Volume 2 Issue 1
March  2022
Turn off MathJax
Article Contents
Songran Wang, Huanxin Guo, Yongzhen Wu. Advantages and challenges of self-assembled monolayer as a hole-selective contact for perovskite solar cells[J]. Materials Futures, 2023, 2(1): 012105. doi: 10.1088/2752-5724/acbb5a
Citation: Songran Wang, Huanxin Guo, Yongzhen Wu. Advantages and challenges of self-assembled monolayer as a hole-selective contact for perovskite solar cells[J]. Materials Futures, 2023, 2(1): 012105. doi: 10.1088/2752-5724/acbb5a
Topical Review •
OPEN ACCESS

Advantages and challenges of self-assembled monolayer as a hole-selective contact for perovskite solar cells

© 2023 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory
Materials Futures, Volume 2, Number 1
  • Received Date: 2022-12-30
  • Accepted Date: 2023-02-13
  • Publish Date: 2023-03-08
  • Charge-transporting layers (CTLs) are important in determining the performance and stability of perovskite solar cells (PSCs). Recently, there has been considerable use of self-assembled monolayers (SAMs) as charge-selective contacts, especially for hole-selective SAMs in inverted PSCs as well as perovskite involving tandem solar cells. The SAM-based charge-selective contact shows many advantages over traditional thin-film organic/inorganic CTLs, including reduced cost, low optical and electric loss, conformal coating on a rough substrate, simple deposition on a large-area substrate and easy modulation of energy levels, molecular dipoles and surface properties. The incorporation of various hole-selective SAMs has resulted in high-efficiency single junction and tandem solar cells. This topical review summarizes both the advantages and challenges of SAM-based charge-selective contacts, and discusses the potential direction for future studies.
  • loading
  • [1]
    Min H et al 2021 Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes Nature 598 444–50
    [2]
    Kim M et al 2022 Conformal quantum dot–SnO2 layers as electron transporters for efficient perovskite solar cells Science 375 302–6
    [3]
    Li X, Zhang W, Guo X, Lu C, Wei J and Fang J 2022 Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells Science 375 434–7
    [4]
    Jiang Q et al 2022 Surface reaction for efficient and stable inverted perovskite solar cells Nature 611 278–83
    [5]
    Zhu Y, Hu M, Xu M, Zhang B, Huang F, Cheng Y-B and Lu J 2022 Bilayer metal halide perovskite for efficient and stable solar cells and modules Mater. Futures 1 042102
    [6]
    Yan W, Ye S, Li Y, Sun W, Rao H, Liu Z, Bian Z and Huang C 2016 Hole-transporting materials in inverted planar perovskite solar cells Adv. Energy Mater. 6 1600474
    [7]
    Li L, Wu Y, Li E, Shen C, Zhang H, Xu X, Wu G, Cai M and Zhu W-H 2019 Self-assembled naphthalimide derivatives as an efficient and low-cost electron extraction layer for n-i-p perovskite solar cells Chem. Commun. 55 13239–42
    [8]
    Shen C, Wu Y, Zhang H, Li E, Zhang W, Xu X, Wu W, Tian H and Zhu W 2019 Semi-locked tetrathienylethene as a building block for hole-transporting materials: toward efficient and stable perovskite solar cells Angew. Chem. Int. Ed. 58 3784–9
    [9]
    Guo H, Zhang H, Shen C, Zhang D, Liu S, Wu Y and Zhu W-H 2021 A coplanar π-extended quinoxaline based hole-transporting material enabling over 21% efficiency for dopant-free perovskite solar cells Angew. Chem. Int. Ed. 60 2674–9
    [10]
    Ye F, Zhang D, Xu X, Guo H, Liu S, Zhang S, Wu Y and Zhu W-H 2021 Anchorable perylene diimides as chemically inert electron transport layer for efficient and stable perovskite solar cells with high reproducibility Sol. RRL 5 2000736
    [11]
    Wu S et al 2020 Modulation of defects and interfaces through alkylammonium interlayer for efficient inverted perovskite solar cells Joule 4 1248–62
    [12]
    Jeng J-Y, Chiang Y-F, Lee M-H, Peng S-R, Guo T-F, Chen P and Wen T-C 2013 CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells Adv. Mater. 25 3727–32
    [13]
    Nie W et al 2018 Critical role of interface and crystallinity on the performance and photostability of perovskite solar cell on nickel oxide Adv. Mater. 30 1703879
    [14]
    Stolterfoht M et al 2018 Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells Nat. Energy 3 847–54
    [15]
    Li Z, Li B, Wu X, Sheppard S A, Zhang S, Gao D, Long N J and Zhu Z 2022 Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells Science 373 416–20
