Volume 2 Issue 1
March  2022
Turn off MathJax
Article Contents
Nohjoon Lee, Jihoon Oh, Jang Wook Choi. Anode-less all-solid-state batteries: recent advances and future outlook[J]. Materials Futures, 2023, 2(1): 013502. doi: 10.1088/2752-5724/acb3e8
Citation: Nohjoon Lee, Jihoon Oh, Jang Wook Choi. Anode-less all-solid-state batteries: recent advances and future outlook[J]. Materials Futures, 2023, 2(1): 013502. doi: 10.1088/2752-5724/acb3e8
Perspective •
OPEN ACCESS

Anode-less all-solid-state batteries: recent advances and future outlook

© 2023 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory
Materials Futures, Volume 2, Number 1
  • Received Date: 2022-11-19
  • Accepted Date: 2023-01-15
  • Publish Date: 2023-02-02
  • While all-solid-state batteries have built global consensus with regard to their impact in safety and energy density, their anode-less versions have attracted appreciable attention because of the possibility of further lowering the cell volume and cost. This perspective article summarizes recent research trends in anode-less all-solid-state batteries (ALASSBs) based on different types of solid electrolytes and anticipates future directions these batteries may take. We particularly aim to motivate researchers in the field to challenge remaining issues in ALASSBs by employing advanced materials and cell designs.

