quency components due to its distinct frequency response, as
discussed previously. However, the scalogram provides clear
temporal resolution of frequency components, which is miss-
ing in FFT (figure 6(h)). Such temporal resolution is cru-
cial for correlating frequency information with the onset of
pore generation. Although the intrinsic oscillation frequency
is less pronounced in the scalogram of the photodiode signal
(figure 6(l)) than in figure 6(c) or (f), it is still discernible. This
suggests that the photodiode is able to probe some aspects of
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Figure 7. Time-series signals (left column), FFT spectrum (middle column), and wavelet analyzes (right column) of single-track scanning
laser melting of Ti–6Al–4V plate samples. (a)–(c) NIR. (d)–(f) ultrasonic microphone. (g)–(i) audible microphone. (j)–(l) photodiode. The
laser spot size was ∼82 µm, the laser power was 200 W, and the scan speed was 300 mm s−1.

the keyhole oscillation, albeit with ambiguity. The scalograms
provide valuable insight into the time and frequency charac-
teristics of the signals, enabling the analysis of keyhole pore
generation and its correlation with keyhole oscillation.

When shifting from a ‘Non-pore’ case (figure 6) to a ‘Pore’
(figure 7) case, the frequency of intrinsic oscillation decreases
and it is not a well-defined single frequency anymore. This
is because the occasional collapsing of protrusions on key-
hole walls disturbs the intrinsic oscillation under unstable key-
hole condition. The comparison between different sensor sig-
nals in the unstable keyhole case is similar to that in the
stable keyhole case. The NIR (figures 7(a)–(c)) and ultrasonic
(figures 7(d)–(f)) signals exhibit substantial similarity, indic-
ating the reliability of these two sensors for detecting keyhole
oscillations. The audible signal (figures 7(g)–(i)) is more sens-
itive to the low-frequency components of keyhole oscillation,
mainly due to its low-frequency response up to 20 kHz. The

photodiode data (figures 7(j)–(l)) displays a seemingly dissim-
ilar frequency compared to the others, which is also observed
in the ‘Non-pore’ case. This explains the lower prediction
accuracy when using photodiode data.

The frequency and mode of keyhole oscillations, ranging
from stable to unstable, can be identified based on the sca-
lograms (figure 8). The NIR, ultrasonic microphone, and
photodiode exhibit similar scalogram features across differ-
ent scan speeds at the same laser power (figures 8(c), (f)
and (l)). In the stable keyhole mode with a scan speed of
600 mm s−1, the intrinsic oscillation is characterized by a
dominating single-mode frequency (∼34 kHz in this case)
throughout the time period. When the melting mode trans-
itions (figures 8(b), (e) and (k)) to the unstable keyhole
state (figures 8(a), (d) and (j)), the oscillation shifts from
the single mode to multi-mode, meaning multiple frequen-
cies are superimposed within the same time period. The
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Figure 8. Scalograms of single-track laser melting of Ti–6Al–4V plate based on signals in different sensing modality. (a)–(c) Scalograms of
processed NIR data, (d)–(f) scalograms of ultrasonic microphone data, (g)–(i) scalograms of audible microphone data, and (j)–(l)
scalograms of photodiode data under various laser scan speeds. The laser spot size was ∼82 µm, and the laser power was 200 W.

lower-frequency components are associated with the intrinsic
oscillation, while the higher-frequency components are asso-
ciated with the perturbative oscillation. The intrinsic oscilla-
tion frequency decreases as the scan speed decreases. This is
because a lower scan speed results in increased energy dens-
ity, leading to a larger melt pool volume and a more significant
damping effect [14, 26, 39].

The scalograms of the audible microphone exhibit notice-
able differences compared to those in other sensing modalit-
ies. This is mainly because this microphone is more sensitive
to the audible range of frequency (<20 kHz). In the stable
keyhole mode, the frequency features associated with the
intrinsic oscillation are less distinctive (figure 8(i)), because
the intrinsic oscillation frequency (∼34 kHz) is higher than
the maximum soundwave frequency that the audible micro-
phone is sensitive to. When the keyhole enters the transition
or unstable mode, the intrinsic oscillation frequency decreases
and crosses the ultrasonic edge, entering the audible range
(figures 8(g) and (h)). Consequently, the frequency features

associated with the intrinsic oscillation becomes more observ-
able in the scalogram.