    [16]
    Wang S et al 2022 Critical role of removing impurities in nickel oxide on high-efficiency and long-term stability of inverted perovskite solar cells Angew. Chem. Int. Ed. 61 e202116534
    [17]
    Magomedov A, Al-Ashouri A, Kasparavicˇius E, Strazdaite S, Niaura G, Joˇst M, Malinauskas T, Albrecht S and Getautis V 2018 Self-assembled hole transporting monolayer for highly efficient perovskite solar cells Adv. Energy Mater. 8 1801892
    [18]
    Al-Ashouri A et al 2019 Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells Energy Environ. Sci. 12 3356–69
    [19]
    Yalcin E, Can M, Rodriguez-Seco C, Aktas E, Pudi R, Cambarau W, Demic S and Palomares E 2019 Semiconductor self-assembled monolayers as selective contacts for efficient PiN perovskite solar cells Energy Environ. Sci. 12 230–7
    [20]
    Li E, Bi E, Wu Y, Zhang W, Li L, Chen H, Han L, Tian H and Zhu W 2020 Synergistic coassembly of highly wettable and uniform hole-extraction monolayers for scaling-up perovskite solar cells Adv. Funct. Mater. 30 1909509
    [21]
    Isikgor F H, Zhumagali S, T, Merino L V, De B M, McCulloch I and De Wolf S 2023 Molecular engineering of contact interfaces for high-performance perovskite solar cells Nat. Rev. Mater. 8 89–108
    [22]
    Wang Y et al 2020 Teaching an old anchoring group new tricks: enabling low-cost, eco-friendly hole-transporting materials for efficient and stable perovskite solar cells J. Am. Chem. Soc. 142 16632–43
    [23]
    Al-Ashouri A et al 2020 Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction Science 370 1300–9
    [24]
    Azmi R et al 2022 Damp heat–stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions Science 376 73–77
    [25]
    Liu J et al 2021 28.2%-efficient, outdoor-stable perovskite/silicon tandem solar cell Joule 5 3169–86
    [26]
    Datta K, Wang J, Zhang D, Zardetto V, Remmerswaal W H M, Weijtens C H L, Wienk M M and Janssen R A J 2021 Monolithic all-perovskite tandem solar cells with minimized optical and energetic losses Adv. Mater. 34 2110053
    [27]
    Qin S et al 2022 Constructing monolithic perovskite/organic tandem solar cell with efficiency of 22.0% via reduced open-circuit voltage loss and broadened absorption spectra Adv. Mater. 34 2108829
    [28]
    Jiang W, Li F, Li M, Qi F, Lin F R and Jen A K-Y 2022 π-expanded carbazoles as hole-selective self-assembled monolayers for high-performance perovskite solar cells Angew. Chem. Int. Ed. 61 e202213560
    [29]
    Lin X et al 2017 Dipole-field-assisted charge extraction in metal-perovskite-metal back-contact solar cells Nat. Commun. 8 613
    [30]
    Ullah A et al 2021 Novel phenothiazine-based self-assembled monolayer as a hole selective contact for highly efficient and stable p-i-n perovskite solar cells Adv. Energy Mater. 12 2103175
    [31]
    Zhang S, Wu R, Mu C, Wang Y, Han L, Wu Y and Zhu W-H 2022 Conjugated self-assembled monolayer as stable hole-selective contact for inverted perovskite solar cells ACS Mater. Lett. 4 1976–83
    [32]
    Guo H, Liu C, Hu H, Zhang S, Ji X, Cao X, Ning Z, Zhu W-H, Tian H and Wu Y 2022 Neglected acidity pitfall: boric acid-anchoring hole selective contact for perovskite solar cells Natl. Sci. Rev. (https://doi.org/10.1093/nsr/nwad057)
    [33]
    Zhang H, Wu Y, Zhang W, Li E, Shen C, Jiang H, Tian H and Zhu W-H 2018 Low cost and stable quinoxaline-based hole-transporting materials with a D–A–D molecular configuration for efficient perovskite solar cells Chem. Sci. 9 5919–28
    [34]
    Li E et al 2019 Efficient p-i-n structured perovskite solar cells employing low-cost and highly reproducible oligomers as hole transporting materials Sci. China Chem. 62 767–74
    [35]
    Xu X, Ji X, Chen R, Ye F, Liu S, Zhang S, Chen W, Wu Y and Zhu W-H 2022 Improving contact and passivation of buried interface for high-efficiency and large-area inverted perovskite solar cells Adv. Funct. Mater. 32 2109968
    [36]
    Chen R et al 2022 Robust hole transport material with interface anchors enhances the efficiency and stability of inverted formamidinium–cesium perovskite solar cells with a certified efficiency of 22.3% Energy Environ. Sci. 15 2567–80
    [37]
    Zhang M, Guo X, Ma W, Ade H and Hou J 2014 A polythiophene derivative with superior properties for practical application in polymer solar cells Adv. Mater. 26 5880–5
    [38]