  • loading
  • [1]
    Tarascon J M and Armand M 2001 Issues and challenges facing rechargeable lithium batteries Nature 414 359–67
    [2]
    Janek J and Zeier W G 2016 A solid future for battery development Nat. Energy 1 16141
    [3]
    Agubra V A and Fergus J W 2014 The formation and stability of the solid electrolyte interface on the graphite anode J. Power Sources 268 153–62
    [4]
    Bar-Tow D, Peled E and Burstein L A 1999 Study of highly oriented pyrolytic graphite as a model for the graphite anode in li-ion batteries J. Electrochem. Soc. 146 824–32
    [5]
    Peled E, Menachem C, Bar-Tow D and Melman A 1996 Improved graphite anode for lithium-ion batteries chemically: bonded solid electrolyte interface and nanochannel formation J. Electrochem. Soc. 143 L4–L7
    [6]
    Mahmood N, Tang T and Hou Y 2016 Nanostructured anode materials for lithium ion batteries: progress, challenge and perspective Adv. Energy Mater. 6 1600374
    [7]
    Oh P, Yun J, Choi J H, Saqib K S, Embleton T J, Park S, Lee C, Ali J, Ko K and Cho J 2022 Development of high energy anodes for all-solid-state lithium batteries based on sulfide electrolytes Angew. Chem., Int. Ed. 61 202201249
    [8]
    Wu Y P, Rahm E and Holze R 2003 Carbon anode materials for lithium ion batteries J. Power Sources 114 228–36
    [9]
    Choi J W and Aurbach D 2016 Promise and reality of post-lithium-ion batteries with high energy densities Nat. Rev. Mater. 1 16013
    [10]
    Qian J, Adams B D, Zheng J, Xu W, Henderson W A, Wang J, Bowden M E, Xu S, Hu J and Zhang J-G 2016 Anode-free rechargeable lithium metal batteries Adv. Funct. Mater. 26 7094–102
    [11]
    Tian Y, An Y, Wei C, Jiang H, Xiong S, Feng J and Qian Y 2020 Recently advances and perspectives of anode-free rechargeable batteries Nano Energy 78 105344
    [12]
    Louli A J et al 2020 Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis Nat. Energy 5 693–702
    [13]
    Weber R, Genovese M, Louli A J, Hames S, Martin C, Hill I G and Dahn J R 2019 Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte Nat. Energy 4 683–9
    [14]
    Gond R, van Ekeren W, Mogensen R, Naylor A J and Younesi R 2021 Non-flammable liquid electrolytes for safe batteries Mater. Horiz. 8 2913–28
    [15]
    Arbizzani C, Gabrielli G and Mastragostino M 2011 Thermal stability and flammability of electrolytes for lithium-ion batteries J. Power Sources 196 4801–5
    [16]
    Zheng F, Kotobuki M, Song S, Lai M O and Lu L 2018 Review on solid electrolytes for all-solid-state lithium-ion batteries J. Power Sources 389 198–213
    [17]
    Heubner C, Maletti S, Auer H, Hüttl J, Voigt K, Lohrberg O and Nikolowski K Partsch M and Michaelis A 2021 From lithium-metal toward anode-free solid-state batteries: current developments, issues, and challenges Adv. Funct. Mater. 31 2106608
    [18]
    Chen S, Zhang J, Nie L, Hu X, Huang Y, Yu Y and Liu W 2021 All-solid-state batteries with a limited lithium metal anode at room temperature using a garnet-based electrolyte Adv. Mater. 33 2002325
    [19]
    Lee J, Lee T, Char K, Kim K J and Choi J W 2021 Issues and advances in scaling up sulfide-based all-solid-state batteries Acc. Chem. Res 54 3390–402
    [20]
    Kim S, Park G, Lee S J, Seo S, Ryu K, Kim C H and Choi J W 2022 Lithium metal batteries: from fundamental research to industrialization Adv. Mater. 2206625
    [21]
    Xu R C, Wang X L, Zhang S Z, Xia Y, Xia X H, Wu J B and Tu J P 2018 Rational coating of Li7P3S11 solid electrolyte on Mos2 electrode for all-solid-state lithium ion batteries J. Power Sources 374 107–12
    [22]
    Deiseroth H-J, Kong S-T, Eckert H, Vannahme J, Reiner C, Zaiß T and Schlosser M 2008 Li6ps5x: a class of crystalline li-rich solids with an unusually high Li+ mobility Angew. Chem., Int. Ed. 47 755–8
    [23]
    Kamaya N et al 2011 Lithium superionic conductor Nat. Mater. 10 682–6
    [24]
    Zhang Z et al 2018 New horizons for inorganic solid state ion conductors Energy Environ. Sci. 11 1945–76
    [25]
    Wang C, Yang T, Zhang W, Huang H, Gan Y, Xia Y, He X and Zhang J 2022 Hydrogen bonding enhanced SiO2/PEO composite electrolytes for solid-state lithium batteries J. Mater. Chem. A 10 3400–8
    [26]
    Pang B, Gan Y, Xia Y, Huang H, He X and Zhang W 2022 Regulation of the interfaces between argyrodite solid electrolytes and lithium metal anode Front. Chem. 10 837978
    [27]
    Zheng C, Zhang J, Xia Y, Huang H, Gan Y, Liang C, He X, Tao X and Zhang W 2021 Unprecedented self-healing effect of Li6PS5Cl-Based all-solid-state lithium battery Small 17 2101326
    [28]
    Zhang J, Zheng C, Li L, Xia Y, Huang H, Gan Y, Liang C and He X Tao X and Zhang W 2020 Unraveling the intra and intercycle interfacial evolution of Li6Ps5CL-Based all-solid-state lithium batteries Adv. Energy Mater. 10 1903311
    [29]
    Lee Y-G et al 2020 High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes Nat. Energy 5 299–308
    [30]
    Nanda S, Gupta A and Manthiram A 2021 Anode-free full cells: a pathway to high-energy density lithium-metal batteries Adv. Energy Mater. 11 2000804
