Volume 1 Issue 1
March  2021
Turn off MathJax
Article Contents
Haoran Mu, Wenzhi Yu, Jian Yuan, Shenghuang Lin, Guangyu Zhang. Interface and surface engineering of black phosphorus: a review for optoelectronic and photonic applications[J]. Materials Futures, 2022, 1(1): 012301. doi: 10.1088/2752-5724/ac49e3
Citation: Haoran Mu, Wenzhi Yu, Jian Yuan, Shenghuang Lin, Guangyu Zhang. Interface and surface engineering of black phosphorus: a review for optoelectronic and photonic applications[J]. Materials Futures, 2022, 1(1): 012301. doi: 10.1088/2752-5724/ac49e3
Topical Review •
OPEN ACCESS

Interface and surface engineering of black phosphorus: a review for optoelectronic and photonic applications

© 2022 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory
Materials Futures, Volume 1, Number 1
  • Received Date: 2021-11-13
  • Accepted Date: 2022-01-05
  • Publish Date: 2022-03-31
  • Since being rediscovered as an emerging 2D material, black phosphorus (BP), with an extraordinary energy structure and unusually strong interlayer interactions, offers new opportunities for optoelectronics and photonics. However, due to the thin atomic body and the ease of degradation with water and oxides, BP is highly sensitive to the surrounding environment. Therefore, high-quality engineering of interfaces and surfaces plays an essential role in BP-based applications. In this review, begun with a review of properties of BP, different strategies of interface and surfaces engineering for high ON-OFF ratio, enhanced optical absorption, and fast optical response are reviewed and highlighted, and recent state-of-the-art advances on optoelectronic and photonic devices are demonstrated. Finally, the opportunities and challenges for future BP-related research are considered.

  • loading
  • [1]
    Bridgman P W 1914 Two new modifications of phosphorus J. Am. Chem. Soc. 36 1344–63
    [2]
    Geim A K and Novoselov K S 2007 The rise of graphene Nat. Mater. 6 183–91
    [3]
    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Electric field effect in atomically thin carbon films Science 306 666–9
    [4]
    Geim A K 2009 Graphene: status and prospects Science 324 1530–4
    [5]
    Xu M S, Liang T, Shi M M and Chen H Z 2013 Graphene-like two-dimensional materials Chem. Rev. 113 3766–98
    [6]
    Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Atomically thin MoS2: a new direct-gap semiconductor Phys. Rev. Lett. 105 136805
    [7]
    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Electronics and optoelectronics of two-dimensional transition metal dichalcogenides Nat. Nanotechnol. 7 699–712
    [8]
    Butler S Z et al 2013 Progress, challenges, and opportunities in two-dimensional materials beyond graphene ACS Nano 7 2898–926
    [9]
    Novoselov K S, Mishchenko A, Carvalho A and Neto A H C 2016 2D materials and van der Waals heterostructures Science 353 9439
    [10]
    Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H and Zhang Y 2014 Black phosphorus field-effect transistors Nat. Nanotechnol. 9 372–7
    [11]
    Gusmao R, Sofer Z and Pumera M 2017 Black phosphorus rediscovered: from bulk material to monolayers Angew. Chem., Int. Ed. 56 8052–72
    [12]
    Deng B C, Frisenda R, Li C, Chen X L, Castellanos-Gomez A and Xia F N 2018 Progress on black phosphorus photonics Adv. Opt. Mater. 6 1800365
    [13]
    Han R Y, Feng S, Sun D M and Cheng H M 2021 Properties and photodetector applications of two-dimensional black arsenic phosphorus and black phosphorus Sci. China Inf. Sci. 64 140402
    [14]
    Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tom´anek D and Ye P D 2014 Phosphorene: an unexplored 2D semiconductor with a high hole mobility ACS Nano 8 4033–41
    [15]
    Xia F, Wang H and Jia Y 2014 Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics Nat. Commun. 5 1–6
    [16]
    Qiao J, Kong X, Hu Z-X, Yang F and Ji W 2014 High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus Nat. Commun. 5 1–7
    [17]
    Chen C, Chen F, Chen X, Deng B, Eng B, Jung D, Guo Q, Yuan S, Watanabe K and Taniguchi T 2019 Bright mid-infrared photoluminescence from thin-film black phosphorus Nano Lett. 19 1488–93
    [18]
    Low T, Rodin A, Carvalho A, Jiang Y, Wang H, Xia F and Neto A C 2014 Tunable optical properties of multilayer black phosphorus thin films Phys. Rev. B 90 075434
