Volume 3 Issue 1
March  2024
Turn off MathJax
Article Contents
Martine Jacob, Kerstin Wissel, Oliver Clemens. Recycling of solid-state batteries—challenge and opportunity for a circular economy?[J]. Materials Futures, 2024, 3(1): 012101. doi: 10.1088/2752-5724/acfb28
Citation: Martine Jacob, Kerstin Wissel, Oliver Clemens. Recycling of solid-state batteries—challenge and opportunity for a circular economy?[J]. Materials Futures, 2024, 3(1): 012101. doi: 10.1088/2752-5724/acfb28
Topical Review •
OPEN ACCESS

Recycling of solid-state batteries—challenge and opportunity for a circular economy?

© 2024 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory
Materials Futures, Volume 3, Number 1
  • Received Date: 2023-07-28
  • Accepted Date: 2023-09-18
  • Publish Date: 2024-01-03
  • The tremendous efforts made in the research field of solid-state Li-ion batteries have led to considerable advancement of this technology and the first market-ready systems can be expected in the near future. The research community is currently investigating different solid-state electrolyte classes (e.g. oxides, sulfides, halides and polymers) with a focus on further optimizing the synthesis and electrochemical performance. However, so far, the development of sustainable recycling strategies allowing for an efficient backflow of critical elements contained in these batteries into the economic cycle and thus a transition from a linear to a circular economy lags behind. In this contribution, resource aspects with respect to the chemical value of crucial materials, which are used for the synthesis of solid-state electrolytes are being discussed. Furthermore, an overview of possible approaches in relation to their challenges and opportunities for the recycling of solid-state batteries with respect to different solid-state electrolyte classes by means of pyrometallurgy, hydrometallurgy and direct recycling/dissolution-based separation processes is given. Based on these considerations and with reference to previous research, it will be shown that different solid-state electrolytes will require individually adapted recycling processes to be suitably designed for a circular economy and that further improvements and investigations will be required.

  • loading
  • [1]
    Janek J and Zeier W G 2016 A solid future for battery development Nat. Energy 1 16141
    [2]
    Lotsch B V and Maier J 2017 Relevance of solid electrolytes for lithium-based batteries: a realistic view J. Electroceramics 38 128–41
    [3]
    Kuhn A, Gerbig O, Zhu C, Falkenberg F, Maier J and Lotsch B V 2014 A new ultrafast superionic Li-conductor: ion dynamics in Li11Si2PS12 and comparison with other tetragonal LGPS-type electrolytes Phys. Chem. Chem. Phys. 16 14669–74
    [4]
    Thangadurai V, Kaack H and Weppner W J 2003 Novel fast lithium ion conduction in garnet-type Li5La3M2O12 (M= Nb, Ta) J. Am. Ceram. Soc. 86 437–40
    [5]
    Zhu J et al 2021 End-of-life or second-life options for retired electric vehicle batteries Cell Rep. Phys. Sci. 2 100537
    [6]
    Shahjalal M, Roy P K, Shams T, Fly A, Chowdhury J I, Ahmed M R and Liu K 2022 A review on second-life of Li-ion batteries: prospects, challenges, and issues Energy 241 122881
    [7]
    He Y Q, Yuan X, Zhang G W, Wang H F, Zhang T, Xie W N and Li L P 2021 A critical review of current technologies for the liberation of electrode materials from foils in the recycling process of spent lithium-ion batteries Sci. Total Environ. 766 022025
    [8]
    Velázquez-Martínez O, Valio J, Santasalo-Aarnio A, Reuter M and Serna-Guerrero R 2019 A critical review of lithium-ion battery recycling processes from a circular economy perspective Batteries 5 68
    [9]
    Arshad F, Li L, Amin K, Fan E, Manurkar N, Ahmad A, Yang J, Wu F and Chen R 2020 A comprehensive review of the advancement in recycling the anode and electrolyte from spent lithium ion batteries ACS Sustain. Chem. Eng. 8 13527–54
    [10]
    Chen Y, Dou A and Zhang Y 2021 A review of recycling status of decommissioned lithium batteries Front. Mater. 8 634667