3.2. Machine-learning-aided localized keyhole pore
detection using single-sensor data

The number of cases in the training set and testing set are
summarized in table 1. For larger segment length, the data-
set contains smaller number of cases with the same number of
experiments. The dataset for Scenario ‘L’ is larger than that
of Scenario ‘S’ because more pores were generated and addi-
tionally more experiments were conducted. Down sampling
was applied to all the dataset to ensure that the non-pore and
pore class ratio was 1:1.

The prediction accuracy results based on single sensor data
are presented in figure 9. The accuracy using NIR signal is the
highest, which indicates that the keyhole oscillation behaviors
are well captured by 2DNIR images. For Scenario ‘S’, the pre-
diction accuracies of the acoustic sensors are higher than that
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Table 1. Training set/testing set for different segments under different scenarios.

Scenario Segment length
Training set/
testing set

Class ratio
(Non-pore: Pore)

L(arge)
0.1 ms 980/246 1:1
0.2 ms 804/202 1:1
0.5 ms 518/130 1:1

S(mall)
0.1 ms 208/52 1:1
0.2 ms 188/48 1:1
0.5 ms 134/34 1:1

Figure 9. Deep learning prediction results using single-sensor data for different scenarios. Overall prediction accuracy, Non-pore prediction
accuracy and Pore prediction accuracy for (a) Scenario ‘S’ and (b) Scenario ‘L’. P-V conditions covered in both scenarios are present
in figure 2(a).

of the single photodiode sensor, with the 100 kHz microphone
working better than the 20 kHz microphone (figure 9(a)). This
is consistent with our observations about the time-series sig-
nals from different sensors discussed above. However, for
Scenario ‘L’, the prediction accuracies of acoustic sensors are
lower than that of photodiode sensor (figure 9(b)). The 20 kHz
microphone yields only∼50% prediction accuracy, equivalent
to a complete failure for a binary classification.

While using NIR and photodiode signals as the input, the
prediction accuracies for Scenario ‘L’ is higher than that of
Scenario ‘S’ which is reasonable because the data variabil-
ity for Scenario ‘L’ is larger. This finding makes the low pre-
diction accuracy for Scenario ‘L’ using 100 kHz and 20 kHz
acoustic signals unusual. Figure 10 depicts the raw acoustic
signals and frequency analysis results for a similar P-V con-
dition from Scenario ‘S’ and ‘L’ and the corresponding fft,
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Figure 10. Performance decay of microphones caused by x-ray beam damage. Raw time-series acoustic signals (left column), FFT spectra
(middle column), and wavelet analyzes (right column) of two similar P-V conditions. Data in (a) and (d) were collected at an earlier time in
the synchrotron experiment than (g) and (j).

cwt results. Data shown in figures 10(g) and (j), collected
at a later time in the experiment than those in figures 10(a)
and (d), appear to exhibit a much lower signal-to-noise ratio.
The decay of data quality is also evident in the frequency
analyzes. The FFT spectra shown in figures 10(h) and (k)
are almost featureless.

We attribute the decay of microphone data to the sensor
damage caused by x-ray radiation. At the beamline, the drop
of signal-to-noise ratio in microphone data occurred after
less than a day of experiment. Our synchrotron experiment
involved using an intense white beam for x-ray imaging
with the high-energy flux unfiltered. Therefore, even though
the microphones were not positioned in the x-ray path, the
scattered x-ray still caused severe damage to the microphones.
Based on our observation, the 20 kHz microphone lost its per-
formance more quickly than the 100 kHz microphone.

Figure 9 also reveals a general trend of accuracy decrease
as the segment length gets shorter. This is mainly because
less features are captured by a short segment of data both
in time domain and frequency domain. It is straightforward
that shorter segment would include less information in time
domain. As for the frequency domain, with the decrease of seg-
ment time, the lowest resolvable frequency increases because
at least half of the wave needs to be included in the segment.
Additionally, the lower limit of the calculated frequency for
continuous wavelet transform increases with the decrease of
signal length. With the same sampling rate, the signal length
decreases with the decrease of segment length since the sig-
nal length equals to sampling rate multiplied by segment
length. This makes choosing proper wavelet parameters crit-
ical. Detailed information about how to choose them is dis-
cussed in appendix A. The corresponding signal length and
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Table 2. Lowest resolved frequency for different sensors under different sampling rate and segment length.

