Volume 1 Issue 4
December  2022
Turn off MathJax
Article Contents
Yanqing Zhu, Min Hu, Mi Xu, Bo Zhang, Fuzhi Huang, Yibing Cheng, Jianfeng Lu. Bilayer metal halide perovskite for efficient and stable solar cells and modules[J]. Materials Futures, 2022, 1(4): 042102. doi: 10.1088/2752-5724/ac9248
Citation: Yanqing Zhu, Min Hu, Mi Xu, Bo Zhang, Fuzhi Huang, Yibing Cheng, Jianfeng Lu. Bilayer metal halide perovskite for efficient and stable solar cells and modules[J]. Materials Futures, 2022, 1(4): 042102. doi: 10.1088/2752-5724/ac9248
Topical Review •
OPEN ACCESS

Bilayer metal halide perovskite for efficient and stable solar cells and modules

© 2022 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory
Materials Futures, Volume 1, Number 4
  • Received Date: 2022-07-21
  • Accepted Date: 2022-09-14
  • Publish Date: 2022-10-25
  • To reach the target of carbon neutral, a transition from fossil energy to renewable energy is unavoidable. Photovoltaic technology is considered one of the most prominent sources of renewable energy. Recently, metal halide perovskite materials have attracted tremendous interest in the areas of optoelectronic devices due to their ease of processing and outstanding performance. To date, perovskite solar cells (PSCs) have shown high power conversion efficiency up to 25.7% and 31.3% for the perovskite-silicon tandem solar cells, which promises to revolutionize the PV landscape. However, the stability of PSCs under operating conditions has yet to match state-of-the-art silicon-based solar cell technology, in which the stability of the absorbing layer and relevant interfaces is the primary challenge. These issues become more serious in the larger area solar modules due to the additional interfaces and more defects within the perovskite. Bilayer perovskite film composed of a thin low dimensional perovskite layer and a three-dimensional perovskite layer shows great potential in fabricating solar cells with high efficiency and stability simultaneously. In this review, recent advancements, including composition design and processing methods for constructing bilayer perovskite films are discussed. We then analyze the challenges and resolutions in deposition bilayer perovskite films with scalable techniques. After summarizing the beneficial effect of the bilayer structure, we propose our thinking of feasible strategies to fabricate high efficiency perovskite solar modules with a long lifetime. Finally, we outline the directions for future work that will push the perovskite PV technology toward commercialization.

  • loading
  • [1]
    Green M A, Dunlop E D, Hohl-Ebinger J, Yoshita M, Kopidakis N and Hao X 2020 Solar cell efficiency tables (version 56) Prog. Photovolt., Res. Appl. 28 629–38
    [2]
    Cao Q, Li P, Chen W, Zang S, Han L, Zhang Y and Song Y 2022 Two-dimensional perovskites: impacts of species, components, and properties of organic spacers on solar cells Nano Today 43 101394
    [3]
    Bai Y, Dong Q, Shao Y, Deng Y, Wang Q, Shen L, Wang D, Wei W and Huang J 2016 Enhancing stability and efficiency of perovskite solar cells with crosslinkable silane-functionalized and doped fullerene Nat. Commun. 7 1–9
    [4]
    Mo Y et al 2022 Nitrogen-doped tin oxide electron transport layer for stable perovskite solar cells with efficiency over 23% Interdiscip. Mater. 1 309–15
    [5]
    Xie Y-M, Yao Q, Xue Q, Zeng Z, Niu T, Zhou Y, Zhuo M-P, Tsang S-W, Yip H-L and Cao Y 2022 Subtle side chain modification of triphenylamine-based polymer hole-transport layer materials produces efficient and stable inverted perovskite solar cells Interdiscip. Mater. 1 281–93
    [6]
    Bi D, Yi C, Luo J, Décoppet J-D, Zhang F, Zakeeruddin Shaik M, Li X, Hagfeldt A and Grätzel M 2016 Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21% Nat. Energy 1 1–5