    [11]
    Vanderburgt S, Santos R M and Chiang Y W 2023 Is it worthwhile to recover lithium-ion battery electrolyte during lithium-ion battery recycling? Resour. Conserv. Recycl. 189 106733
    [12]
    Windisch-Kern S et al 2022 Recycling chains for lithium-ion batteries: a critical examination of current challenges, opportunities and process dependencies Waste Manage. 138 125–39
    [13]
    Schwich L, Kupers M, Finsterbusch M, Schreiber A, Fattakhova-Rohlfing D, Guillon O and Friedrich B 2020 Recycling strategies for ceramic all-solid-state batteries-part I: study on possible treatments in contrast to Li-ion battery recycling Metals 10 1523
    [14]
    Tan D H, Banerjee A, Chen Z and Meng Y S 2020 From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries Nat. Nanotechnol. 15 170–80
    [15]
    Tan D H, Xu P, Yang H, M-c K, Nguyen H, Wu E A, Doux J-M, Banerjee A, Meng Y S and Chen Z 2020 Sustainable design of fully recyclable all solid-state batteries MRS Energy Sustain. 7 E23
    [16]
    Huang Y X, Qin Z W, Shan C, Xie Y M, Meng X C, Qian D L, He G, Mao D X and Wan L 2023 Green recycling of short-circuited garnet-type electrolyte for high-performance solid-state lithium batteries J. Energy Chem. 80 492–500
    [17]
    Schneider K, Kiyek V, Finsterbusch M, Yagmurlu B and Goldmann D 2023 Acid leaching of Al-and Ta-substituted Li7La3Zr2O12 (LLZO) solid electrolyte Metals 13 834
    [18]
    Chen S J, Hu X C, Nie L, Yu Y and Liu W 2023 Recycling of garnet solid electrolytes with lithium-dendrite penetration by thermal healing Sci. China Mater. 66 2192–8
    [19]
    Kononova N, Blömeke S, Cerdas F, Zellmer S and Herrmann C 2023 Identification of target materials for recycling of solid-state batteries from environmental and economic perspective using information theory entropy Proc. CIRP 116 185–90
    [20]
    Abraham M 2015 Prospects and limits of energy storage in batteries J. Phys. Chem. Lett. 6 830–44
    [21]
    Pia˛tek J, Afyon S, Budnyak T M, Budnyk S, Sipponen M H and Slabon A 2021 Sustainable Li-ion batteries: chemistry and recycling Adv. Energy Mater. 11 2003456
    [22]
    Chen M Y, Ma X T, Chen B, Arsenault R, Karlson P, Simon N and Wang Y 2019 Recycling end-of-life electric vehicle lithium-ion batteries Joule 3 2622–46
    [23]
    Bai Y C, Muralidharan N, Sun Y-K, Passerini S, Whittingham M S and Belharouak I 2020 Energy and environmental aspects in recycling lithium-ion batteries: concept of battery identity global passport Mater. Today 41 304–15
    [24]
    Yang J, Fan E, Lin J, Arshad F, Zhang X, Wang H, Wu F, Chen R and Li L 2021 Recovery and reuse of anode graphite from spent lithium-ion batteries via citric acid leaching ACS Appl. Energy Mater. 4 6261–8
    [25]
    Neumann J, Petranikova M, Meeus M, Gamarra J D, Younesi R, Winter M and Nowak S 2022 Recycling of lithium-ion batteries-current state of the art, circular economy, and next generation recycling Adv. Energy Mater. 12 2102917
    [26]
    Yu D, Huang Z, Makuza B, Guo X and Tian Q 2021 Pretreatment options for the recycling of spent lithium-ion batteries: a comprehensive review Miner. Eng. 173 107218
    [27]
    Zhang X, Li L, Fan E, Xue Q, Bian Y, Wu F and Chen R 2018 Toward sustainable and systematic recycling of spent rechargeable batteries Chem. Soc. Rev. 47 7239–302
    [28]
    Dunn J B, Gaines L, Sullivan J and Wang M Q 2012 Impact of recycling on cradle-to-gate energy consumption and greenhouse gas emissions of automotive lithium-ion batteries Environ. Sci. Technol. 46 12704–10
    [29]
    Li J, Wang G and Xu Z 2016 Environmentally-friendly oxygen-free roasting/wet magnetic separation technology for in situ recycling cobalt, lithium carbonate and graphite from spent LiCoO2/graphite lithium batteries J. Hazard. Mater. 302 97–104
    [30]
    Xiao J, Li J and Xu Z 2017 Recycling metals from lithium ion battery by mechanical separation and vacuum metallurgy J. Hazard. Mater. 338 124–31
    [31]