Sensor
Sampling
rate (kHz)

Segment
length (ms) Signal length

Lowest resolved
frequency (kHz)

Lower frequency
limit for cwt (kHz)

NIR 250
0.1 25 5 4.13
0.2 50 2.5 3.18
0.5 125 1 0.83

20 kHz/100 kHz
microphone &
photodiode

1000
0.1 100 5 4.13
0.2 200 2.5 3.18
0.5 500 1 0.83

Figure 11. X-ray images of a bubble recapturing event in laser melting of a Ti–6Al–4V plate. The specific bubble was highlighted in the red
dashed circle. The bubble survived in the melt pool for 0.2 ms before vanishing. This causes the mislabeling of data in the machine learning
model when using a segment smaller than 0.2 ms. The laser spot size was ∼82 µm, the laser power was 300 W, and the scan speed was
250 mm s−1.

lower limit of frequency for different segment length are lis-
ted in table 2. The lowest resolvable frequency increases with
the decrease of segment length.

Another reason for the lower accuracy at a shorter segment
length is related to data labelling. Based on the simultaneous
x-ray images, we were able to identify the bubble pinch-off
moment and label the pore generation events at a temporal
resolution up to 0.02 ms (calculated from the x-ray imaging
with the frame rate of 50 kHz). Only bubbles that eventually
became pores in the sample were labelled as ‘Pore’. Many
bubbles were recaptured by the subsequent keyhole and van-
ished. Sometimes, this recapturing event may take as long as
0.2ms. As shown in figure 11, a bubble that pinched off at 0 ms
was eventually recaptured by the keyhole at 0.2 ms. This type
of bubble was labeled as ‘Non-pore’ in our dataset. However,
0–0.2 ms might be labelled as ‘Pore’ if the signals beyond
0.2 ms were not included in this time segment. This means,

for time segment length smaller than 0.2 ms, certain misla-
beling rate exists. As the time segment length continues to
decrease, the mislabeling rate increases, contributing partially
to the decrease of prediction accuracy.

The inherent frequency limit and mislabeling rate suggest
that there may be a fundamental limit in the temporal resolu-
tion when using the frequency information to detect keyhole
pore generation in LPBF. Regardless the number of sensors
and datasets, it could be challenging to achieve high predic-
tion accuracy at<100 µs time resolution which is constrained
by the physics underlying keyhole dynamics.

In general, the keyhole pore prediction accuracy for
Scenario ‘L’ (figure 9(b)) is much higher than that of Scenario
‘S’ (figure 9(a)). The results for acoustic sensor are not accoun-
ted because the data quality was much worse for Scenario ‘L’
due to sensor damage. For 0.5, 0.2, and 0.1 ms segments, the
highest prediction accuracy for ‘L’ is 12%, 9% and 1% higher
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Figure 12. Deep learning prediction results using single-sensor data for different scenarios with ‘Separation’ data selection. Overall
prediction accuracy, Non-pore prediction accuracy and Pore prediction accuracy for (a) Scenario ‘S’ and (b) Scenario ‘L’.

than those of ‘S’, respectively. This difference can be contrib-
uted to data variability and/or size of the datasets. In order to
further investigate the effect of data constitution, one more
sample filtering criteria, denoted as ‘Separation’, was adop-
ted: ‘Non-pore’ cases were only selected from those P-V con-
ditions which did not generate pores at all. This differs from
previous sample selection in which ‘Non-pore’ cases were also
extracted from those laser melting processes where pores were
generated occasionally. In essence, this analysis is meant to
distinguish keyhole behaviors under different P-V conditions.
This may better resemble the practical printing processes, in
which the unstable keyhole mode melting is triggered by the
sudden drift of laser conditions.

Figure 12 shows the prediction results using single sensor
data adopting the ‘Separation’ data selection criteria. The pre-
diction accuracies are largely increased for all sensors under
both scenarios, except for the damaged 20 kHz microphone
under Scenario ‘L’, which remains low. Using the NIR ima-
ging data as the input, prediction accuracies of 97%, 96%,

and 91% can be achieved with 0.5, 0.2, and 0.1 ms temporal
resolution, respectively. Notably, the prediction accuracies for
‘Pore’ cases are even higher. Under Scenario ‘S’, the pre-
diction accuracy drops but remains beyond 80% even for the
0.1 ms segment. The lower accuracy of the 0.5 ms segment
here is mainly caused by the smaller training dataset.