    [7]
    Kanda H et al 2022 Three-terminal perovskite/integrated back contact silicon tandem solar cells under low light intensity conditions Interdiscip. Mater. 1 148–56
    [8]
    Zheng X, Chen B, Dai J, Fang Y, Bai Y, Lin Y, Wei H, Zeng X and Huang J 2017 Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations Nat. Energy 2 1–9
    [9]
    Li Z, Yang M, Park J-S, Wei S-H, Berry J J and Zhu K 2015 Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys Chem. Mater. 28 284–92
    [10]
    Lin Y, Bai Y, Fang Y, Chen Z, Yang S, Zheng X, Tang S, Liu Y, Zhao J and Huang J 2018 Enhanced thermal stability in perovskite solar cells by assembling 2D/3D stacking structures J. Phys. Chem. Lett. 9 654–8
    [11]
    Wang Z, Lin Q, Chmiel F P, Sakai N, Herz L M and Snaith H J 2017 Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammoniumcaesium-formamidinium lead halide perovskites Nat. Energy 2 1–10
    [12]
    Wu Y-H, Ding Y, Liu X-Y, Ding X-H, Liu X-P, Pan X and Dai S-Y 2019 Ambient stable FAPbI3-based perovskite solar cells with a 2D-EDAPbI4 thin capping layer Sci. China Mater. 63 47–54
    [13]
    Stoumpos C C and Kanatzidis M G 2016 Halide perovskites: poor man’s high-performance semiconductors Adv. Mater. 28 5778–93
    [14]
    Lin L, Jones T W, Yang T C J, Duffy N W, Li J, Zhao L, Chi B, Wang X and Wilson G J 2020 Inorganic electron transport materials in perovskite solar cells Adv. Funct. 31 2008300
    [15]
    Zhao X, Liu T and Loo Y L 2022 Advancing 2D perovskites for efficient and stable solar cells: challenges and opportunities Adv. Mater. 34 e2105849
    [16]
    Dou L et al 2015 Atomically thin two-dimensional organic-inorganic hybrid perovskites Science 349 1518–21
    [17]
    Quan L N et al 2016 Ligand-stabilized reduced-dimensionality perovskites J. Am. Chem. Soc. 138 2649–55
    [18]
    Lin H, Zhou C, Tian Y, Siegrist T and Ma B 2017 Low-dimensional organometal halide perovskites ACS Energy Lett. 3 54–62
    [19]
    Sun S, Lu M, Gao X, Shi Z, Bai X, Yu W W and Zhang Y 2021 0D perovskites: unique properties, synthesis, and their applications Adv. Sci. 8 e2102689
    [20]
    Han Y, Yue S and Cui B B 2021 Low-dimensional metal halide perovskite crystal materials: structure strategies and luminescence applications Adv. Sci. 8 e2004805
    [21]
    Castro-Méndez A F, Hidalgo J and Correa-Baena J P 2019 The role of grain boundaries in perovskite solar cells Adv. Energy Mater. 9 149–60
    [22]
    Chen P, Bai Y, Lyu M, Yun J-H, Hao M and Wang L 2018 Progress and perspective in low-dimensional metal halide perovskites for optoelectronic applications Sol. RRL 2 1700186
    [23]
    Zhu P and Zhu J 2020 Low-dimensional metal halide perovskites and related optoelectronic applications InfoMat 2 341–78
    [24]
    Yang S, Wang Y, Liu P, Cheng Y-B, Zhao H J and Yang H G 2016 Functionalization of perovskite thin films with moisture-tolerant molecules Nat. Energy 1 1–7
    [25]
    Etgar L 2018 The merit of perovskite’s dimensionality; can this replace the 3D halide perovskite? Energy Environ. Sci. 11 234–42
    [26]
    Zhang F, Kim D H and Zhu K 2018 3D/2D multidimensional perovskites: balance of high performance and stability for perovskite solar cells Curr. Opin. Electrochem. 11 105–13
    [27]
    Yoo J J et al 2019 An interface stabilized perovskite solar cell with high stabilized efficiency and low voltage loss Energy Environ. Sci. 12 2192–9
    [28]
    Bai G, Wu Z, Li J, Bu T, Li W, Li W, Huang F, Zhang Q, Cheng Y-B and Zhong J 2019 High performance perovskite sub-module with sputtered SnO2 electron transport layer Sol. Energy 183 306–14
    [29]
    Bu T et al 2017 A novel quadruple-cation absorber for universal hysteresis elimination for high efficiency and stable perovskite solar cells Energy Environ. Sci. 10 2509–15