    Wang D H, Wen H, Chen H J, Yang Y J and Liang H Y 2016 Chemical evolution of LiCoO2 and NaHSO4 center dot H2O mixtures with different mixing ratios during roasting process Chem. Res. Chin. Univ. 32 674–7
    [32]
    Fan E, Li L, Wang Z, Lin J, Huang Y, Yao Y, Chen R and Wu F 2020 Sustainable recycling technology for Li-ion batteries and beyond: challenges and future prospects Chem. Rev. 120 7020–63
    [33]
    Barik S P, Prabaharan G and Kumar L 2017 Leaching and separation of Co and Mn from electrode materials of spent lithium-ion batteries using hydrochloric acid: laboratory and pilot scale study J. Clean. Prod. 147 37–43
    [34]
    Wang R-C, Lin Y-C and Wu S-H 2009 A novel recovery process of metal values from the cathode active materials of the lithium-ion secondary batteries Hydrometallurgy 99 194–201
    [35]
    Zhang P W, Yokoyama T, Itabashi O, Suzuki T M and Inoue K 1998 Hydrometallurgical process for recovery of metal values from spent lithium-ion secondary batteries Hydrometallurgy 47 259–71
    [36]
    Tang W J, Chen X P, Zhou T, Duan H, Chen Y B and Wang J 2014 Recovery of Ti and Li from spent lithium titanate cathodes by a hydrometallurgical process Hydrometallurgy 147 210–6
    [37]
    Nan J M, Han D M and Zuo X X 2005 Recovery of metal values from spent lithium-ion batteries with chemical deposition and solvent extraction J. Power Sources 152 278–84
    [38]
    Fan X P, Song C H, Lu X F, Shi Y, Yang S L, Zheng F H, Huang Y G, Liu K, Wang H Q and Li Q Y 2021 Separation and recovery of valuable metals from spent lithium-ion batteries via concentrated sulfuric acid leaching and regeneration of LiNi1/3Co21/3Mn1/3O2 J. Alloys Compd. 863 158775
    [39]
    Meshram P, Pandey B D and Mankhand T R 2015 Hydrometallurgical processing of spent lithium ion batteries (LIBs) in the presence of a reducing agent with emphasis on kinetics of leaching Chem. Eng. J. 281 418–27
    [40]
    Li H, Xing S Z, Liu Y, Li F J, Guo H and Kuang G 2017 Recovery of lithium, iron, and phosphorus from spent LiFePO4 batteries using stoichiometric sulfuric acid leaching system ACS Sustain. Chem. Eng. 5 8017–24
    [41]
    Lee C K and Rhee K-I 2002 Preparation of LiCoO2 from spent lithium-ion batteries J. Power Sources 109 17–21
    [42]
    Lee C K and Rhee K-I 2003 Reductive leaching of cathodic active materials from lithium ion battery wastes Hydrometallurgy 68 5–10
    [43]
    Pinna E G, Ruiz M C, Ojeda M W and Rodriguez M H 2017 Cathodes of spent Li-ion batteries: dissolution with phosphoric acid and recovery of lithium and cobalt from leach liquors Hydrometallurgy 167 66–71
    [44]
    Chen X, Ma H, Luo C and Zhou T 2017 Recovery of valuable metals from waste cathode materials of spent lithium-ion batteries using mild phosphoric acid J. Hazard. Mater. 326 77–86
    [45]
    Dong X Y, Huang X R, Tang R, Min Y L, Xu Q J, Hu Z H and Shi P H 2023 Efficient photo-oxidation leaching of Ni and Co in a spent lithium-ion battery cathode by homogeneous UV/H2O2 ACS Sustain. Chem. Eng. 11 9330–6
    [46]
    Qi Y P, Meng F S, Yi X X, Shu J C, Chen M J, Sun Z, Sun S H and Xiu F-R 2020 A novel and efficient ammonia leaching method for recycling waste lithium ion batteries J. Clean. Prod. 251 119665
    [47]
    Li D M, Zhang B, Ou X, Zhang J F, Meng K, Ji G J, Li P F and Xu J H 2021 Ammonia leaching mechanism and kinetics of LiCoO2 material from spent lithium-ion batteries Chin. Chem. Lett. 32 2333–7
    [48]
    Ku H, Jung Y, Jo M, Park S, Kim S, Yang D, Rhee K, An E-M, Sohn J and Kwon K 2016 Recycling of spent lithium-ion battery cathode materials by ammoniacal leaching J. Hazard. Mater. 313 138–46
    [49]
    Almeida J R, Moura M N, Barrada R V, Barbieri E M S, Carneiro M, Ferreira S A D, Lelis M F F, de Freitas M and Brandao G P 2019 Composition analysis of the cathode active material of spent Li-ion batteries leached in citric acid solution: a study to monitor and assist recycling processes Sci. Total Environ. 685 589–95
    [50]