    [19]
    Kim J, Baik S S, Ryu S H, Sohn Y, Park S, Park B-G, Denlinger J, Yi Y, Choi H J and Kim K S 2015 Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus Science 349 723–6
    [20]
    Li L, Kim J, Jin C, Ye G J, Qiu D Y, Felipe H, Shi Z, Chen L, Zhang Z and Yang F 2017 Direct observation of the layer-dependent electronic structure in phosphorene Nat. Nanotechnol. 12 21–25
    [21]
    Tran V, Soklaski R, Liang Y and Yang L 2014 Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus Phys. Rev. B 89 235319
    [22]
    Wang X, Jones A M, Seyler K L, Tran V, Jia Y, Zhao H, Wang H, Yang L, Xu X and Xia F 2015 Highly anisotropic and robust excitons in monolayer black phosphorus Nat. Nanotechnol. 10 517–21
    [23]
    Zhang G, Chaves A, Huang S, Wang F, Xing Q, Low T and Yan H 2018 Determination of layer-dependent exciton binding energies in few-layer black phosphorus Sci. Adv. 4 eaap9977
    [24]
    Xu R, Yang J, Myint Y W, Pei J, Yan H, Wang F and Lu Y 2016 Exciton brightening in monolayer phosphorene via dimensionality modification Adv. Mater. 28 3493–8
    [25]
    Rudenko A, Yuan S and Katsnelson M 2015 Toward a realistic description of multilayer black phosphorus: from GW approximation to large-scale tight-binding simulations Phys. Rev. B 92 085419
    [26]
    Buscema M, Groenendijk D J, Blanter S I, Steele G A, van der Zant H S J and Castellanos-Gomez A 2014 Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors Nano Lett. 14 3347–52
    [27]
    Wood J D, Wells S A, Jariwala D, Chen K S, Cho E, Sangwan V K, Liu X L, Lauhon L J, Marks T J and Hersam M C 2014 Effective passivation of exfoliated black phosphorus transistors against ambient degradation Nano Lett. 14 6964–70
    [28]
    Ling X, Wang H, Huang S X, Xia F N and Dresselhaus M S 2015 The renaissance of black phosphorus Proc. Natl Acad. Sci. 112 4523–30
    [29]
    Huang M, Li S, Zhang Z, Xiong X, Li X and Wu Y 2017 Multifunctional high-performance van der Waals heterostructures Nat. Nanotechnol. 12 1148–54
    [30]
    Yuan H T et al 2015 Polarization-sensitive broadband photodetector using a black phosphorus vertical p–n junction Nat. Nanotechnol. 10 707–13
    [31]
    Viti L, Hu J, Coquillat D, Knap W, Tredicucci A, Politano A and Vitiello M S 2015 Black phosphorus terahertz photodetectors Adv. Mater. 27 5567–72
    [32]
    Guo Q S et al 2016 Black phosphorus mid-infrared photodetectors with high gain Nano Lett. 16 4648–55
    [33]
    Lin C, Grassi R, Low T and Helmy A S 2016 Multilayer black phosphorus as a versatile mid-infrared electro-optic material Nano Lett. 16 1683–9
    [34]
    Mao N, Tang J, Xie L, Wu J, Han B, Lin J, Deng S, Ji W, Xu H and Liu K 2016 Optical anisotropy of black phosphorus in the visible regime J. Am. Chem. Soc. 138 300–5
    [35]
    Jiang H, Shi H, Sun X and Gao B 2018 Optical anisotropy of few-layer black phosphorus visualized by scanning polarization modulation microscopy ACS Photonics 5 2509–15
    [36]
    Li J 2020 Anisotropic interlayer exciton in black phosphorus van der Waals heterostructures Opt. Quant. Electron. 52 1–9
    [37]
    Engel M, Steiner M and Avouris P 2014 Black phosphorus photodetector for multispectral, high-resolution imaging Nano Lett. 14 6414–7
    [38]
    Youngblood N, Chen C, Koester S J and Li M 2015 Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current Nat. Photon. 9 247–52
    [39]
    Huang M Q, Wang M L, Chen C, Ma Z W, Li X F, Han J B and Wu Y Q 2016 Broadband black-phosphorus photodetectors with high responsivity Adv. Mater. 28 3481–5
    [40]
    Buscema M, Groenendijk D J, Steele G A, Van Der Zant H S and Castellanos-Gomez A 2014 Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating Nat. Commun. 5 1–6
    [41]
    Dai J and Zeng X C 2014 Bilayer phosphorene: effect of stacking order on bandgap and its potential applications in thin-film solar cells J. Phys. Chem. Lett. 5 1289–93
    [42]
    Liu Y D, Cai Y Q, Zhang G, Zhang Y W and Ang K W 2017 Al-doped black phosphorus p–n homojunction diode for high performance photovoltaic Adv. Funct. Mater. 27 1604638
    [43]
    Lin S H et al 2016 Solution-processable ultrathin black phosphorus as an effective electron transport layer in organic photovoltaics Adv. Funct. Mater. 26 864–71