    [30]
    Bu T, Liu X, Li J, Huang W, Wu Z, Huang F and Zhong J 2020 Dynamic antisolvent engineering for spin coating of 10 × 10 cm2 perovskite solar module approaching 18% Sol. RRL 4 1900263
    [31]
    Bu T, Li J, Zheng F, Chen W, Wen X, Ku Z, Peng Y, Zhong J, Cheng Y-B and Huang F 2018 Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module Nat. Commun. 9 4609
    [32]
    Chiang C-H, Lin J-W and Wu C-G 2016 One-step fabrication of mixed-halide perovskite film for high-efficiency inverted solar cell and module J. Mater. 4 13525–33
    [33]
    Chiang C-H, Nazeeruddin M K, Grätzel M and Wu C-G 2017 The synergistic effect of H2O and DMF towards stable and 20% efficiency inverted perovskite solar cells Energy Environ. Sci. 10 808–17
    [34]
    Cho Y, Soufiani A M, Yun J S, Kim J, Lee D S, Seidel J, Deng X, Green M A, Huang S and Ho-Baillie A W Y 2018 Mixed 3D-2D passivation treatment for mixed-cation lead mixed-halide perovskite solar cells for higher efficiency and better stability Adv. Energy Mater. 8 1703392
    [35]
    Dai X, Deng Y, Van Brackle C H, Chen S, Rudd P N, Xiao X, Lin Y, Chen B and Huang J 2019 Scalable fabrication of efficient perovskite solar modules on flexible glass substrates Adv. Energy Mater. 10 1903108
    [36]
    Deng Y, Van Brackle C H, Dai X, Zhao J, Chen B and Huang J 2019 Tailoring solvent coordination for high-speed, room-temperature blading of perovskite photovoltaic films Sci. Adv. 5 eaax7537
    [37]
    Fakharuddin A D G F et al 2015 Vertical TiO2 nanorods as a medium for durable and high efficiency perovskite solar modules ACS Nano 9 8420–9
    [38]
    Zhang F et al 2022 Metastable Dion–Jacobson 2D structure enables efficient and stable perovskite solar cells Science 375 71–76
    [39]
    Gotanda T, Oooka H, Mori S, Nakao H, Amano A, Todori K, Nakai Y and Mizuguchi K 2019 Facile and scalable fabrication of low-hysteresis perovskite solar cells and modules using a three-step process for the perovskite layer J. Power Sources 430 145–9
    [40]
    Green M A, Dunlop E D, Hohl-Ebinger J, Yoshita M, Kopidakis N and Hao X 2021 Solar cell efficiency tables (Version 58) Prog. Photovolt., Res. Appl. 29 657–67
    [41]
    Green M A, Dunlop E D, Levi D H, Hohl-Ebinger J, Yoshita M and Ho-Baillie A W Y 2019 Solar cell efficiency tables (version 54) Prog. Photovolt., Res. Appl. 27 565–75
    [42]
    Heo J H, Han H J, Kim D, Ahn T K and Im S H 2015 Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency Energy Environ. Sci. 8 1602–8
    [43]
    Heo J H, Lee M H, Jang M H and Im S H 2016 Highly efficient CH3NH3PbI3−xClx mixed halide perovskite solar cells prepared by re-dissolution and crystal grain growth via spray coating J. Mater. 4 17636–42
    [44]
    Jeong J et al 2021 Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells Nature 592 381–5
    [45]
    Jeong M et al 2020 Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss Science 369 1615–20
    [46]
    Jiang Y, Leyden M R, Qiu L, Wang S, Ono L K, Wu Z, Juarez-Perez E J and Qi Y 2018 Combination of hybrid CVD and cation exchange for upscaling cs-substituted mixed cation perovskite solar cells with high efficiency and stability Adv. Funct. 28 1703835
    [47]
    Jiang Y et al 2019 Negligible-Pb-waste and upscalable perovskite deposition technology for high-operational-stability perovskite solar modules Adv. Energy Mater. 9 1803047
    [48]
    Jung E H, Jeon N J, Park E Y, Moon C S, Shin T J, Yang T Y, Noh J H and Seo J 2019 Efficient, stable and scalable perovskite solar cells using poly (3-hexylthiophene) Nature 567 511–5
    [49]
    Kim M et al 2022 Conformal quantum dot–SnO2 layers as electron transporters for efficient perovskite solar cells Science 375 302–6