    Yu M, Zhang Z H, Xue F, Yang B, Guo G H and Qiu J H 2019 A more simple and efficient process for recovery of cobalt and lithium from spent lithium-ion batteries with citric acid Sep. Purif. Technol. 215 398–402
    [51]
    Li L, Ge J, Wu F, Chen R J, Chen S and Wu B R 2010 Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant J. Hazard. Mater. 176 288–93
    [52]
    Setiawan H, Petrus H T B M and Perdana I 2019 Reaction kinetics modeling for lithium and cobalt recovery from spent lithium-ion batteries using acetic acid Int. J. Miner. Metall. Mater. 26 98–107
    [53]
    Zhang Z M, He W Z, Li G M, Xia J, Hu H K and Huang J W 2014 Ultrasound-assisted hydrothermal renovation of LiCoO2 from the cathode of spent lithium-ion batteries Int. J. Electrochem. Sci. 9 3691–700
    [54]
    Ganter M J, Landi B J, Babbitt C W, Anctil A and Gaustad G 2014 Cathode refunctionalization as a lithium ion battery recycling alternative J. Power Sources 256 274–80
    [55]
    Ciez R E and Whitacre J F 2019 Examining different recycling processes for lithium-ion batteries Nat. Sustain. 2 148–56
    [56]
    Zhang Z Z et al 2018 New horizons for inorganic solid state ion conductors Energy Environ. Sci. 11 1945–76
    [57]
    Zhou D, Shanmukaraj D, Tkacheva A, Armand M and Wang G 2019 Polymer electrolytes for lithium-based batteries: advances and prospects Chemistry 5 2326–52
    [58]
    Gao Z, Sun H, Fu L, Ye F, Zhang Y, Luo W and Huang Y 2018 Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries Adv. Mater. 30 e1705702
    [59]
    Zeier W G 2014 Structural limitations for optimizing garnet-type solid electrolytes: a perspective Dalton Trans. 43 16133–8
    [60]
    Bates J, Dudney N J, Gruzalski G R, Zuhr R A, Choudhury A, Luck C F and Robertson J D 1992 Electrical properties of amorphous lithium electrolyte thin films Solid State Ionics 53-56 647–54
    [61]
    Kwon W J, Kim H, Jung K-N, Cho W, Kim S H, Lee J-W and Park M-S 2017 Enhanced Li+ conduction in perovskite Li3xLa2/3−x1/3−2xTiO3 solid-electrolytes via microstructural engineering J. Mater. Chem. A 5 6257–62
    [62]
    DeWees R and Wang H 2019 Synthesis and properties of NaSICON-type LATP and LAGP solid electrolytes ChemSusChem 12 3713–25
    [63]
    Howard M A, Clemens O, Knight K S, Anderson P A, Hafiz S, Panchmatia P M and Slater P R 2013 Synthesis, conductivity and structural aspects of Nd3Zr2Li7-3xAlxO12 J. Mater. Chem. A 1 14013–22
    [64]
    Waetzig K, Rost A, Heubner C, Coeler M, Nikolowski K, Wolter M and Schilm J 2020 Synthesis and sintering of Li1.3Al0.3Ti1.7(PO4)3 (LATP) electrolyte for ceramics with improved Li+ conductivity J. Alloys Compd. 818 153237
    [65]
    Djenadic R, Botros M, Benel C, Clemens O, Indris S, Choudhary A, Bergfeldt T and Hahn H 2014 Nebulized spray pyrolysis of Al-doped Li7La3Zr2O12 solid electrolyte for battery applications Solid State Ionics 263 49–56
    [66]
    Botros M, Djenadic R, Clemens O, Möller M and Hahn H 2016 Field assisted sintering of fine-grained Li7-3xLa3Zr2AlxO12 solid electrolyte and the influence of the microstructure on the electrochemical performance J. Power Sources 309 108–15
    [67]
    Lobe S, Bauer A, Sebold D, Wettengl N, Fattakhova-Rohlfing D and Uhlenbruck S 2022 Sintering of Li-garnets: impact of Al-incorporation and powder-bed composition on microstructure and ionic conductivity Open Ceram. 10 100268
    [68]
    Koerver R, Zhang W, de Biasi L, Schweidler S, Kondrakov A O, Kolling S, Brezesinski T, Hartmann P, Zeier W G and Janek J 2018 Chemo-mechanical expansion of lithium electrode materials—on the route to mechanically optimized all-solid-state batteries Energy Environ. Sci. 11 2142–58
    [69]
    Koerver R, Aygün I, Leichtweiß T, Dietrich C, Zhang W, Binder J O, Hartmann P, Zeier W G and Janek J 2017 Capacity fade in solid-state batteries: interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes Chem. Mater. 29 5574–82
    [70]
    Chen L, Li Y, Li S-P, Fan L-Z, Nan C-W and Goodenough J B 2018 PEO/garnet composite electrolytes for solid-state lithium batteries: from “ceramic-in-polymer” to “polymer-in-ceramic” Nano Energy 46 176–84