Since our machine learning model relies on frequency
information to predict keyhole pores, the sampling rate of
raw sensor signals needs to be sufficiently high. The effect of
sampling rate on the prediction accuracy was studied by inten-
tionally downgrading the original rate. Figure 13 shows the
overall prediction accuracy, Non-pore prediction accuracy and
Pore prediction accuracy at different frequency bandwidth (a)–
(c) and sampling rates (d)–(f) under Scenario ‘L’ with ‘sep-
aration’ criteria applied. In figures 13(a)–(c), the x-axis rep-
resents the upper limit of the frequency bandwidth in scalo-
grams that were used in the machine learning model, while
the lower limit was set to be 1 kHz. For both NIR and photo-
diode signals, the prediction accuracies increase rapidly with
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Figure 13. Prediction accuracies at different frequency bandwidth and sampling rate under Scenario ‘L’ with ‘separation’ criteria applied.
(a)–(c) Accuracy results using photodiode and NIR signals under different selections of frequency bandwidth in scalograms. (d)–(f)
Accuracy results using photodiode and NIR signals at different sampling rates. The full frequency bandwidth corresponding to each
sampling rate was used. The original sampling rate was 1 MHz for photodiode and 250 kHz for NIR. The segment time was 0.5 ms.

increasing frequency bandwidth in scalograms. However, the
prediction accuracy with the NIR signal reaches the plateau
more quickly than that of the photodiode signal and it is con-
sistently higher. This once again demonstrates the high fidelity
of the NIR imaging for capturing keyhole oscillation and pore
generation. Figures 13(d)–(f) are plots of prediction accuracies
as a function of signal sampling rate, which show the similar
trend. Based on Nyquist–Shannon sampling theorem, in order
to capture f Hz frequency information, the sampling rate needs
to be at least 2f Hz. Based on our analys, in order to achieve
a reasonably high prediction accuracy, the data collection rate
should be higher than 100 kHz for the NIR imaging and higher
than 600 kHz for the photodiode.

3.3. Machine-learning-aided localized keyhole pore
detection using multi-sensor data

The prediction accuracy results for different combinations of
sensors are shown in figure 14. For Scenario ‘L’, since the
20 kHz microphone was damaged by x-ray radiation when the
data were collected, its signal was not included in the feature
fusion. By comparing the data fusion prediction accuracies
with those relying on single-sensor data (figures 9 and 12),
it appears that the feature fusion does not improve the predic-
tion accuracy. Instead, in some cases, the prediction accuracy
using multi-sensor data is lower than using any single sensor.
We speculate that the low prediction accuracy may be caused
by the lack of complementary characteristics in these sensor
signals. For example, the process information detected using

the 20 kHzmicrophonemay already be covered in the 100 kHz
microphone data. Also, the 100 kHz microphone data exhibit
similarity with the NIR data, as shown in figure 5.

4. Conclusions

In this study, machine learning models using single sensor
(i.e. NIR, 100 kHz and 20 kHz microphones, and photodi-
ode) and multiple sensors to predict keyhole pore generation
in LPBF of Ti–6Al–4V were developed. Simultaneous syn-
chrotron x-ray imaging provided the high-fidelity ground truth
for benchmarking different sensors. For keyhole pore detec-
tion with single-sensor data, scalograms generated by con-
tinuous wavelet transform were used as input and deep learn-
ing using SqueezeNet architecture was applied. For predic-
tion with multi-sensor data, a data fusion scheme with fea-
tures extracted using trained SqueezeNet neural network archi-
tecture and classification using different machine learning
algorithms was developed to evaluate the efficacy of different
sensor combinations.

Consistent with our previous study, it was found that the
keyhole pore generation is directly associated with the key-
hole oscillation behavior, which could be captured by the light
and sound sensors. Discovered in the present study was that
the acoustic signal and optical signal were well aligned with
each other. Based on NIR images and x-ray images, it was
found that the airborne acoustic waves were caused by the
rapid ejection of vapor plume from the keyhole. The repeated
morphological change of the keyhole was responsible for the
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Figure 14. Machine learning prediction results using multi-sensor data from different combinations of four sensors under different
schemes. In each sub-figure, the left, middle, and right panels show the overall prediction accuracy, Non-pore prediction accuracy, and Pore
prediction accuracy, respectively. (a-b) Results for Scenario ‘S’ without and with adopting ‘separation’ data selection criteria. (c-d) Results
for Scenario ‘L’ without and with adopting ‘separation’ data selection criteria. In the legend, ‘100′ stands for 100 kHz microphone, ‘20′

stands for 20 kHz microphone, ‘PD’ stands for photodiode and ‘NIR’ stands for near infrared camera.
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periodical pressure variations in the ambient gas and hence
sound waves.