    [50]
    Kim M et al 2019 Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells Joule 3 2179–92
    [51]
    Kwon H-C, Ma S, Yun S-C, Jang G, Yang H and Moon J 2020 A nanopillar-structured perovskite-based efficient semitransparent solar module for power-generating window applications J. Mater. 8 1457–68
    [52]
    Liao H-C et al 2017 Enhanced efficiency of hot-cast large-area planar perovskite solar cells/modules having controlled chloride incorporation Adv. Energy Mater. 7 1601660
    [53]
    Liu Z et al 2020 A holistic approach to interface stabilization for efficient perovskite solar modules with over 2000-hour operational stability Nat. Energy 5 596–604
    [54]
    Lou L, Liu T, Xiao J, Xiao S, Long X, Zheng S and Yang S 2019 Controlling apparent coordinated solvent number in the perovskite intermediate phase film for developing large-area perovskite solar modules Energy Technol. 8 1900972
    [55]
    NREL 2022 Best Research-Cell Efficiency Chart (available at: https://www.nrel.gov/pv/assets/pdfs/best-research-cellefficiencies-rev220630.pdf) (Accessed October 2022)
    [56]
    Priyadarshi A, Haur L J, Murray P, Fu D, Kulkarni S, Xing G, Sum T C, Mathews N and Mhaisalkar S G 2016 A large area (70 cm2 ) monolithic perovskite solar module with a high efficiency and stability Energy Environ. Sci. 9 3687–92
    [57]
    Ren A et al 2020 Efficient perovskite solar modules with minimized nonradiative recombination and local carrier transport losses Joule 4 1263–77
    [58]
    Seo J, Park S, Chan Kim Y, Jeon N J, Noh J H, Yoon S C and Seok S I 2014 Benefits of very thin PCBM and LiF layers for solution-processed p–i–n perovskite solar cells Energy Environ. Sci. 7 2642–6
    [59]
    Smith I C, Hoke E T, Solis-Ibarra D, McGehee M D and Karunadasa H I 2014 A layered hybrid perovskite solar-cell absorber with enhanced moisture stability Angew. Chem., Int. Ed. Engl. 53 11232–5
    [60]
    Thi Kim C M, Atourki L, Ouafi M and Hashmi S G 2021 A synopsis of progressive transition in precursor inks development for metal halide perovskites-based photovoltaic technology J. Mater. 9 26650–68
    [61]
    Wang F, Geng W, Zhou Y, Fang H H, Tong C J, Loi M A, Liu L-M and Zhao N 2016 Phenylalkylamine passivation of organolead halide perovskites enabling high-efficiency and air-stable photovoltaic cells Adv. Mater. 28 9986–92
    [62]
    Yang M et al 2017 Perovskite ink with wide processing window for scalable high-efficiency solar cells Nat. Energy 2 1–9
    [63]
    Yao K, Wang X, Xu Y-X and Li F 2015 A general fabrication procedure for efficient and stable planar perovskite solar cells: morphological and interfacial control by in-situ-generated layered perovskite Nano Energy 18 165–75
    [64]
    Zhou Y, Wang F, Cao Y, Wang J-P, Fang H-H, Loi M A, Zhao N and Wong C-P 2017 Benzylamine-treated wide-bandgap perovskite with high thermal-photostability and photovoltaic performance Adv. Energy Mater. 7 1701048
    [65]
    Agresti A, Pescetelli S, Palma A L, Martín-García B, Najafi L, Bellani S, Moreels I, Prato M, Bonaccorso F and Di Carlo A 2019 Two-dimensional material interface engineering for efficient perovskite large-area modules ACS Energy Lett. 4 1862–71
    [66]
    Bi E et al 2019 Efficient perovskite solar cell modules with high stability enabled by iodide diffusion barriers Joule 3 2748–60
    [67]
    Bu T et al 2022 Modulating crystal growth of formamidinium–caesium perovskites for over 200 cm2 photovoltaic sub-modules Nat. Energy 7 528–36
    [68]
    Castriotta L A, Fuentes Pineda R, Babu V, Spinelli P, Taheri B, Matteocci F, Brunetti F, Wojciechowski K and Di Carlo A 2021 Light-stable methylammonium-free inverted flexible perovskite solar modules on PET exceeding 10.5% on a 15.7 cm2 active area ACS Appl. Mater. 13 29576–84