    [31]
    Tamwattana O, Park H, Kim J, Hwang I, Yoon G, Hwang T-H, Kang Y-S, Park J, Meethong N and Kang K 2021 High-dielectric polymer coating for uniform lithium deposition in anode-free lithium batteries ACS Energy Lett. 6 4416–25
    [32]
    Chen W, Salvatierra R V, Ren M, Chen J, Stanford M G and Tour J M 2020 Laser-induced silicon oxide for anode-free lithium metal batteries Adv. Mater. 32 2002850
    [33]
    Jin S et al 2020 Solid–solution-based metal alloy phase for highly reversible lithium metal anode J. Am. Chem. Soc 142 8818–26
    [34]
    Yan K, Lu Z, Lee H-W, Xiong F, Hsu P-C, Li Y, Zhao J, Chu S and Cui Y 2016 Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth Nat. Energy 1 16010
    [35]
    Suzuki N, Yashiro N, Fujiki S, Omoda R, Shiratsuchi T, Watanabe T and Aihara Y 2021 Highly cyclable all-solid-state battery with deposition-type lithium metal anode based on thin carbon black layer Adv. Energy Sustain. Res. 2 2100066
    [36]
    Oh J et al 2022 Elastic binder for high-performance sulfide-based all-solid-state batteries ACS Energy Lett. 7 1374–82
    [37]
    Park S H, Jun D, Lee G H, Lee S G, Jung J E, Bae K Y, Son S and Lee Y J 2022 Designing 3d anode based on pore-size-dependent li deposition behavior for reversible li-free all-solid-state batteries Adv. Sci. 9 2203130
    [38]
    Lee J et al 2022 Room-temperature anode-less all-solid-state batteries via the conversion reaction of metal fluorides Adv. Mater. 34 2203580
    [39]
    Bates J B, Dudney N J, Gruzalski G R, Zuhr R A, Choudhury A, Luck C F and Robertson J D 1993 Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries J. Power Sources 43 103–10
    [40]
    Inaguma Y, Liquan C, Itoh M, Nakamura T, Uchida T, Ikuta H and Wakihara M 1993 High ionic conductivity in lithium lanthanum titanate Solid State Commun. 86 689–93
    [41]
    Fu J 1997 Fast Li+ ion conducting glass-ceramics in the system Li2O-Al2O3-TiO2-P2O5 Solid State Ion. 104 191–4
    [42]
    Fu J 1997 Superionic conductivity of glass-ceramics in the system Li2O- Al2O3-TiO2-P2O5 Solid State Ion. 96 195–200
    [43]
    Murugan R, Thangadurai V and Weppner W 2007 Fast lithium ion conduction in garnet-Type Li7La3Zr2O12 Angew. Chem., Int. Ed. 46 7778–81
    [44]
    Neudecker B J, Dudney N J and Bates J B 2000 Lithium-free” thin-film battery with in situ plated Li anode J. Electrochem. Soc. 147 517
    [45]
    Wang M J, Carmona E, Gupta A, Albertus P and Sakamoto J 2020 Enabling “lithium-free” manufacturing of pure lithium metal solid-state batteries through in situ plating Nat. Commun. 11 5201
    [46]
    Kravchyk K V, Zhang H, Okur F and Kovalenko M V 2022 Li–garnet solid-state batteries with LLZO scaffolds Acc. Mater. Res. 3 411–5
    [47]
    Faglioni F, Merinov B V, Goddard W A and Kozinsky B 2018 Factors affecting cyclic durability of all-solid-state lithium batteries using poly(ethylene oxide)-based polymer electrolytes and recommendations to achieve improved performance Phys. Chem. Chem. Phys 20 26098–104
    [48]
    Xia Y, Fujieda T, Tatsumi K, Prosini P P and Sakai T 2001 Thermal and electrochemical stability of cathode materials in solid polymer electrolyte J. Power Sources 92 234–43
    [49]
    Seidl L, Grissa R, Zhang L, Trabesinger S and Battaglia C 2022 Unraveling the voltage-dependent oxidation mechanisms of poly(ethylene oxide)-based solid electrolytes for solid-state batteries Adv. Mater. Interfaces 9 2100704
    [50]
    Assegie A A, Cheng J-H, Kuo L-M, Su W-N and Hwang B-J 2018 Polyethylene oxide film coating enhances lithium cycling efficiency of an anode-free lithium-metal battery Nanoscale 10 6125–38
    [51]
    He F, Tang W, Zhang X, Deng L and Luo J 2021 High energy density solid state lithium metal batteries enabled by sub-5·m solid polymer electrolytes Adv. Mater. 33 2105329
    [52]
    Zegeye T A, Su W-N, Fenta F W, Zeleke T S, Jiang S-K and Hwang B J 2020 Ultrathin Li6.75La3Zr1.75Ta0.25O12-based composite solid electrolytes laminated on anode and cathode surfaces for anode-free lithium metal batteries ACS Appl. Energy Mater. 3 11713–23
    [53]
    J-G Z 2019 Anode-Less Nat. Energy 4 637–8
    [54]
    Xiao J et al 2020 Understanding and applying coulombic efficiency in lithium metal batteries Nat. Energy 5 561–8
    [55]
    Yan K, Wang J, Zhao S, Zhou D, Sun B, Cui Y and Wang G 2019 Temperature-dependent nucleation and growth of dendrite-free lithium metal anodes Angew. Chem., Int. Ed. 58 11364–8
    [56]
    Wang M J, Choudhury R and Sakamoto J 2019 Characterizing the Li-solid-electrolyte interface dynamics as a function of stack pressure and current density Joule 3 2165–78
    [57]
    Banerjee A, Wang X, Fang C, Wu E A and Meng Y S 2020 Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes Chem. Rev. 120 6878–933
  • 加载中

Catalog

    Figures(1)

    Article Metrics

    Article Views(493) PDF downloads(145)
    Article Statistics
    Related articles from

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return