Volume 3 Issue 1
March  2024
Turn off MathJax
Article Contents
Leilei Qiao, Ruiting Zhao, Cheng Song, Yongjian Zhou, Qian Wang, Tian-Ling Ren, Feng Pan. Observation of stabilized negative capacitance effect in hafnium-based ferroic films[J]. Materials Futures, 2024, 3(1): 011001. doi: 10.1088/2752-5724/ad0524
Citation: Leilei Qiao, Ruiting Zhao, Cheng Song, Yongjian Zhou, Qian Wang, Tian-Ling Ren, Feng Pan. Observation of stabilized negative capacitance effect in hafnium-based ferroic films[J]. Materials Futures, 2024, 3(1): 011001. doi: 10.1088/2752-5724/ad0524
Letter •
OPEN ACCESS

Observation of stabilized negative capacitance effect in hafnium-based ferroic films

© 2024 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory
Materials Futures, Volume 3, Number 1
  • Received Date: 2023-06-23
  • Accepted Date: 2023-10-19
  • Publish Date: 2024-01-03
  • A negative capacitance (NC) effect has been proposed as a critical pathway to overcome the 'Boltzmann tyranny' of electrons, achieve the steep slope operation of transistors and reduce the power dissipation of current semiconductor devices. In particular, the ferroic property in hafnium-based films with fluorite structure provides an opportunity for the application of the NC effect in electronic devices. However, to date, only a transient NC effect has been confirmed in hafnium-based ferroic materials, which is usually accompanied by hysteresis and is detrimental to low-power transistor operations. The stabilized NC effect enables hysteresis-free and low-power transistors but is difficult to observe and demonstrate in hafnium-based films. This difficulty is closely related to the polycrystalline and multi-phase structure of hafnium-based films fabricated by atomic layer deposition or chemical solution deposition. Here, we prepare epitaxial ferroelectric Hf0.5Zr0.5O2 and antiferroelectric ZrO2 films with single-phase structure and observe the capacitance enhancement effect of Hf0.5Zr0.5O2/Al2O3 and ZrO2/Al2O3 capacitors compared to that of the isolated Al2O3 capacitor, verifying the stabilized NC effect. The capacitance of Hf0.5Zr0.5O2 and ZrO2 is evaluated as −17.41 and −27.64 pF, respectively. The observation of the stabilized NC effect in hafnium-based films sheds light on NC studies and paves the way for low-power transistors.