    [44]
    Fu N Q et al 2018 Black phosphorus quantum dots as dual-functional electron-selective materials for efficient plastic perovskite solar cells J. Mater. Chem. A 6 8886–94
    [45]
    Zhang S, Yang J, Xu R, Wang F, Li W, Ghufran M, Zhang Y-W, Yu Z, Zhang G and Qin Q 2014 Extraordinary photoluminescence and strong temperature/angle-dependent Raman responses in few-layer phosphorene ACS Nano 8 9590–6
    [46]
    Chang T-Y, Chen Y, Luo D-I, Li J-X, Chen P-L, Lee S, Fang Z, Li W-Q, Zhang Y-Y and Li M 2020 Black phosphorus mid-infrared light-emitting diodes integrated with silicon photonic waveguides Nano Lett. 20 6824–30
    [47]
    Chen C, Lu X, Deng B, Chen X, Guo Q, Li C, Ma C, Yuan S, Sung E and Watanabe K 2020 Widely tunable mid-infrared light emission in thin-film black phosphorus Sci. Adv. 6 eaay6134
    [48]
    Mu H, Lin S, Wang Z, Xiao S, Li P, Chen Y, Zhang H, Bao H, Lau S P and Pan C 2015 Black phosphorus–polymer composites for pulsed lasers Adv. Opt. Mater. 3 1447–53
    [49]
    Sotor J, Sobon G, Macherzynski W, Paletko P and Abramski K M 2015 Black phosphorus saturable absorber for ultrashort pulse generation Appl. Phys. Lett. 107 051108
    [50]
    Hu G, Albrow-Owen T, Jin X, Ali A, Hu Y, Howe R C, Shehzad K, Yang Z, Zhu X and Woodward R I 2017 Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics Nat. Commun. 8 1–10
    [51]
    Huber M A et al 2017 Femtosecond photo-switching of interface polaritons in black phosphorus heterostructures Nat. Nanotechnol. 12 207
    [52]
    Uddin S, Debnath P C, Park K and Song Y-W 2017 Nonlinear black phosphorus for ultrafast optical switching Sci. Rep. 7 1–8
    [53]
    Hong H, Liu C, Cao T, Jin C, Wang S, Wang F and Liu K 2017 Interfacial engineering of van der Waals coupled 2D layered materials Adv. Mater. Interfaces 4 1601054
    [54]
    Jiang B, Yang Z, Liu X, Liu Y and Liao L 2019 Interface engineering for two-dimensional semiconductor transistors Nano Today 25 122–34
    [55]
    Hu Z H, Wu Z T, Han C, He J, Ni Z H and Chen W 2018 Two-dimensional transition metal dichalcogenides: interface and defect engineering Chem. Soc. Rev. 47 3100–28
    [56]
    Zhang J L, Han C, Hu Z H, Wang L, Liu L, Wee A T S and Chen W 2018 2D phosphorene: epitaxial growth and interface engineering for electronic devices Adv. Mater. 30 1870359
    [57]
    Liu Y, Chen M and Yang S 2021 Chemical functionalization of 2D black phosphorus InfoMat 3 231–51
    [58]
    Yu X C, Zhang S L, Zeng H B and Wang Q J 2016 Lateral black phosphorene P–N junctions formed via chemical doping for high performance near-infrared photodetector Nano Energy 25 34–41
    [59]
    Nie Z, Wang Y, Li Z, Sun Y, Qin S, Liu X, Turcu I, Shi Y, Zhang R and Ye Y 2019 Ultrafast free carrier dynamics in black phosphorus–molybdenum disulfide (BP/MoS 2) heterostructures Nanoscale Horiz. 4 1099–105
    [60]
    Qiu D Y, Da Jornada F H and Louie S G 2017 Environmental screening effects in 2D materials: renormalization of the bandgap, electronic structure, and optical spectra of few-layer black phosphorus Nano Lett. 17 4706–12
    [61]
    Yuan J, Najmaei S, Zhang Z, Zhang J, Lei S, Ajayan P M, Yakobson B I and Lou J 2015 Photoluminescence quenching and charge transfer in artificial heterostacks of monolayer transition metal dichalcogenides and few-layer black phosphorus ACS Nano 9 555–63
    [62]
    Yuan L, Zheng B, Kunstmann J, Brumme T, Kuc A B, Ma C, Deng S, Blach D, Pan A and Huang L 2020 Twist-angle-dependent interlayer exciton diffusion in WS2–WSe2 heterobilayers Nat. Mater. 19 617–23
    [63]
    Liu C, Xiong C, Li M, Ruan B, Zhang B, Wu K, Chang X, Xie W and Li H 2021 Rabi splitting obtained in exciton-plasmon polaritons coupling between monolayer black phosphorus with metal Appl. Phys. Express 14 086001
    [64]
    Ryder C R, Wood J D, Wells S A, Yang Y, Jariwala D, Marks T J, Schatz G C and Hersam M C 2016 Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry Nat. Chem. 8 597–602
    [65]
    Zhao Y, Wang H, Huang H, Xiao Q, Xu Y, Guo Z, Xie H, Shao J, Sun Z and Han W 2016 Surface coordination of black phosphorus for robust air and water stability Angew. Chem., Int. Ed. 128 5087–91
    [66]