    [69]
    Gao W, Chao L, Li M, Xia Y, Ran C and Chen Y 2022 Ternary halogen doping for efficient and stable air-processed all-inorganic perovskite solar cells Sol. RRL 6 2200457
    [70]
    Grancini G et al 2017 One-year stable perovskite solar cells by 2D/3D interface engineering Nat. Commun. 8 1–8
    [71]
    Huang Z et al 2021 Releasing nanocapsules for high-throughput printing of stable perovskite solar cells Adv. Energy Mater. 11 2101291
    [72]
    Liu Y, Cao H, Liu X, Zhu R, Tao T and Sun J 2021 Fabricating efficient and stable quasi-3D and 3D/2D perovskite solar cells with 2D-sheets connected by inorganic type ionic-bond Nanotechnology 32 355201
    [73]
    Mei A et al 2020 Stabilizing perovskite solar cells to IEC61215:2016 standards with over 9 000-h operational tracking Joule 4 2646–60
    [74]
    Paek S et al 2020 Molecular design and operational stability: toward stable 3D/2D perovskite interlayers Adv. Sci. 7 2001014
    [75]
    Qiu L, Liu Z, Ono L K, Jiang Y, Son D Y, Hawash Z, He S and Qi Y 2018 Scalable fabrication of stable high efficiency perovskite solar cells and modules utilizing room temperature sputtered SnO2 electron transport layer Adv. Funct. 29 1806779
    [76]
    Roß M et al 2021 Co-evaporated formamidinium lead iodide based perovskites with 1000 h constant stability for fully textured monolithic perovskite/silicon tandem solar cells Adv. Energy Mater. 11 2101460
    [77]
    Sánchez S et al 2022 Thermally controlled growth of photoactive fapbi3 films for highly stable perovskite solar cells Energy Environ. Sci. 15 3862–76
    [78]
    Xiao K et al 2020 All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant Nat. Energy 5 870–80
    [79]
    Yang N et al 2020 An in situ cross-linked 1D/3D perovskite heterostructure improves the stability of hybrid perovskite solar cells for over 3000 h operation Energy Environ. Sci. 13 4344–52
    [80]
    Yang Z et al 2021 Slot-die coating large-area formamidinium-cesium perovskite film for efficient and stable parallel solar module Sci. Adv. 7 eabg3749
    [81]
    Zhang Y et al 2020 The synergism of DMSO and diethyl ether for highly reproducible and efficient MA0.5FA0.5PbI3 perovskite solar cells Adv. Energy Mater. 10 2001300
    [82]
    Deng Y, Xu S, Chen S, Xiao X, Zhao J and Huang J 2021 Defect compensation in formamidinium–caesium perovskites for highly efficient solar mini-modules with improved photostability Nat. Energy 6 633–41
    [83]
    Chen H et al 2022 Quantum-size-tuned heterostructures enable efficient and stable inverted perovskite solar cells Nat. Photon. 16 352–8
    [84]
    Bu T et al 2021 Lead halide–templated crystallization of methylamine-free perovskite for efficient photovoltaic modules Science 372 1327–32
    [85]
    Azmi R et al 2022 Damp heat–stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions Science 376 73–77
    [86]
    Zhan Y, Yang F, Chen W, Chen H, Shen Y, Li Y and Li Y 2021 Elastic lattice and excess charge carrier manipulation in 1D–3D perovskite solar cells for exceptionally long-term operational stability Adv. Mater. 33 e2105170
    [87]
    Mahmud M A et al 2019 Double-sided surface passivation of 3D perovskite film for high-efficiency mixed-dimensional perovskite solar cells Adv. Funct. 30 1907962
    [88]
    He M, Liang J, Zhang Z, Qiu Y, Deng Z, Xu H and Chen C C 2020 Compositional optimization of a 2D–3D heterojunction interface for 22.6% efficient and stable planar perovskite solar cells J. Mater. 8 25831–41
    [89]
    Kaneko R, Kanda H, Shibayama N, Sugawa K, Otsuki J, Islam A and Nazeeruddin M K 2021 Gradient 1D/3D perovskite bilayer using 4-tert-butylpyridinium cation for efficient and stable perovskite solar cells Sol. RRL 5 2000791