  • loading
  • [1]
    Theis T N and Solomon P M 2010 It’s time to reinvent the transistor! Science 327 1600
    [2]
    Salahuddin S and Datta S 2008 Use of negative capacitance to provide voltage amplification for low power nanoscale devices Nano Lett. 8 405–10
    [3]
    Salvatore G A, Bouvet D and Ionescu A M 2008 Demonstration of subthreshold swing smaller than 60 mV/decade in Fe-FET with P(VDF-TrFE)/SiO2 gate stack IEEE Int. Electron Devices Meeting (IEDM) pp 167–70
    [4]
    Qiao L, Song C, Sun Y, Fayaz M U, Lu T, Yin S, Chen C, Xu H, Ren T-L and Pan F 2021 Observation of negative capacitance in antiferroelectric PbZrO3 films Nat. Commun. 12 4215
    [5]
    Müller J et al 2013 Ferroelectric hafnium oxide: a CMOS-compatible and highly scalable approach to future ferroelectric memories IEEE Int. Electron Devices Meeting pp 10.8.1–4
    [6]
    Lee H-J, Lee M, Lee K, Jo J, Yang H, Kim Y, Chae S C, Waghmare U and Lee J H 2020 Scale-free ferroelectricity induced by flat phonon bands in HfO2 Science 369 6509
    [7]
    Cheema S S et al 2020 Enhanced ferroelectricity in ultrathin films grown directly on silicon Nature 580 478–82
    [8]
    Park M H, Kim H J, Kim Y J, Lee W, Kim H K and Hwang S C 2013 Effect of forming gas annealing on the ferroelectric properties of Hf0.5Zr0.5O2 thin films with and without Pt electrodes Appl. Phys. Lett. 102 112914
    [9]
    Schroeder U, Park M H, Mikolajick T and Hwang C S 2022 The fundamentals and applications of ferroelectric HfO2 Nat. Rev. Mater. 7 653–69
    [10]
    Hoffmann M, Slesazeck S, Mikolajick T and Hwang C S 2019 Ferroelectricity in Doped Hafnium Oxide Duxford (Woodhead Publishing) p 473
    [11]
    Khan A I, Chatterjee K, Brian W, Drapcho S, You L, Serrao C, Bakaul S R, Ramesh R and Salahuddin S 2015 Negative capacitance in a ferroelectric capacitor Nat. Mater. 14 5
    [12]
    Hoffmann M, Peˇsi´c M, Chatterjee K, Khan A I, Salahuddin S, Slesazeck S, Schroeder U and Mikolajick T 2016 Direct observation of negative capacitance in polycrystalline ferroelectric HfO2 Adv. Funct. Mater. 26 8643–9
    [13]
    Saha A K, Datta S and Gupta S K 2018 “Negative capacitance” in resistor-ferroelectric and ferroelectric-dielectric networks: apparent or intrinsic? J. Appl. Phys. 123 105102
    [14]
    Hoffmann M, Khan A I, Serrao C, Lu Z, Salahuddin S, Peˇsi´c M, Slesazeck S, Schroeder U and Mikolajick T 2018 Ferroelectric negative capacitance domain dynamics J. Appl. Phys. 123 184101
    [15]
    Chen J-D, Han W-H, Yang C, Zhao X-S, Guo Y-Y, Zhang X-D and Yang F-H 2020 Recent research progress of ferroelectric negative capacitance field effect transistors Acta Phys. Sin. 69 137701
    [16]
    Hoffmann M, Slesazeck S and Mikolajick T 2021 Progress and future prospects of negative capacitance electronics: a materials perspective APL Mater. 9 020902
    [17]
    Wang Y et al 2020 Record-low subthreshold-swing negative-capacitance 2D field-effect transistors Adv. Mater. 32 2005353
    [18]
    Hoffmann M, Fengler F P G, Herzig M, Mittmann T, Max B, Schroeder U, Negrea R, Lucian P, Slesazeck S and Mikolajick T 2019 Unveiling the double-well energy landscape in a ferroelectric layer Nature 565 464–7
    [19]
    Rollo T, Blanchini F, Giordano G, Specogna R and Esseni D 2019 Revised analysis of negative capacitance in ferroelectric-insulator capacitors: analytical and numerical results, physical insight, comparison to experiments IEEE Annual Inter. Electron Devices Meeting (https://doi.org/ 10.1109/IEDM19573.2019.8993436)
    [20]
    Esseni D and Fontanini R 2021 Macroscopic and microscopic picture of negative capacitance operation in ferroelectric capacitors Nanoscale 13 9641–50
    [21]
    Cheema S S et al 2022 Ultrathin ferroic HfO2–ZrO2 superlattice gate stack for advanced transistors Nature 604 65–71
    [22]
    Jo S et al 2023 Negative differential capacitance in ultrathin ferroelectric Hafnia Nat. Electron. 6 390–7