    Wild S, Dinh X T, Maid H, Hauke F, Abell´an G and Hirsch A 2020 Quantifying the covalent functionalization of black phosphorus Angew. Chem., Int. Ed. 59 20230–4
    [67]
    Li X-B, Guo P, Cao T-F, Liu H, Lau W-M and Liu L-M 2015 Structures, stabilities and electronic properties of defects in monolayer black phosphorus Sci. Rep. 5 1–11
    [68]
    Rudenko A N and Katsnelson M I 2014 Quasiparticle band structure and tight-binding model for single-and bilayer black phosphorus Phys. Rev. B 89 201408
    [69]
    Keyes R W 1953 The electrical properties of black phosphorus Phys. Rev. 92 580
    [70]
    Warschauer D 1963 Electrical and optical properties of crystalline black phosphorus J. Appl. Phys. 34 1853–60
    [71]
    Guo Y and Robertson J 2015 Vacancy and doping states in monolayer and bulk black phosphorus Sci. Rep. 5 1–10
    [72]
    Ugeda M M, Bradley A J, Shi S-F, Felipe H, Zhang Y, Qiu D Y, Ruan W, Mo S-K, Hussain Z and Shen Z-X 2014 Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor Nat. Mater. 13 1091–5
    [73]
    Fang H, Bechtel H A, Plis E, Martin M C, Krishna S, Yablonovitch E and Javey A 2013 Quantum of optical absorption in two-dimensional semiconductors Proc. Natl Acad. Sci. 110 11688–91
    [74]
    Yang J, Xu R, Pei J, Myint Y W, Wang F, Wang Z, Zhang S, Yu Z and Lu Y 2015 Optical tuning of exciton and trion emissions in monolayer phosphorene Light Sci. Appl. 4 e312
    [75]
    Xu R, Zhang S, Wang F, Yang J, Wang Z, Pei J, Myint Y W, Xing B, Yu Z and Fu L 2016 Extraordinarily bound quasi-one-dimensional trions in two-dimensional phosphorene atomic semiconductors ACS Nano 10 2046–53
    [76]
    Rodin A, Carvalho A and Neto A C 2014 Excitons in anisotropic two-dimensional semiconducting crystals Phys. Rev. B 90 075429
    [77]
    Zhang G, Huang S, Chaves A, Song C, Özçelik V O, Low T and Yan H 2017 Infrared fingerprints of few-layer black phosphorus Nat. Commun. 8 1
    [78]
    Low T, Rold´an R, Wang H, Xia F, Avouris P, Moreno L M and Guinea F 2014 Plasmons and screening in monolayer and multilayer black phosphorus Phys. Rev. Lett. 113 106802
    [79]
    Arra S, Babar R and Kabir M 2019 Exciton in phosphorene: strain, impurity, thickness, and heterostructure Phys. Rev. B 99 045432
    [80]
    Nemilentsau A, Low T and Hanson G 2016 Anisotropic 2D materials for tunable hyperbolic plasmonics Phys. Rev. Lett. 116 066804
    [81]
    Correas-Serrano D, Gomez-Diaz J, Melcon A A and Al`u A 2016 Black phosphorus plasmonics: anisotropic elliptical propagation and nonlocality-induced canalization J. Opt. 18 104006
    [82]
    Yin X, Ye Z, Chenet D A, Ye Y, O’Brien K, Hone J C and Zhang X 2014 Edge nonlinear optics on a MoS2 atomic monolayer Science 344 488–90
    [83]
    Malard L M, Alencar T V, Barboza A P M, Mak K F and De Paula A M 2013 Observation of intense second harmonic generation from MoS2 atomic crystals Phys. Rev. B 87 201401
    [84]
    Wang G, Marie X, Gerber I, Amand T, Lagarde D, Bouet L, Vidal M, Balocchi A and Urbaszek B 2015 Giant enhancement of the optical second-harmonic emission of WSe2 monolayers by laser excitation at exciton resonances Phys. Rev. Lett. 114 097403
    [85]
    Seyler K L, Schaibley J R, Gong P, Rivera P, Jones A M, Wu S, Yan J, Mandrus D G, Yao W and Xu X 2015 Electrical control of second-harmonic generation in a WSe2 monolayer transistor Nat. Nanotechnol. 10 407–11
    [86]
    Li Y, Rao Y, Mak K F, You Y, Wang S, Dean C R and Heinz T F 2013 Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation Nano Lett. 13 3329–33
    [87]
    Christensen T, Yan W, Jauho A-P, Wubs M and Mortensen N A 2015 Kerr nonlinearity and plasmonic bistability in graphene nanoribbons Phys. Rev. B 92 121407
    [88]
    Vermeulen N, Castelló-Lurbe D, Cheng J, Pasternak I, Krajewska A, Ciuk T, Strupinski W, Thienpont H and Van Erps J 2016 Negative Kerr nonlinearity of graphene as seen via chirped-pulse-pumped self-phase modulation Phys. Rev. Appl. 6 044006
    [89]
    Youngblood N, Peng R, Nemilentsau A, Low T and Li M 2017 Layer-tunable third-harmonic generation in multilayer black phosphorus ACS Photonics 4 8–14
    [90]
    Karvonen L, Säynätjoki A, Mehravar S, Rodriguez R D, Hartmann S, Zahn D R, Honkanen S, Norwood R A, Peyghambarian N and Kieu K 2015 Investigation of second-and third-harmonic generation in few-layer gallium selenide by multiphoton microscopy Sci. Rep. 5 1–8