    [90]
    Ma C et al 2016 2D/3D perovskite hybrids as moisture-tolerant and efficient light absorbers for solar cells Nanoscale 8 18309–14
    [91]
    Cho K T et al 2018 Selective growth of layered perovskites for stable and efficient photovoltaics Energy Environ. Sci. 11 952–9
    [92]
    Bai Y, Xiao S, Hu C, Zhang T, Meng X, Lin H, Yang Y and Yang S 2017 Dimensional engineering of a graded 3D-2D halide perovskite interface enables ultrahigh voc enhanced stability in the p-i-n photovoltaics Adv. Energy Mater. 7 1701038
    [93]
    Wei M et al 2020 Combining efficiency and stability in mixed tin-lead perovskite solar cells by capping grains with an ultrathin 2D layer Adv. Mater. 32 e1907058
    [94]
    Li M H et al 2018 Highly efficient 2D/3D hybrid perovskite solar cells via low-pressure vapor-assisted solution process Adv. Mater. 30 e1801401
    [95]
    Lin D et al 2019 Stable and scalable 3D-2D planar heterojunction perovskite solar cells via vapor deposition Nano Energy 59 619–25
    [96]
    La-Placa M-G, Gil-Escrig L, Guo D, Palazon F, Savenije T J, Sessolo M and Bolink H J 2019 Vacuum-deposited 2D/3D perovskite heterojunctions ACS Energy Lett. 4 2893–901
    [97]
    Jang Y-W, Lee S, Yeom K M, Jeong K, Choi K, Choi M and Noh J H 2021 Intact 2D/3D halide junction perovskite solar cells via solid-phase in-plane growth Nat. Energy 6 63–71
    [98]
    Zhao D et al 2022 Efficient and stable 3D/2D perovskite solar cells through vertical heterostructures with (BA)4AgBiBr8 nanosheets Adv. Mater. 34 2204661
    [99]
    Zheng Y, Yang X, Su R, Wu P, Gong Q and Zhu R 2020 High-performance CsPbIxBr3−x all-inorganic perovskite solar cells with efficiency over 18% via spontaneous interfacial manipulation Adv. Funct. 30 2000457
    [100]
    Xu X, Qian W, Wang J, Yang J, Chen J, Xiao S, Ge Y and Yang S 2021 Sequential growth of 2D/3D double-layer perovskite films with superior x-ray detection performance Adv. Sci. 8 e2102730
    [101]
    Liu C et al 2021 Tuning structural isomers of phenylenediammonium to afford efficient and stable perovskite solar cells and modules Nat. Commun. 12 6394
    [102]
    Wang Y, Duan C, Lv P, Ku Z, Lu J, Huang F and Cheng Y-B 2021 Printing strategies for scaling-up perovskite solar cells Natl Sci. Rev. 8 nwab075
    [103]
    Jung M, Ji S G, Kim G and Seok S I 2019 Perovskite precursor solution chemistry: from fundamentals to photovoltaic applications Chem. Soc. Rev. 48 2011–38
    [104]
    Patidar R, Burkitt D, Hooper K, Richards D and Watson T 2020 Slot-die coating of perovskite solar cells: an overview Mater. Today Commun. 22 100808
    [105]
    Eggers H, Schackmar F, Abzieher T, Sun Q, Lemmer U, Vaynzof Y, Richards B S, Hernandez-Sosa G and Paetzold U W 2019 Inkjet-printed micrometer-thick perovskite solar cells with large columnar grains Adv. Energy Mater. 10 1903184
    [106]
    Li Z, Klein T R, Kim D H, Yang M, Berry J J, van Hest M F A M and Zhu K 2018 Scalable fabrication of perovskite solar cells Nat. Rev. Mater. 3 1–20
    [107]
    Tavakoli M M, Gu L, Gao Y, Reckmeier C, He J, Rogach A L, Yao Y and Fan Z 2015 Fabrication of efficient planar perovskite solar cells using a one-step chemical vapor deposition method Sci. Rep. 5 1–9
    [108]
    Leyden M R, Lee M V, Raga S R and Qi Y 2015 Large formamidinium lead trihalide perovskite solar cells using chemical vapor deposition with high reproducibility and tunable chlorine concentrations J. Mater. 3 16097–103
    [109]
    Luo P, Liu Z, Xia W, Yuan C, Cheng J and Lu Y 2015 Uniform, stable, and efficient planar-heterojunction perovskite solar cells by facile low-pressure chemical vapor deposition under fully open-air conditions ACS Appl. Mater. 7 2708–14
    [110]