    [71]
    Fingerle M, Loho C, Ferber T, Hahn H and Hausbrand R 2017 Evidence of the chemical stability of the garnet-type solid electrolyte Li5La3Ta2O12 towards lithium by a surface science approach J. Power Sources 366 72–79
    [72]
    Liu Z, Fu W, Payzant E A, Yu X, Wu Z, Dudney N J, Kiggans J, Hong K, Rondinone A J and Liang C 2013 Anomalous high ionic conductivity of nanoporous beta-Li3PS4 J. Am. Chem. Soc. 135 975–8
    [73]
    Deiseroth H-J, Kong S-T, Eckert H, Vannahme J, Reiner C, Zaiss T and Schlosser M 2008 Li6PS5X: a class of crystalline Li-rich solids with an unusually high Li+ mobility Angew. Chem., Int. Ed. 47 755–8
    [74]
    Kamaya N et al 2011 A lithium superionic conductor Nat. Mater. 10 682–6
    [75]
    Wingender J, Redaktion R and Hartwig A 2013 Phosphor RÖMPP. Thieme Gruppe (available at: https://roempp.thieme.de/lexicon/RD-16-01961) (Accessed 16 October 2023)
    [76]
    Yamamoto K et al 2021 High ionic conductivity of liquid-phase-synthesized Li3PS4 solid electrolyte, comparable to that obtained via ball milling ACS Appl. Energy Mater. 4 2275–81
    [77]
    Li X, Liang J, Yang X, Adair K R, Wang C, Zhao F and Sun X 2020 Progress and perspectives on halide lithium conductors for all-solid-state lithium batteries Energy Environ. Sci. 13 1429–61
    [78]
    Braga M H, Ferreira J A, Stockhausen V, Oliveira J E and El-Azab A 2014 Novel Li3ClO based glasses with superionic properties for lithium batteries J. Mater. Chem. A 2 5470–80
    [79]
    Kwak H et al 2021 New cost-effective halide solid electrolytes for all-solid-state batteries: mechanochemically prepared Fe3+-substituted Li2ZrCl6 Adv. Energy Mater. 11 2003190
    [80]
    Li X et al 2019 Air-stable Li3InCl6 electrolyte with high voltage compatibility for all-solid-state batteries Energy Environ. Sci. 12 2665–71
    [81]
    Heenen H H, Voss J, Scheurer C, Reuter K and Luntz A C 2019 Multi-ion conduction in Li3OCl glass electrolytes J. Phys. Chem. Lett. 10 2264–9
    [82]
    Zhao Y and Daemen L L 2012 Superionic conductivity in lithium-rich anti-perovskites J. Am. Chem. Soc. 134 15042–7
    [83]
    Li X et al 2019 Water-mediated synthesis of a superionic halide solid electrolyte Angew. Chem. 131 16579–84
    [84]
    Wang C et al 2021 A universal wet-chemistry synthesis of solid-state halide electrolytes for all-solid-state lithium-metal batteries Sci. Adv. 7 eabh1896
    [85]
    Arya A and Sharma A L 2020 A glimpse on all-solid-state Li-ion battery (ASSLIB) performance based on novel solid polymer electrolytes: a topical review J. Mater. Sci. 55 6242–304
    [86]
    Zhao Y, Wang L, Zhou Y, Liang Z, Tavajohi N, Li B and Li T 2021 Solid polymer electrolytes with high conductivity and transference number of Li ions for Li-based rechargeable batteries Adv. Sci. 8 2003675
    [87]
    Sashmitha K and Rani M U 2023 A comprehensive review of polymer electrolyte for lithium-ion battery Polym. Bull. 80 89–135
    [88]
    Ravve A 2012 Principles of Polymer Chemistry (Springer) (https://doi.org/10.1002/pola.25955)
    [89]
    Peacock A J and Calhoun A 2012 Polymer Chemistry: Properties and Application (Carl Hanser Verlag GmbH & Company KG)
    [90]
    Ye F, Liao K, Ran R and Shao Z 2020 Recent advances in filler engineering of polymer electrolytes for solid-state Li-ion batteries: a review Energy Fuels 34 9189–207
    [91]
    Waidha A I, Ferber T, Donzelli M, Hosseinpourkahvaz N, Vanita V, Dirnberger K, Ludwigs S, Hausbrand R, Jaegermann W and Clemens O 2021 Compositional dependence of Li-ion conductivity in garnet-rich composite electrolytes for all-solid-state lithium-ion batteries-toward understanding the drawbacks of ceramic-rich composites ACS Appl. Mater. Interfaces 13 31111–28
    [92]
    Hees T, Zhong F, Sturzel M and Mulhaupt R 2019 Tailoring hydrocarbon polymers and all-hydrocarbon composites for circular economy Macromol. Rapid Commun. 40 e1800608
    [93]