    [91]
    Lu S, Miao L, Guo Z, Qi X, Zhao C, Zhang H, Wen S, Tang D and Fan D 2015 Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material Opt. Express 23 11183–94
    [92]
    Margulis V A, Muryumin E and Gaiduk E 2018 Optical Kerr effect and two-photon absorption in monolayer black phosphorus J. Opt. 20 055503
    [93]
    Wang K, Szydłowska B M, Wang G, Zhang X, Wang J J, Magan J J, Zhang L, Coleman J N, Wang J and Blau W J 2016 Ultrafast nonlinear excitation dynamics of black phosphorus nanosheets from visible to mid-infrared ACS Nano 10 6923–32
    [94]
    Zhang R, Zhang Y, Yu H, Zhang H, Yang R, Yang B, Liu Z and Wang J 2015 Broadband black phosphorus optical modulator in the spectral range from visible to mid-infrared Adv. Opt. Mater. 3 1787–92
    [95]
    Wang Y, Liu S, Zeng B, Huang H, Xiao J, Li J, Long M, Xiao S, Yu X and Gao Y 2017 Ultraviolet saturable absorption and ultrafast carrier dynamics in ultrasmall black phosphorus quantum dots Nanoscale 9 4683–90
    [96]
    Wang Y, Huang G, Mu H, Lin S, Chen J, Xiao S, Bao Q and He J 2015 Ultrafast recovery time and broadband saturable absorption properties of black phosphorus suspension Appl. Phys. Lett. 107 091905
    [97]
    Yau S-L, Moffat T P, Bard A J, Zhang Z and Lerner M M 1992 STM of the (010) surface of orthorhombic phosphorus Chem. Phys. Lett. 198 383–8
    [98]
    Brunner J, Thüler M, Veprek S and Wild R 1979 X-ray photoelectron study of amorphous phosphorus preparedbyplasmachemical transport. Comparison with crystalline polymorphs J. Phys. Chem. Solids 40 967–71
    [99]
    Island J O, Steele G A, van der Zant H S and Castellanos-Gomez A 2015 Environmental instability of few-layer black phosphorus 2D Mater. 2 011002
    [100]
    Huang Y, Qiao J, He K, Bliznakov S, Sutter E, Chen X, Luo D, Meng F, Su D and Decker J 2016 Interaction of black phosphorus with oxygen and water Chem. Mater. 28 8330–9
    [101]
    Walia S, Sabri Y, Ahmed T, Field M R, Ramanathan R, Arash A, Bhargava S K, Sriram S, Bhaskaran M and Bansal V 2016 Defining the role of humidity in the ambient degradation of few-layer black phosphorus 2D Mater. 4 015025
    [102]
    Zhou Q, Chen Q, Tong Y and Wang J 2016 Light-induced ambient degradation of few-layer black phosphorus: mechanism and protection Angew. Chem., Int. Ed. 55 11437–41
    [103]
    Han C, Hu Z, Carvalho A, Guo N, Zhang J, Hu F, Xiang D, Wu J, Lei B and Wang L 2017 Oxygen induced strong mobility modulation in few-layer black phosphorus 2D Mater. 4 021007
    [104]
    Favron A, Gaufrès E, Fossard F, Phaneuf-L’Heureux A-L, Tang N Y, Lévesque P L, Loiseau A, Leonelli R, Francoeur S and Martel R 2015 Photooxidation and quantum confinement effects in exfoliated black phosphorus Nat. Mater. 14 826–32
    [105]
    Wang F, Zhang G, Huang S, Song C, Wang C, Xing Q, Lei Y and Yan H 2019 Electronic structures of air-exposed few-layer black phosphorus by optical spectroscopy Phys. Rev. B 99 075427
    [106]
    Wang F K, Pei K, Li Y, Li H Q and Zhai T Y 2021 2D homojunctions for electronics and optoelectronics Adv. Mater. 33 2005303
    [107]
    Cao T, Li Z L, Qiu D Y and Louie S G 2016 Gate switchable transport and optical anisotropy in 90 degrees twisted bilayer black phosphorus Nano Lett. 16 5542–6
    [108]
    Liu N S, Zhang J F, Zhou S and Zhao J J 2020 Tuning the electronic properties of bilayer black phosphorene with the twist angle J. Mater. Chem. C 8 6264–72
    [109]
    Srivastava P K, Hassan Y, de Sousa D J, Gebredingle Y, Joe M, Ali F, Zheng Y, Yoo W J, Ghosh S and Teherani J T 2021 Resonant tunnelling diodes based on twisted black phosphorus homostructures Nat. Electron 4 269–76
    [110]
    Deng Y, Luo Z, Conrad N J, Liu H, Gong Y, Najmaei S, Ajayan P M, Lou J, Xu X and Ye P D 2014 Black phosphorus–monolayer MoS2 van der Waals heterojunction p–n diode ACS Nano 8 8292–9
    [111]
    Liu B, Long M, Cai M-Q and Yang J 2018 Interface engineering of CsPbI3-black phosphorus van der Waals heterostructure Appl. Phys. Lett. 112 043901
    [112]
    Cao Y, Mishchenko A, Yu G, Khestanova E, Rooney A, Prestat E, Kretinin A, Blake P, Shalom M B and Woods C 2015 Quality heterostructures from two-dimensional crystals unstable in air by their assembly in inert atmosphere Nano Lett. 15 4914–21