    Zendehdel M, Yaghoobi Nia N, Paci B, Generosi A and Di Carlo A 2022 Zero-waste scalable blade–spin coating as universal approach for layer-by-layer deposition of 3D/2D perovskite films in high-efficiency perovskite solar modules Sol. RRL 6 2100637
    [111]
    Liu Y et al 2019 Ultrahydrophobic 3D/2D fluoroarene bilayer-based water-resistant perovskite solar cells with efficiencies exceeding 22% Sci. Adv. 5 eaaw2543
    [112]
    Cheng Q, Xia H, Li X, Wang B, Li Y, Zhang X, Zhang H, Zhang Y and Zhou H 2022 High-efficiency and stable perovskite solar cells enabled by low-dimensional perovskite surface modifiers Sol. RRL 6 2100805
    [113]
    Pham N D, Yang Y, Hoang M T, Wang T, Tiong V T, Wilson G J and Wang H 2020 1D pyrrolidinium lead iodide for efficient and stable perovskite solar cells Energy Technol. 8 1900918
    [114]
    Kim N K et al 2017 Investigation of thermally induced degradation in CH3NH3PbI3 perovskite solar cells using in-situ synchrotron radiation analysis Sci. Rep. 7 4645
    [115]
    Sutanto A A, Szostak R, Drigo N, Queloz V I E, Marchezi P E, Germino J C, Tolentino H C N, Nazeeruddin M K, Nogueira A F and Grancini G 2020 In situ analysis reveals the role of 2D perovskite in preventing thermal-induced degradation in 2D/3D perovskite interfaces Nano Lett. 20 3992–8
    [116]
    Heo S et al 2019 Origins of high performance and degradation in the mixed perovskite solar cells Adv. Mater. 31 e1805438
    [117]
    Wang J, Liu L, Chen S, Qi L, Zhao M, Zhao C, Tang J, Cai X, Lu F and Jiu T 2022 Growth of 1D nanorod perovskite for surface passivation in FAPbI3 perovskite solar cells Small 18 e2104100
    [118]
    Mahapatra A, Runjhun R, Nawrocki J, Lewinski J, Kalam A, Kumar P, Trivedi S, Tavakoli M M, Prochowicz D and Yadav P 2020 Elucidation of the role of guanidinium incorporation in single-crystalline MAPbI3 perovskite on ion migration and activation energy Phys. Chem. Chem. Phys. 22 11467–73
    [119]
    Hoke E T, Slotcavage D J, Dohner E R, Bowring A R, Karunadasa H I and McGehee M D 2015 Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics Chem. Sci. 6 613–7
    [120]
    Rong Y, Hu Y, Mei A, Tan H, Saidaminov M I, Seok S I, McGehee M D, Sargent E H and Han H 2018 Challenges for commercializing perovskite solar cells Science 361 eaat8235
    [121]
    Li N et al 2019 Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells Nat. Energy 4 408–15
    [122]
    Shao Y et al 2016 Grain boundary dominated ion migration in polycrystalline organic–inorganic halide perovskite films Energy Environ. Sci. 9 1752–9
    [123]
    Fu X et al 2021 Halogen-halogen bonds enable improved long-term operational stability of mixed-halide perovskite photovoltaics Chem 7 3131–43
    [124]
    He Y, Pan W, Guo C, Zhang H, Wei H and Yang B 2021 3D/2D perovskite single crystals heterojunction for suppressed ions migration in hard x-ray detection Adv. Funct. 31 2104880
    [125]
    Ye X, Cai H, Sun Q, Xu T, Ni J, Li J and Zhang J 2022 Organic spacer engineering in 2D/3D hybrid perovskites for efficient and stable solar cells New J. Chem. 46 2837–45
    [126]
    Niu T et al 2019 Interfacial engineering at the 2D/3D heterojunction for high-performance perovskite solar cells Nano Lett. 19 7181–90
    [127]
    Lv Y, Shi Y, Song X, Liu J, Wang M, Wang S, Feng Y, Jin S and Hao C 2018 Bromine doping as an efficient strategy to reduce the interfacial defects in hybrid two-dimensional/three-dimensional stacking perovskite solar cells ACS Appl. Mater. 10 31755–64
    [128]
    Elsenety M M, Antoniadou M, Balis N, Kaltzoglou A, Sygellou L, Stergiou A, Tagmatarchis N and Falaras P 2020 Stability improvement and performance reproducibility enhancement of perovskite solar cells following (FA/MA/Cs)PbI3–xBrx/(CH3)3SPbI3 dimensionality engineering ACS Appl. Energy Mater. 3 2465–77