    Doose S, Mayer J K, Michalowski P and Kwade A 2021 Challenges in ecofriendly battery recycling and closed material cycles: a perspective on future lithium battery generations Metals 11 291
    [94]
    Miara L, Windmuller A, Tsai C-L, Richards W D, Ma Q, Uhlenbruck S, Guillon O and Ceder G 2016 About the compatibility between high voltage spinel cathode materials and solid oxide electrolytes as a function of temperature ACS Appl. Mater. Interfaces 8 26842–50
    [95]
    Gellert M, Dashjav E, Grüner D, Ma Q and Tietz F 2017 Compatibility study of oxide and olivine cathode materials with lithium aluminum titanium phosphate Ionics 24 1001–6
    [96]
    Rumpel M, Nagler F, Appold L, Stracke W, Flegler A, Clemens O and Sextl G 2022 Thermal stabilities of Mn-based active materials in combination with the ceramic electrolyte LATP for ASSB bulk cathodes Mater. Adv. 3 4015–25
    [97]
    Wiberg N 2008 Lehrbuch der Anorganischen Chemie 102 edn (De Gruyter) (https://doi.org/10.1515/9783110177701)
    [98]
    Redaktion R 2002 Zirconium RÖMPP. Thieme Gruppe (available at: https://roempp.thieme.de/lexicon/RD-26-00467) (Accessed 16 October 2023)
    [99]
    Schirmer T, Qiu H, Goldmann D, Stallmeister C and Friedrich B 2022 Influence of P and Ti on phase formation at solidification of synthetic slag containing Li, Zr, La, and Ta Minerals 12 310
    [100]
    Geeson M B and Cummins C C 2020 Let’s make white phosphorus obsolete ACS Central Sci. 6 848–60
    [101]
    Heitmann A and Reher P 1974 Recycling-Prozesse für Schwefel-Verbindungen Chem. Ing. Tech. 46 589–94
    [102]
    Blengini G A et al (European Commission) 2020 Study on the EU’s list of critical raw materials—final report Publications Office of the European Union (https://doi.org/10.2873/11619)
    [103]
    Oelkers B 2002 Zirconiumchloride RÖMPP. Thieme Gruppe (available at: https://roempp.thieme.de/lexicon/RD-26-00469) (Accessed 16 October 2023)
    [104]
    Redaktion R 2002 Yttrium-Verbindungen RÖMPP. Thieme Gruppe (available at: https://roempp.thieme.de/lexicon/ RD-25-00067) (Accessed 16 October 2023)
    [105]
    Vohlídal J 2021 Polymer degradation: a short review Chem. Teach. Int. 3 213–20
    [106]
    Nisar A, Khan S, Hameed M, Nisar A, Ahmad H and Mehmood S A 2021 Bio-conversion of CO2 into biofuels and other value-added chemicals via metabolic engineering Microbiol. Res. 251 126813
    [107]
    Saleh H M and Hassan A I 2023 Green conversion of carbon dioxide and sustainable fuel synthesis Fire 6 128
    [108]
    Ali Nowroozi M, Iqbal Waidha A, Jacob M, van Aken P A, Predel F, Ensinger W and Clemens O 2022 Towards recycling of LLZO solid electrolyte exemplarily performed on LFP/LLZO/LTO cells ChemistryOpen 11 e202100274
    [109]
    Falcón H, Goeta A E, Punte G and Carbonio R E 1997 Crystal structure refinement and stability of LaFexNi1-xO3 solid solutions J. Solid State Chem. 133 379–85
    [110]
    Rodríguez-Carvajal J, Hennion M, Moussa F, Moudden A H, Pinsard L and Revcolevschi A 1998 Neutron-diffraction study of the Jahn-Teller transition in stoichiometric LaMnO3 Phys. Rev. B 57 R3189–92
    [111]
    Thornton G, Tofield B C and Hewat A W 1986 A neutron diffraction study of LaCoO3 in the temperature range 4.2 < T < 1248 K J. Solid State Chem. 61 301–7
    [112]
    Bhatia H, Thieu D T, Pohl A H, Chakravadhanula V S K, Fawey M H, Kubel C and Fichtner M 2017 Conductivity optimization of tysonite-type La1-xBaxF3-x solid electrolytes for advanced fluoride ion battery ACS Appl. Mater. Interfaces 9 23707–15
    [113]
    Holleman A F and Wiberg N 1995 Lehrbuch der Anorganischen Chemie 101 edn (deGruyter) (https://doi.org/10.1002/ange.19961082135)
    [114]
    Bae H and Kim Y 2021 Technologies of lithium recycling from waste lithium ion batteries: a review Mater. Adv. 2 3234–50
    [115]
    Waidha A I et al 2023 Recycling of all-solid-state li-ion batteries: a case study of the separation of individual components within a system composed of LTO, LLZTO and NMC ChemSusChem 16 e202202361
    [116]