    [113]
    Zong X R et al 2020 Black phosphorus-based van der Waals heterostructures for mid-infrared light-emission applications Light Sci. Appl. 9 114
    [114]
    Srivastava P K, Hassan Y, Gebredingle Y, Jung J, Kang B, Yoo W J, Singh B and Lee C 2019 Van der Waals broken-gap p–n heterojunction tunnel diode based on black phosphorus and rhenium disulfide ACS Appl. Mater. Interfaces 11 8266–75
    [115]
    Shao W, Wang L, Wang H, Zhao Z, Zhang X, Jiang S, Chen S, Sun X, Zhang Q and Xie Y 2019 Efficient exciton dissociation in heterojunction interfaces realizing enhanced photoresponsive performance J. Phys. Chem. Lett. 10 2904–10
    [116]
    Zhou Q, Zhou H, Tao W, Zheng Y, Chen Y and Zhu H 2020 Highly efficient multiple exciton generation and harvesting in few-layer black phosphorus and heterostructure Nano Lett. 20 8212–9
    [117]
    Bayer M, Timofeev V, Faller F, Gutbrod T and Forchel A 1996 Direct and indirect excitons in coupled GaAs/Al0.30Ga0.70As double quantum wells separated by AlAs barriers Phys. Rev. B 54 8799
    [118]
    Rivera P, Schaibley J R, Jones A M, Ross J S, Wu S, Aivazian G, Klement P, Seyler K, Clark G and Ghimire N J 2015 Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures Nat. Commun. 6 1–6
    [119]
    Liu X, Watanabe K, Taniguchi T, Halperin B I and Kim P 2017 Quantum Hall drag of exciton condensate in graphene Nat. Phys. 13 746–50
    [120]
    Kogar A, Rak M S, Vig S, Husain A A, Flicker F, Joe Y I, Venema L, MacDougall G J, Chiang T C and Fradkin E 2017 Signatures of exciton condensation in a transition metal dichalcogenide Science 358 1314–7
    [121]
    Chen Y and Quek S Y 2018 Tunable bright interlayer excitons in few-layer black phosphorus based van der Waals heterostructures 2D Mater. 5 045031
    [122]
    Du Y, Liu H, Deng Y and Ye P D 2014 Device perspective for black phosphorus field-effect transistors: contact resistance, ambipolar behavior, and scaling ACS Nano 8 10035–42
    [123]
    Liu H, Neal A T and Ye P D D 2012 Channel length scaling of MoS2 MOSFETs ACS Nano 6 8563–9
    [124]
    Das S, Chen H Y, Penumatcha A V and Appenzeller J 2013 High performance multilayer MoS2 transistors with scandium contacts Nano Lett. 13 100–5
    [125]
    Shen P-C, Su C, Lin Y, Chou A-S, Cheng C-C, Park J-H, Chiu M-H, Lu A-Y, Tang H-L and Tavakoli M M 2021 Ultralow contact resistance between semimetal and monolayer semiconductors Nature 593 211–7
    [126]
    Azar N S, Bullock J, Balendhran S, Kim H, Javey A and Crozier K B 2021 Light–matter interaction enhancement in anisotropic 2D black phosphorus via polarization-tailoring nano-optics ACS Photonics 8 1120–8
    [127]
    Kockum A F, Miranowicz A, De Liberato S, Savasta S and Nori F 2019 Ultrastrong coupling between light and matter Nat. Rev. Phys. 1 19–40
    [128]
    Dai X, Song C, Qiu C, Wu L and Xiang Y 2019 Theoretical investigation of multilayer Ti3C2Tx MXene as the plasmonic material for surface plasmon resonance sensors in near infrared region IEEE Sens. J. 19 11834–8
    [129]
    Li M, Li H, Xu H, Xiong C, Zhao M, Liu C, Ruan B, Zhang B and Wu K 2020 Dual-frequency on–off modulation and slow light analysis based on dual plasmon-induced transparency in terahertz patterned graphene metamaterial New J. Phys. 22 103030
    [130]
    Kuo Y-H, Lee Y K, Ge Y, Ren S, Roth J E, Kamins T I, Miller D A and Harris J S 2005 Strong quantum-confined Stark effect in germanium quantum-well structures on silicon Nature 437 1334–6
    [131]
    Liu J, Beals M, Pomerene A, Bernardis S, Sun R, Cheng J, Kimerling L C and Michel J 2008 Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators Nat. Photon. 2 433–7
    [132]
    Miller D A, Chemla D, Damen T, Gossard A, Wiegmann W, Wood T and Burrus C 1984 Band-edge electroabsorption in quantum well structures: the quantum-confined Stark effect Phys. Rev. Lett. 53 2173
    [133]
    Liu Y, Qiu Z, Carvalho A, Bao Y, Xu H, Tan S J, Liu W, Castro Neto A, Loh K P and Lu J 2017 Gate-tunable giant stark effect in few-layer black phosphorus Nano Lett. 17 1970–7
    [134]
    Sherrott M C, Whitney W S, Jariwala D, Biswas S, Went C M, Wong J, Rossman G R and Atwater H A 2018 Anisotropic quantum well electro-optics in few-layer black phosphorus Nano Lett. 19 269–76