    [129]
    Ono L K, Liu S F and Qi Y 2020 Reducing detrimental defects for high-performance metal halide perovskite solar cells Angew. Chem., Int. Ed. Engl. 59 6676–98
    [130]
    Zhou L, Su J, Lin Z, Guo X, Ma J, Li T, Zhang J, Chang J and Hao Y 2021 Synergistic interface layer optimization and surface passivation with fluorocarbon molecules toward efficient and stable inverted planar perovskite solar cells Research 2021 1–11
    [131]
    Long M, Zhang T, Liu M, Chen Z, Wang C, Xie W, Xie F, Chen J, Li G and Xu J 2018 Abnormal synergetic effect of organic and halide ions on the stability and optoelectronic properties of a mixed perovskite via in situ characterizations Adv. Mater. 30 e1801562
    [132]
    Jiang Q, Zhao Y, Zhang X, Yang X, Chen Y, Chu Z, Ye Q, Li X, Yin Z and You J 2019 Surface passivation of perovskite film for efficient solar cells Nat. Photon. 13 460–6
    [133]
    Galagan Y, Di Giacomo F, Gorter H, Kirchner G, de Vries I, Andriessen R and Groen P 2018 Roll-to-roll slot die coated perovskite for efficient flexible solar cells Adv. Energy Mater. 8 1801935
    [134]
    Li J et al 2018 Phase transition control for high-performance blade-coated perovskite solar cells Joule 2 1313–30
    [135]
    Cheng Y and Ding L 2021 Pushing commercialization of perovskite solar cells by improving their intrinsic stability Energy Environ. Sci. 14 3233–55
    [136]
    Park N-G and Zhu K 2020 Scalable fabrication and coating methods for perovskite solar cells and solar modules Nat. Rev. Mater. 5 333–50
    [137]
    Gao L, Chen L, Huang S, Li X and Yang G 2019 Series and parallel module design for large-area perovskite solar cells ACS Appl. Energy Mater. 2 3851–9
    [138]
    Kim D H, Whitaker J B, Li Z, van Hest M F A M and Zhu K 2018 Outlook and challenges of perovskite solar cells toward terawatt-scale photovoltaic module technology Joule 2 1437–51
    [139]
    Moon S-J, Yum J-H, Lofgren L, Walter A, Sansonnens L, Benkhaira M, Nicolay S, Bailat J and Ballif C 2015 Laser-scribing patterning for the production of organometallic halide perovskite solar modules IEEE J. Photovolt. 5 1087–92
    [140]
    Wilkinson B, Chang N L, Green M A and Ho-Baillie A W Y 2018 Scaling limits to large area perovskite solar cell efficiency Prog. Photovolt. 26 659–74
    [141]
    Rakocevic L, Mundt L E, Gehlhaar R, Merckx T, Aernouts T, Schubert M C, Glunz S W and Poortmans J 2019 Loss analysis in perovskite photovoltaic modules Sol. RRL 3 1900338
    [142]
    Kim J Y et al 2022 In situ formation of Imidazole-Based 2D interlayer for efficient perovskite solar cells and modules Int. J. Energy Res. 46 15419–27
    [143]
    Ma X, Pan J, Wang Y, Gao X, Hu M, Ku Z, Ma Y, Huang F, Cheng Y-B and Lu J 2022 Bromide complimented methylammonium-free wide bandgap perovskite solar modules with high efficiency and stability Chem. Eng. J. 445 136626
    [144]
    Xu Z, Chen R, Wu Y, He R, Yin J, Lin W and Zheng N 2019 Br-containing alkyl ammonium salt-enabled scalable fabrication of high-quality perovskite films for efficient and stable perovskite modules J. Mater. 7 26849–57
    [145]
    Xiao K et al 2022 Scalable processing for realizing 21.7%-efficient all-perovskite tandem solar modules Science 376 762–7
    [146]
    Jiang L, Lu J, Raga S R, Sun J, Lin X, Huang W, Huang F, Bach U and Cheng Y-B 2019 Fatigue stability of CH3NH3PbI3 based perovskite solar cells in day/night cycling Nano Energy 58 687–94
    [147]
    Razera R A Z et al 2020 Instability of p–i–n perovskite solar cells under reverse bias J. Mater. 8 242–50
  • 加载中

Catalog

    Figures(1)

    Article Metrics

    Article Views(468) PDF downloads(62)
    Article Statistics
    Related articles from

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return