    [23]
    Park M H, Kim H J, Kim Y J, Lee W, Moon T and Hwang C S 2013 Evolution of phases and ferroelectric properties of thin Hf0.5Zr0.5O2 films according to the thickness and annealing temperature Appl. Phys. Lett. 102 242905
    [24]
    Ohtaka O, Fukui H, Kunisada T and Fujisawa T O 2004 Phase relations and volume changes of hafnia under high pressure J. Am. Ceram. Soc. 84 5
    [25]
    Starschich S, Griesche D, Schneller T, Waser R and Bottger U 2014 Chemical solution deposition of ferroelectric yttrium-doped hafnium oxide films on platinum electrode Appl. Phys. Lett. 104 202903
    [26]
    Hsain H A, Lee Y, Materano M, Mittmann T, Payne A, Mikolajick T, Schroeder U, Parsons G N and Jones J L 2022 Many routes to ferroelectric HfO2: a review of current deposition methods J. Vac. Sci. Technol. A 40 010803
    [27]
    Pujar P, Cho H, Gandla S, Naqi M, Hong S and Kim S 2021 Sub-thermionic negative capacitance field effect transistors with solution combustion-derived Hf0.5Zr0.5O2 Adv. Funct. Mater. 31 2103748
    [28]
    Song J, Qi Y, Xiao Z, Wang K, Li D, Kim S-H, Kingon A I, Rappe A M and Hong X 2022 Domain wall enabled steep slope switching in MoS2 transistors towards hysteresis-free operation npj 2D Mater. Appl. 6 77
    [29]
    Park H W, Oh M and Hwang C S 2022 Negative capacitance from the inhomogenous stray field in a ferroelectric– dielectric structure Adv. Funct. Mater. 32 2200389
    [30]
    Cho H W, Pujar P, Choi M, Kang S, Hong S, Park J, Baek S, Kim Y, Lee J and Kim S 2021 Direct growth of orthorhombic Hf0.5Zr0.5O2 thin films for hysteresis-free MoS2 negative capacitance field-effect transistors npj 2D Mater. Appl. 5 1–8
    [31]
    Cho H, Pujar P, Choi M, Naqi M, Cho Y, Rho H Y, Lee J and Kim S 2021 Expeditiously crystallized pure orthorhombic-Hf0.5Zr0.5O2 for negative capacitance field effect transistors ACS Appl. Mater. Interfaces 13 60250–60
    [32]
    Khan A I, Keshavarzi A and Datta S 2020 The future of ferroelectric field-effect transistor technology Nat. Electron. 3 588–97
    [33]
    Zhang Z, Su M, Li G, Wang J, Zhang X, Ho J C, Wang C, Wan D, Liu X and Liao L 2020 Stable hysteresis-free MoS2 transistors with low-k/high/k bilayer gate dielectrics IEEE Electron. Device Lett. 41 1036–9
    [34]
    Zubko P, Wojdeł J C, Hadjimichael M, Fernandez-Pena S, Sené A, Luk’yanchuk I, Triscone J-M and ´I˜niguez J 2016 Negative capacitance in multidomain ferroelectric superlattices Nature 534 15
    [35]
    Yadav A K et al 2019 Spatially resolved steady-state negative capacitance Nature 565 468–71
    [36]
    Park M H, Lee Y H and Hwang C S 2019 Understanding ferroelectric phase formation in doped HfO2 thin films based on classical nucleation theory Nanoscale 11 19477–87
    [37]
    Park M H, Lee Y H, Mikolajick T, Schroeder U and Hwang C S 2019 Thermodynamic and kinetic origins of ferroelectricity in fluorite structure oxides Adv. Electron. Mater. 5 1800522
    [38]
    Zhao D, Lenz T, Gelinck G H, Groen P, Damjanovic D, de Leeuw D M and Katsouras I 2019 Depolarization of multidomain ferroelectric materials Nat. Commun. 10 2547
    [39]
    Luk’yanchuk I, Tikhonov Y, Sené A, Razumnaya A and Vinokur V M 2019 Harnessing ferroelectric domains for negative capacitance Commun. Phys. 2 22
    [40]
    Park H W, Roh J, Lee Y B and Hwang C S 2019 Modeling of negative capacitance in ferroelectric thin films Adv. Mater. 31 1805266
    [41]
    Wei Y et al 2018 A rhombohedral ferroelectric phase in epitaxially strained Hf0.5Zr0.5O2 thin films Nat. Mater. 17 1095–100
    [42]
    Yoong H Y et al 2018 Epitaxial ferroelectric Hf0.5Zr0.5O2 thin films and their implementations in memristors for brain-inspired computing Adv. Funct. Mater. 28 1806037
    [43]
    Estandía S, Dix N, Gazquez J, Fina I, Lyu J, Chisholm M F, Fontcuberta J and Sánchez F 2019 Engineering ferroelectric Hf0.5Zr0.5O2 thin films by epitaxial stress ACS Appl. Electron. Mater. 1 1449–57