    Ghidiu M, Ruhl J, Culver S P and Zeier W G 2019 Solution-based synthesis of lithium thiophosphate superionic conductors for solid-state batteries: a chemistry perspective J. Mater. Chem. A 7 17735–53
    [117]
    Nikodimos Y, Huang C-J, Taklu B W, Su W-N and Hwang B J 2022 Chemical stability of sulfide solid-state electrolytes: stability toward humid air and compatibility with solvents and binders Energy Environ. Sci. 15 991–1033
    [118]
    Prayog L D, Faisal M, Kartini E, Hoggowiranto W and Supardi S 2016 Morphology and conductivity study of solid electrolyte Li3PO4 AIP Conf. Proc. 1710 030047
    [119]
    Stöffler H et al 2019 Amorphous versus crystalline Li3PS4: local structural changes during synthesis and Li ion mobility J. Phys. Chem. C 123 10280–90
    [120]
    Dietrich C, Weber D A, Culver S, Senyshyn A, Sedlmaier S J, Indris S, Janek J and Zeier W G 2017 Synthesis, structural characterization, and lithium ion conductivity of the lithium thiophosphate Li2P2S6 Inorg. Chem. 56 6681–7
    [121]
    Dietrich C, Weber D A, Sedlmaier S J, Indris S, Culver S P, Walter D, Janek J and Zeier W G 2017 Lithium ion conductivity in Li2S–P2S5 glasses—building units and local structure evolution during the crystallization of superionic conductors Li3PS4, Li7P3S11 and Li4P2S7 J. Mater. Chem. A 5 18111–9
    [122]
    Kuhn A, Duppel V and Lotsch B V 2013 Tetragonal Li10GeP2S12 and Li7GePS8—exploring the Li ion dynamics in LGPS Li electrolytes Energy Environ. Sci. 6 3548–52
    [123]
    Calpa M, Nakajima H, Mori S, Goto Y, Mizuguchi Y, Moriyoshi C, Kuroiwa Y, Rosero-Navarro N C, Miura A and Tadanaga K 2021 Formation mechanism of β-Li3PS4 through decomposition of complexes Inorg. Chem. 60 6964–70
    [124]
    Wang H, Hood Z D, Xia Y and Liang C 2016 Fabrication of ultrathin solid electrolyte membranes of β-Li3PS4 nanoflakes by evaporation-induced self-assembly for all-solid-state batteries J. Mater. Chem. A 4 8091–6
    [125]
    Hikima K, Ogawa K, Gamo H and Matsuda A 2023 Li10GeP2S12 solid electrolytes synthesised via liquid-phase methods Chem. Commun. 59 6564–7
    [126]
    Yubuchi S, Teragawa S, Aso K, Tadanaga K, Hayashi A and Tatsumisago M 2015 Preparation of high lithium-ion conducting Li6PS5Cl solid electrolyte from ethanol solution for all-solid-state lithium batteries J. Power Sources 293 941–5
    [127]
    Yubuchi S, Uematsu M, Hotehama C, Sakuda A, Hayashi A and Tatsumisago M 2019 An argyrodite sulfide-based superionic conductor synthesized by a liquid-phase technique with tetrahydrofuran and ethanol J. Mater. Chem. A 7 558–66
    [128]
    Teragawa S, Aso K, Tadanaga K, Hayashi A and Tatsumisago M 2013 Formation of Li2S-P2S5 solid electrolyte from N-methylformamide solution Chem. Lett. 42 1435–7
    [129]
    Teragawa S, Aso K, Tadanaga K, Hayashi A and Tatsumisago M 2014 Preparation of Li2S–P2S5 solid electrolyte from N-methylformamide solution and application for all-solid-state lithium battery J. Power Sources 248 939–42
    [130]
    Zhou L, Park K-H, Sun X, Lalère F, Adermann T, Hartmann P and Nazar L F 2018 Solvent-engineered design of argyrodite Li6PS5X (X = Cl, Br, I) solid electrolytes with high ionic conductivity ACS Energy Lett. 4 265–70
    [131]
    Zhang Z, Zhang L, Liu Y, Yan X, Xu B and Wang L-M 2020 One-step solution process toward formation of Li6PS5Cl argyrodite solid electrolyte for all-solid-state lithium-ion batteries J. Alloys Compd. 812 152103
    [132]
    Wissel K et al 2023 Dissolution and recrystallization behavior of Li3PS4 in different organic solvents with a focus on N-methylformamide ACS Appl. Energy Mater. 6 7790–802
    [133]
    Ruhl J, Riegger L M, Ghidiu M and Zeier W G 2021 Impact of solvent treatment of the superionic argyrodite Li6PS5Cl on solid-state battery performance Adv. Energy Sustain. Res. 2 2000077
    [134]
    Yubuchi S, Uematsu M, Deguchi M, Hayashi A and Tatsumisago M 2018 Lithium-ion-conducting argyrodite-type Li6PS5X (X = Cl, Br, I) solid electrolytes prepared by a liquid-phase technique using ethanol as a solvent ACS Appl. Energy Mater. 1 3622–9
    [135]