    [135]
    Li L, Yang F, Ye G J, Zhang Z, Zhu Z, Lou W, Zhou X, Li L, Watanabe K and Taniguchi T 2016 Quantum Hall effect in black phosphorus two-dimensional electron system Nat. Nanotechnol. 11 593–7
    [136]
    Xiang D et al 2015 Surface transfer doping induced effective modulation on ambipolar characteristics of few-layer black phosphorus Nat. Commun. 6 6485
    [137]
    Deng B, Tran V, Xie Y, Jiang H, Li C, Guo Q, Wang X, Tian H, Koester S J and Wang H 2017 Efficient electrical control of thin-film black phosphorus bandgap Nat. Commun. 8 1–7
    [138]
    Koenig S P, Doganov R A, Seixas L, Carvalho A, Tan J Y, Watanabe K, Taniguchi T, Yakovlev N, Neto A H C and Ozyilmaz B 2016 Electron doping of ultrathin black phosphorus with Cu adatoms Nano Lett. 16 2145–51
    [139]
    Han C, Hu Z, Gomes L C, Bao Y, Carvalho A, Tan S J, Lei B, Xiang D, Wu J and Qi D 2017 Surface functionalization of black phosphorus via potassium toward high-performance complementary devices Nano Lett. 17 4122–9
    [140]
    Zheng Y, Hu Z, Han C, Guo R, Xiang D, Lei B, Wang Y, He J, Lai M and Chen W 2019 Black phosphorus inverter devices enabled by in-situ aluminum surface modification Nano Res. 12 531–6
    [141]
    Lee S W, Qiu L, Yoon J C, Kim Y, Li D, Oh I, Lee G-H, Yoo J-W, Shin H-J and Ding F 2021 Anisotropic angstrom-wide conductive channels in black phosphorus by top-down Cu intercalation Nano Lett. 21 6336–42
    [142]
    Wang Y, Zheng Y, Han C and Chen W 2021 Surface charge transfer doping for two-dimensional semiconductor-based electronic and optoelectronic devices Nano Res. 14 1682–97
    [143]
    Cai Y, Ke Q, Zhang G and Zhang Y-W 2015 Energetics, charge transfer, and magnetism of small molecules physisorbed on phosphorene J. Phys. Chem. C 119 3102–10
    [144]
    Artel V, Guo Q, Cohen H, Gasper R, Ramasubramaniam A, Xia F and Naveh D 2017 Protective molecular passivation of black phosphorus npj 2D Mater. Appl. 1 1–5
    [145]
    Kang D-H, Jeon M H, Jang S K, Choi W-Y, Kim K N, Kim J, Lee S, Yeom G Y and Park J-H 2017 Self-assembled layer (SAL)-based doping on black phosphorus (BP) transistor and photodetector ACS Photonics 4 1822–30
    [146]
    Pei J, Gai X, Yang J, Wang X, Yu Z, Choi D-Y, Luther-Davies B and Lu Y 2016 Producing air-stable monolayers of phosphorene and their defect engineering Nat. Commun. 7 1–8
    [147]
    Illarionov Y Y, Waltl M, Rzepa G, Kim J-S, Kim S, Dodabalapur A, Akinwande D and Grasser T 2016 Long-term stability and reliability of black phosphorus field-effect transistors ACS Nano 10 9543–9
    [148]
    Alsaffar F, Alodan S, Alrasheed A, Alhussain A, Alrubaiq N, Abbas A and Amer M R 2017 Raman sensitive degradation and etching dynamics of exfoliated black phosphorus Sci. Rep. 7 1–9
    [149]
    Zhao Y, Zhou Q, Li Q, Yao X and Wang J 2017 Passivation of black phosphorus via self-assembled organic monolayers by van der Waals epitaxy Adv. Mater. 29 1603990
    [150]
    Chen X, Wu Y, Wu Z, Han Y, Xu S, Wang L, Ye W, Han T, He Y and Cai Y 2015 High-quality sandwiched black phosphorus heterostructure and its quantum oscillations Nat. Commun. 6 1–6
    [151]
    Abell´an G, Lloret V, Mundloch U, Marcia M, Neiss C, Görling A, Varela M, Hauke F and Hirsch A 2016 Noncovalent functionalization of black phosphorus Angew. Chem. 128 14777–82
    [152]
    Abellan G, Wild S, Lloret V, Scheuschner N, Gillen R, Mundloch U, Maultzsch J, Varela M, Hauke F and Hirsch A 2017 Fundamental insights into the degradation and stabilization of thin layer black phosphorus J. Am. Chem. Soc. 139 10432–40
    [153]
    Li D, Yu Y and Ning C-Z 2021 Super-stable high-quality few-layer black phosphorus for photonic applications ACS Appl. Nano Mater. 4 4746–53
    [154]
    Ye L, Li H, Chen Z and Xu J 2016 Near-infrared photodetector based on MoS2/black phosphorus heterojunction ACS Photonics 3 692–9
    [155]
    Chen X, Lu X, Deng B, Sinai O, Shao Y, Li C, Yuan S, Tran V, Watanabe K and Taniguchi T 2017 Widely tunable black phosphorus mid-infrared photodetector Nat. Commun. 8 1–7
    [156]
    Zhu W, Xu H, Pan J, Zhang S, Zheng H, Zhong Y, Yu J and Chen Z 2020 Black phosphorus terahertz sensing based on photonic spin Hall effect Opt. Express 28 25869–78
    [157]