    [44]
    Pintilie L, Lisca M and Alexe M 2005 Polarization reversal and capacitance-voltage characteristic of epitaxial Pb(Zr,Ti)O3 layers Appl. Phys. Lett. 86 192902
    [45]
    Luo Q et al 2020 A highly CMOS compatible hafnia-based ferroelectric diode Nat. Commun. 11 1391
    [46]
    Catalan G, O’Neill D, Bowman R M and Gregg J M 2000 Relaxor features in ferroelectric superlattices: a maxwell–wagner approach Appl. Phys. Lett. 77 3078–80
    [47]
    Zhang Z et al 2022 Flexible polystyrene/graphene composites with epsilon-near-zero properties Adv. Compos. Hybrid Mater. 5 1054–66
    [48]
    Xie P et al 2022 Recent advances in radio-frequency negative dielectric metamaterials by designing heterogeneous composites Adv. Compos. Hybrid Mater. 5 679–95
    [49]
    Wu H, Zhong Y, Tang Y, Huang Y, Liu G, Sun W, Xie P, Pan D, Liu C and Guo Z 2022 Precise regulation of weekly negative permittivity in CaCu3Ti4O12 metacomposites by synergistic effects of carbon nanotubes and grapheme Adv. Compos. Hybrid Mater. 5 419–30
    [50]
    Chang S C et al 2021 FeRAM using anti-ferroelectric capacitors for high-speed and high-density embedded memory 2021 IEEE Inter. Electron Devices Meeting (IEDM) pp 33.2.1–4
    [51]
    Yan X et al 2019 Robust Ag/ZrO2/WS2/Pt memristor for neuromorphic computing ACS Appl. Mater. Interfaces 11 48029–38
    [52]
    Hoffmann M et al 2022 Antiferroelectric negative capacitance from a structural phase transition in zirconia Nat. Commun. 13 1228
    [53]
    Ali F, Ali T, Lehninger D, Sunbul A, Viegas A, Sachdeva R, Abbas A, Czernohorsky M and Seidel K 2022 Fluorite-structured ferroelectric and antiferroelectric materials: a gateway of miniaturized electronic devices Adv. Funct. Mater. 32 2201737
    [54]
    Cheema S S et al 2022 Emergent ferroelectricity in subnanometer binary oxide films on silicon Science 5 376
    [55]
    Luo X, Toprasertpong K, Takenaka M and Takagi S 2021 Antiferroelectric properties of ZrO2 ultra-thin films prepared by atomic layer deposition Appl. Phys. Lett. 118 232904
    [56]
    Gao S et al 2022 Highly transmitted silver nanowiresSWCNTs conductive flexible film by nested density structure and aluminum-doped zinc oxide capping layer for flexible amorphous silicon solar cells J. Mater. Sci. Technol. 126 152–60
    [57]
    Hou C et al 2023 Boosted lithium storage performance by local build-in electric field derived by oxygen vacancies in 3D holey N-doped carbon structure decorated with molybdenum dioxide J. Mate. Sci. Technol. 142 185–95
    [58]
    Ma R et al 2022 Enhanced energy storage of lead-free mixed oxide core double-shell barium strontium zirconate titanate@magnesium aluminate@zinc oxide-boron trioxide-silica ceramic nanocomposites Adv. Compos. Hybrid Mater. 5 1477–89
    [59]
    Wu N, Zhao B, Chen X, Hou C, Huang M, Alhadhrami A, Mersal G A M, Ibrahim M M and Tian J 2022 Dielectric properties and electromagnetic simulation of molybdenum disulfide and ferric oxide-modified Ti3C2TX MXene hetero-structure for potential microwave absorption Adv. Compos. Hybrid Mater. 5 1548–56
    [60]
    Jiang X et al 2022 Manipulation of current rectification in van der Waals ferroionic CuInP2S6 Nat. Commun. 13 574
    [61]
    Dai S et al 2022 Robustly stable ferroelectric polarization states enable long-term nonvolatile storage against radiation in hfo2-based ferroelectric field-effect transistors ACS Adv. Appl. Mater. Interfaces 14 51459–67
    [62]
    Liao J, Dai S, Peng R-C, Yang J, Zeng B, Liao M and Zhou Y 2023 HfO2-based ferroelectric thin film and memory device applications in the post-Moore era: a review Fundam. Res. 3 332–45
  • 加载中

Catalog

    Figures(1)

    Article Metrics

    Article Views(138) PDF downloads(99)
    Article Statistics
    Related articles from

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return