When predicting keyhole pores with single-sensor data,
the NIR camera signal was found to offer the highest pre-
diction accuracy, followed by 100 kHz and 20 kHz micro-
phone, and the photodiode sensitive to the processing laser
wavelength had the lowest prediction accuracy. Data collec-
ted under more than 70 P-V conditions were grouped into two
scenarios: one covering a larger range of scanning velocity
(‘L’) and one covering smaller (‘S’). For Scenario ‘L’, over
90% prediction accuracy was achieved with a temporal res-
olution as short as 0.1 ms. In addition to the data variability,
the effects of raw data sampling rate and frequency bandwidth
in scalograms on the prediction accuracy were also quantit-
atively investigated. The results revealed that high prediction
accuracies could be achieved when the NIR data sampling rate
was higher than 100 kHz and photodiode data sampling rate
higher than 600 kHz.

It was interesting to find that the photodiode was quite
robust in synchrotron experiment, while the microphones
could be damaged by the high-energy x-ray radiation gradu-
ally, even though they were not placed in the x-ray beam
path. The mechanism of such performance degradation is still
unclear though.

Feature fusion using different combinations of the light and
sound sensors did not increase the prediction accuracy. By no
means does the study presented here discourage the applica-
tion of multi-modality sensors and feature fusion approaches.
It only suggests that one should consider whether additional
sensors may provide richer information on the LPBF process.
After all, the sensors in this study were positioned in an off-
axis geometry and all probe the keyhole oscillation behavior.

5. Future perspectives

Even though the NIR data in our study offers the highest pre-
diction accuracy for keyhole pores, it is often impractical to
set up a NIR camera in a commercial LPBF system and use its
2D optical imaging data for part-level process monitoring and
control. In contrast, photodiodes and microphones are more
accessible, and the 1D data they generate are much easier to

store and process. As demonstrated in this work, reasonably
high prediction accuracy can be achieved even with a single
photodiode or microphone. Adding more sensors at different
locations in the chamber, measuring light and sound waves
across various wavelengths, should further enhance prediction
accuracy. Meanwhile, like all machine learning approaches,
classification accuracy can also be improved by increasing the
data used to train the algorithm.

Regarding temporal resolution, our study suggests that a
fundamental limit may exist for keyhole pore prediction based
on frequency information. This is governed collectively by
keyhole oscillation frequency and the dynamic interaction
between gas bubbles and the advancing keyhole. While pre-
diction accuracy can undoubtedly be improved, achieving a
temporal resolution better than 100 µs may be challenging.
Assuming a laser scanning speed of 1 m s−1, this translates
into a 0.1 mm spatial resolution. In other words, this approach
can detect keyhole pore generation within a 100 µm distance.
For practical applications, we believe this is sufficiently high,
given that keyhole pores are typically tens of micrometers in
size. Therefore, additional efforts on further increasing the
temporal resolution may not be needed.

Future work in this research area may focus on quantifying
two phenomena associated with keyhole pore detection: (1)
pore motions inside the melt pool and (2) pore removal upon
repeated melting. In this approach, we labeled the moments
when bubbles separate from the keyhole as ‘Pore’ cases.
However, after a bubble pinches off, it will move inside the
melt pool, primarily driven by melt flow. Therefore, the final
pore locations in a part differ from their generation locations.
In our prior work, we quantified the separation of bubble gen-
eration location and final pore locations for Ti–6Al–4V [26].
For other materials and different laser beam sizes, the spatial
or temporal separation between these two locations need to be
measured again, which can be achieved through multi-physics
simulations. Another factor that could reduce prediction accur-
acy in practical LPBF processes is pore removal induced by
laser remelting. A keyhole pore might be removed by direct
interaction with the scanning keyhole or dragged to the sample
surface by melt flow. These are stochastic events that may
be difficult to simulate, so innovations are needed to account
for such effects.
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Appendix A: Parameter selection for continuous
wavelet transform (CWT)

Continuous wavelet transform converts time series signals to
scalograms containing information in both time domain and
frequency domain. And the transformed scalograms were used
as the input in our study. Three wavelets which are ‘Morse’,
‘Morlet’ and ‘bump’ are available in MATLAB. ‘Morse’
wavelet was chosen for its ability for analyzing signals with
time-varying amplitude and frequency. The Fourier transform
of the generalized Morse wavelet is [40]:

ψ P,γ (ω) = U(ω)aP,γω
P2

γ e−ωγ

whereU(ω) is the unit step, aP,γ is a normalizing constant, P2

is the time-bandwidth product and γ characterizes the sym-
metry of the Morse wavelet.