    Hong T, Chamlagain B, Lin W, Chuang H-J, Pan M, Zhou Z and Xu Y-Q 2014 Polarized photocurrent response in black phosphorus field-effect transistors Nanoscale 6 8978–83
    [158]
    Chen C, Youngblood N, Peng R, Yoo D, Mohr D A, Johnson T W, Oh S-H and Li M 2017 Three-dimensional integration of black phosphorus photodetector with silicon photonics and nanoplasmonics Nano Lett. 17 985–91
    [159]
    Bullock J, Amani M, Cho J, Chen Y-Z, Ahn G H, Adinolfi V, Shrestha V R, Gao Y, Crozier K B and Chueh Y-L 2018 Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature Nat. Photon. 12 601–7
    [160]
    Huang L, Dong B, Guo X, Chang Y, Chen N, Huang X, Liao W, Zhu C, Wang H and Lee C 2018 Waveguide-integrated black phosphorus photodetector for mid-infrared applications ACS Nano 13 913–21
    [161]
    Yin Y, Cao R, Guo J, Liu C, Li J, Feng X, Wang H, Du W, Qadir A and Zhang H 2019 High-speed and high-responsivity hybrid silicon/black-phosphorus waveguide photodetectors at 2 µm Laser Photon. Rev. 13 1900032
    [162]
    Yuan S, Naveh D, Watanabe K, Taniguchi T and Xia F 2021 A wavelength-scale black phosphorus spectrometer Nat. Photon. 15 601–7
    [163]
    Peng R, Khaliji K, Youngblood N, Grassi R, Low T and Li M 2017 Midinfrared electro-optic modulation in few-layer black phosphorus Nano Lett. 17 6315–20
    [164]
    Wang J, Rousseau A, Yang M, Low T, Francoeur S and Kéna-Cohen S 2020 Mid-infrared polarized emission from black phosphorus light-emitting diodes Nano Lett. 20 3651–5
    [165]
    Sun Z, Martinez A and Wang F 2016 Optical modulators with 2D layered materials Nat. Photon. 10 227–38
    [166]
    Bao Q, Zhang H, Wang Y, Ni Z, Yan Y, Shen Z X, Loh K P and Tang D Y 2009 Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers Adv. Funct. Mater. 19 3077–83
    [167]
    Mu H, Wang Z, Yuan J, Xiao S, Chen C, Chen Y, Chen Y, Song J, Wang Y and Xue Y 2015 Graphene–Bi2Te3 heterostructure as saturable absorber for short pulse generation ACS Photonics 2 832–41
    [168]
    Mu H, Liu Y, Bongu S R, Bao X, Li L, Xiao S, Zhuang J, Liu C, Huang Y and Dong Y 2021 Germanium nanosheets with dirac characteristics as a saturable absorber for ultrafast pulse generation Adv. Mater. 33 2101042
    [169]
    Wu J, Yang Y, Qu Y, Xu X, Liang Y, Chu S T, Little B E, Morandotti R, Jia B and Moss D J 2019 Graphene oxide waveguide and micro-ring resonator polarizers Laser Photonics Rev. 13 1900056
    [170]
    Bao Q, Zhang H, Wang B, Ni Z, Lim C H Y X, Wang Y, Tang D Y and Loh K P 2011 Broadband graphene polarizer Nat. Photon. 5 411–5
    [171]
    Hendry E, Hale P J, Moger J, Savchenko A and Mikhailov S A 2010 Coherent nonlinear optical response of graphene Phys. Rev. Lett. 105 097401
    [172]
    Wang J, Hernandez Y, Lotya M, Coleman J N and Blau W J 2009 Broadband nonlinear optical response of graphene dispersions Adv. Mater. 21 2430–5
    [173]
    Chen Y, Jiang G, Chen S, Guo Z, Yu X, Zhao C, Zhang H, Bao Q, Wen S and Tang D 2015 Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation Opt. Express 23 12823–33
    [174]
    Pawliszewska M, Ge Y, Li Z, Zhang H and Sotor J 2017 Fundamental and harmonic mode-locking at 2.1 µm with black phosphorus saturable absorber Opt. Express 25 16916–21
    [175]
    Wang T, Zhang W, Shi X, Wang J, Ding X, Zhang K, Peng J, Wu J and Zhou P 2019 Black phosphorus-enabled harmonic mode locking of dark pulses in a Yb-doped fiber laser Laser Phys. Lett. 16 085102
    [176]
    Jin X, Hu G, Zhang M, Hu Y, Albrow-Owen T, Howe R C, Wu T-C, Wu Q, Zheng Z and Hasan T 2018 102 fs pulse generation from a long-term stable, inkjet-printed black phosphorus-mode-locked fiber laser Opt. Express 26 12506–13
    [177]
    Zheng J, Yang Z, Si C, Liang Z, Chen X, Cao R, Guo Z, Wang K, Zhang Y and Ji J 2017 Black phosphorus based all-optical-signal-processing: toward high performances and enhanced stability ACS Photonics 4 1466–76
    [178]
    Li P, Yang X, Maß T W, Hanss J, Lewin M, Michel A-K U, Wuttig M and Taubner T 2016 Reversible optical switching of highly confined phonon–polaritons with an ultrathin phase-change material Nat. Mater. 15 870–5
  • 加载中

Catalog

    Figures(1)

    Article Metrics

    Article Views(1079) PDF downloads(248)
    Article Statistics
    Related articles from

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return