    Stolterfoht M, Wolff C M, Amir Y, Paulke A, Perdigón-Toro L, Caprioglio P and Neher D 2017 Approaching the fill factor Shockley–Queisser limit in stable, dopant-free triple cation perovskite solar cells Energy Environ. Sci. 10 1530–9
    [39]
    Gharibzadeh S et al 2021 Two birds with one stone: dual grain-boundary and interface passivation enables >22% efficient inverted methylammonium-free perovskite solar cells Energy Environ. Sci. 14 5875–93
    [40]
    Li E, Liu C, Lin H, Xu X, Liu S, Zhang S, Yu M, Cao X, Wu Y and Zhu W 2021 Bonding strength regulates anchoring-based self-assembly monolayers for efficient and stable perovskite solar cells Adv. Funct. Mater. 31 2103847
    [41]
    Peng J et al 2021 Nanoscale localized contacts for high fill factors in polymer-passivated perovskite solar cells Science 371 390–5
    [42]
    Niu T et al 2021 D-A-π-A-D-type dopant-free hole transport material for low-cost, efficient, and stable perovskite solar cells Joule 5 249–69
    [43]
    Jeong J et al 2021 Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells Nature 592 381–5
    [44]
    Peng J et al 2022 Centimetre-scale perovskite solar cells with fill factors of more than 86% Nature 601 573–8
    [45]
    Deng X, Qi F, Li F, Wu S, Lin F R, Zhang Z, Guan Z, Yang Z, Lee C and Jen A K - Y 2022 Hole-selective contact for high-performance inverted perovskite solar cells with optimized recombination loss and long-term stability Angew. Chem. Int. Ed. 61 e202203088
    [46]
    Levine I et al 2021 Charge transfer rates and electron trapping at buried interfaces of perovskite solar cells Joule 5 2915–33
    [47]
    Stolterfoht M et al 2019 The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells Energy Environ. Sci. 12 2778–88
    [48]
    Canil L et al 2021 Tuning halide perovskite energy levels Energy Environ. Sci. 14 1429–38
    [49]
    Xiang Y, Guo H, Cai Z, Jiang C, Zhu C, Wu Y, Zhu W-H and Chen T 2022 Dopant-free hole-transporting materials for stable Sb2 (S,Se) 3 solar cells Chem. Commun. 58 4787–90
    [50]
    Guo H, Zhang H, Liu S, Zhang D, Wu Y and Zhu W-H 2022 Efficient and stable methylammonium-free tin-lead perovskite solar cells with hexaazatrinaphthylene-based hole-transporting materials ACS Appl. Mater. Interfaces 14 6852–8
    [51]
    Lange I et al 2014 Tuning the work function of polar zinc oxide surfaces using modified phosphonic acid self-assembled monolayers Adv. Funct. Mater. 24 7014–24
    [52]
    Ou Q-D, Li C, Wang Q-K, Li Y-Q and Tang J-X 2017 Recent advances in energetics of metal halide perovskite interfaces Adv. Mater. Interfaces 4 1600694
    [53]
    Lin X, Raga S R, Chesman A S R, Ou Q, Jiang L, Bao Q, Lu J, Cheng Y-B and Bach U 2020 Honeycomb-shaped charge collecting electrodes for dipole-assisted back-contact perovskite solar cells Nano Energy 67 104223
    [54]
    Roß M et al 2021 Co-evaporated formamidinium lead iodide based perovskites with 1000 h constant stability for fully textured monolithic perovskite/silicon tandem solar cells Adv. Energy Mater. 11 2101460
    [55]
    Zhang D, Zhang H, Guo H, Ye F, Liu S and Wu Y 2022 Stable α-FAPbI3 in inverted perovskite solar cells with efficiency exceeding 22% via a self-passivation strategy Adv. Funct. Mater. 32 2200174
    [56]
    Dai Z, Yadavalli S K, Chen M, Abbaspourtamijani A, Qi Y and Padture N P 2021 Interfacial toughening with self-assembled monolayers enhances perovskite solar cell reliability Science 372 618–22
    [57]
    Liu J et al 2022 Efficient and stable perovskite-silicon tandem solar cells through contact displacement by MgFx Science 377 302–6
    [58]
    Abdollahi Nejand B et al 2022 Scalable two-terminal all-perovskite tandem solar modules with a 19.1% efficiency Nat. Energy 7 620–30
    [59]
    Li L et al 2022 Flexible all-perovskite tandem solar cells approaching 25% efficiency with molecule-bridged hole-selective contact Nat. Energy 7 708–17
    [60]
    Farag A et al 2023 Evaporated self-assembled monolayer hole transport layers: lossless interfaces in p-i-n perovskite solar cells Adv. Energy Mater. 13 2203982
    [61]
    Aktas E et al 2021 Understanding the perovskite/self-assembled selective contact interface for ultra-stable and highly efficient p–i–n perovskite solar cells Energy Environ. Sci. 14 3976–85
  • 加载中

Catalog

    Figures(1)

    Article Metrics

    Article Views(976) PDF downloads(367)
    Article Statistics
    Related articles from

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return