The time-bandwidth product P2 and symmetry γ are two
parameters affect the shape of a Morse wavelet and con-
trol the frequency limits which are correlated with signal
length and sampling rate. Very small time-bandwidth and large
symmetry values produce undesired time-domain sidelobes
and frequency-domain asymmetry [41]. Based on these two

factors, two wave parameter sets were adopted in our work:
P2 = 60, γ = 3 for longer time segment and P2 = 5, γ = 5 for
shorter time segment. Another parameter is VoicesPerOctave
which means the number of voices per octave that the cwt
scales are discretized and 48 was chosen to get high res-
olution. The signal extension pattern at the boundary was
set as symmetrically.

Appendix B: Neural network architecture selection
and hyperparameter optimization

Choosing neural network architecture is one of the key topics
in deep learning. Only by adapting the right NN, can validity
and fidelity of the model be promised. If the NN is too com-
plex, the model is prone to overfitting. If the NN is too simple,
it will not capture the complexity behind the problem we stud-
ied. In MATLAB, there are 20 pretrained image networks as
listed in table A1. We tested these 20 networks accordingly
and chose the one with highest validation accuracy for our
keyhole porosity detection problem. For networks giving sim-
ilar accuracy results, the one with faster training speed was
chosen. Based on these two criteria, SqueezeNet was chosen
in this study as shown in figure A1. Tuning hyperparameters is
also crucial in training a neural network. In our study, we used
SGDM solver for training and specified the ‘Minibatchsize’ as
16. The ‘InitialLearnRate’ was specified as 5∗10−5 in order to
get better stability and validation accuracy. The epoch number
was chosen among 6∼ 50 to avoid underfitting and overfitting.

As shown in figure A1, the SqueezeNet is a 68-layer
deep neural network with 1.24 million learnable paramet-
ers which requires a larger dataset and longer time for
training. Therefore, creating more data and pre-training the
SqueezeNet algorithm will be beneficial. In addition, some
models designed for small dataset with higher prediction speed
but little sacrifice in prediction accuracy can be a future focus
of study [43].
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Table A1. Pretrained image networks in MATLAB [42].

Image networks Total learnable Depth Number of layers
Number of
connections

SqueezeNet 1.24 M 18 68 75
GoogleNet 7 M 22 144 170
ResNet-50 25.6 M 50 177 192
EfficientNet-b0 5.31 M 82 290 363
DarkNet-53 41.6 M 53 184 206
DarkNet-19 20.8 M 19 64 63
ShuffleNet 1.4 M 50 172 187
NasNet-mobile 5.3 M N/A 913 1072
NASNet-Large 88.9 M N/A 1243 1462
Xception 22.9 M 71 170 181
Places365-GoogleNet 7 M 22 144 170
MobileNet-v2 3.5 M 53 154 163
DenseNet-201 20 M 201 708 805
ResNet-18 11.7 M 18 71 78
Inception-ResNet-v2 55.9 M 164 824 921
Inception-v3 23.9 M 48 315 349
ResNet-101 44.6 M 101 347 379
VGG-19 144 M 19 47 46
VGG-16 138 M 16 41 40
AlexNet 61 M 8 25 24

Figure A1. The SqueezeNet architecture, which has 68 layers, 75 connections and 1.24 M learnables (this figure is obtained with MATLAB
plot deep learning graph function).

Appendix C: Classification algorithm selection

MATLAB offers ‘fitcauto’ function to automatically select
classification model with optimized hyperparameters. We
chose SVM, KNN, ensemble, Naïve Bayes, decision tree

and preset neural networks to select. Bayesian optimization
was used to optimize the hyperparameters. The corresponding
hyperparameters to be optimized for different algorithms are
listed in table A2. One representative optimization procedure
is shown in figure A2.
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Table A2. Hyperparameters to optimize for selected classification learners.

Classification learner Hyperparameters

SVM BoxConstraint, KernalScale, Standardize
KNN Distance, NumNeighbors, Standardize
Ensemble Method, NumLearningCycles, LearnRate, MinLeafSize
Naïve Bayes DistributionNames, Standardize, Width
Decision tree MinLeafSize
Neural Network Activations, Lambda, LayerSizes, Standardize

Figure A2. Representative optimization process for machine learning algorithms using fused features from multiple sensors to detect
keyhole pores in LBPF. During it, the classification algorithm was selected among SVM, KNN, ensemble, Naïve Bayes, decision tree and
preset neural networks. The corresponding hyperparameters for different classification models were optimized using Bayesian optimization
which were columns like Hyperparameter: Value in the figure.
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