    Azhari L, Bong S, Ma X and Wang Y 2020 Recycling for all solid-state lithium-ion batteries Matter 3 1845–61
    [136]
    Zhu Y, He X and Mo Y 2015 Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations ACS Appl. Mater. Interfaces 7 23685–93
    [137]
    Morchhale A, Tang Z, Yu C, Farahati R and Kim J-H 2023 Coating materials and processes for cathodes in sulfide-based all solid-state batteries Curr. Opin. Electrochem. 39 101251
    [138]
    Wissel K, Haben A, Küster K, Starke U, Kautenburger R, Ensinger W and Clemens O 2023 Recycling of β-Li3PS4-based all-solid-state Li-ion batteries: Interactions of electrode materials and electrolyte in a dissolution-based separation process (https://doi.org/ 10.48550/arxiv.2311.07190)
    [139]
    Heubner C, Maletti S, Auer H, Hüttl J, Voigt K, Lohrberg O, Nikolowski K, Partsch M and Michaelis A 2021 From lithium-metal toward anode-free solid-state batteries: current developments, issues, and challenges Adv. Funct. Mater. 31 2106608
    [140]
    Hood Z D, Kates C, Kirkham M, Adhikari S, Liang C and Holzwarth N A W 2016 Structural and electrolyte properties of Li4P2S6 Solid State Ionics 284 61–70
    [141]
    Wolf G-U and Meisel M 1982 Beiträge zur Chemie von Phosphorverbindungen mit Adamantanstruktur. Uber ¨ Darstellung und Eigenschaften von Nonathio-cyclotriphosphat Z. Anorg. Allg. Chem. 494 49–54
    [142]
    Sitzmann H, Redaktion R and Schmidt A 2008 Phosphane RÖMPP. Thieme Gruppe (available at: https://roempp.thieme.de/lexicon/RD-16-01853) (Accessed 16 October 2023)
    [143]
    Sitzmann H 2006 Chloride RÖMPP. Thieme Gruppe (available at: https://roempp.thieme.de/lexicon/RD-03- 01457) (Accessed 16 October 2023)
    [144]
    Seifert H J 2006 Ternary chlorides of the trivalent late lanthanides J. Therm. Anal. Calorim. 83 479–505
    [145]
    Kear G, Barker B D and Walsh F C 2004 Electrochemical corrosion of unalloyed copper in chloride media—-a critical review Corros. Sci. 46 109–35
    [146]
    Jacob M, Wissel K, Clemens O et al in preparation
    [147]
    Humani N 2021 Recycling of Li3OCl-based solid-state batteries Bachelor Thesis Institut für Materialwissenschaft. Chemische Materialsynthese (University of Stuttgart)
    [148]
    Ensing B, Tiwari A, Tros M, Hunger J, Domingos S R, Perez C, Smits G, Bonn M, Bonn D and Woutersen S 2019 On the origin of the extremely different solubilities of polyethers in water Nat. Commun. 10 2893
    [149]
    Özdemir C and Güner A 2007 Solubility profiles of poly(ethylene glycol)/solvent systems, I: qualitative comparison of solubility parameter approaches Eur. Polym. J. 43 3068–93
    [150]
    Xin N, Sun Y, He M, Radke C J and Prausnitz J M 2018 Solubilities of six lithium salts in five non-aqueous solvents and in a few of their binary mixtures Fluid Phase Equilib. 461 1–7
    [151]
    Roth S H 2004 Signal Transduction and the Gasotransmitters: NO, CO, and H2S in Biology and Medicine ed R Wang (Humana Press) pp 293–313
    [152]
    Jovell D, Pou J O, Llovell F and Gonzalez-Olmos R 2022 Life cycle assessment of the separation and recycling of fluorinated gases using ionic liquids in a circular economy framework ACS Sustain. Chem. Eng. 10 71–80
    [153]
    Popp D 2022 (available at: www.europarl.europa.eu/news/en/press-room/20221205IPR60614/batteries-deal-on-new-eurules-for-design-production-and-waste-treatment) (Accessed 16 October 2023)
    [154]
    Mao J, Ye C, Zhang S, Xie F, Zeng R, Davey K, Guo Z and Qiao S 2022 Toward practical lithium-ion battery recycling: adding value, tackling circularity and recycling-oriented design Energy Environ. Sci. 15 2732–52
    [155]
    Pozo Arcos B, Balkenende A R, Bakker C A and Sundin E 2018 Product design for a circular economy: functional recovery on focus DS 92: Proc. Design 2018 15th Int. Design Conf. pp 2727–38
  • 加载中

Catalog

    Figures(1)

    Article Metrics

    Article Views(289) PDF downloads(92)
    Article Statistics
    Related articles from

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return