Metallic glass roadmap
[J]. Materials Futures. DOI: 10.1088/2752-5724/adcfb6Citation: |
Wei-Hua Wang, Rui Zhao, Rong Han, Ying-Hui Shang, Yong Yang, SongLing Liu, Shi-Yun Zhang, Yuan-Chao Hu, Yi-Tao Sun, Ming-Xing Li, Ling-Xiang Shi, Ke-Fu Yao, Jiang Ma, Hai-Bo Ke, Yong Zhao, Bo Zhang, Xing Tong, HaiYang Bai, Si-Nan Liu, Zhen-Duo Wu, Si Lan, Qi Cheng, Ji-Han Zhou, Heng Kang, Peng-Fei Guan, Zhen-Wei Wu, Hua-Ping Zhang, Peng Luo, LaiQuan Shen, Hai-Bin Yu, Sen-Kuan Meng, Zheng Wang, Hai-Long Peng, Shuai Ren, Yu Tong, Li-Jian Song, Jun-Tao Huo, Jun-Qiang Wang, Jing-Li Ren, Peng Wang, Mao-Zhi Li, Bei-Bei Fan, Bo Huang, Jun Yi, Xi-Lei Bian, Qing Wang, Gang Wang, Min-Qiang Jiang, Yin-Xiao Wang, Zheng-Wang Zhu, Hai-Feng Zhang, Chuan-Kun Zhou, Ming Liu, Shao-Fan Zhao, Jing Zhou, Xue-Song Li, Bao-An Sun, Zhen Lu, Shu-Jie Pang, Hu-Yang Li, HuaiJun Lin, Ji Wang, Xing-Yao Wang, Yu-Han Shen, Cheng-Rong Cao, BenZhen Tang, Peng Yu. Metallic glass roadmap [J]. Materials Futures. DOI: 10.1088/2752-5724/adcfb6 |
Metallic glass roadmap
Metallic glasses that mainly make up of metallic elements are new family member of glassy materials. This new kind of glass combines the characters of liquids and solids, glasses and metals, making it fascinating to both scientists and industrialists. With the discovery of more and more systems, metallic glass is becoming one of the most active research field in metallic materials, and some concepts and technology derived from metallic glasses also facilitate the development of other materials from quasi-crystals to high entropy alloys. Metallic glasses have now been successfully used in aerospace, robotics, medicine and consumer electronics etc., and the real applications of metallic glasses are still growing. On the other hand, the diverse properties and the unique structural of the metallic glasses render them ideal models to study major open issues including structural model of disordered materials, glass transition, collective motion and energy landscape etc. However, the understanding the emerging properties and phenomena of metallic glasses still poses enormous challenges, which have stimulated a wealth of new experimental approaches, the synthesis of new systems with tailored properties, novel experimental techniques and theoretical and numerical methods. In this Roadmap, we try to provide a broad overview of recent and possible future activities in the metallic glass field, and present a roadmap to future development and applications of metallic glasses by gathering contributions with different backgrounds, illustrating the major challenges and discussing the latest technology and strategy to tackle these challenges with experts covering various developments and challenges in general concepts, synthesis and characterisation, and simulation and theoretical methods.
[1] |
. W. Klement, R. H. Willens, P. O. L. Duwez, Non-crystalline Structure in Solidified Gold-Silicon Alloys. Nature 187, 869-870 (1960).
|
[2] |
. L. G. Sun, G. Wu, Q. Wang, J. Lu, Nanostructural metallic materials: Structures and mechanical properties. Materials Today 38, 114-135 (2020).
|
[3] |
. J. Pan, Y. P. Ivanov, W. H. Zhou, Y. Li, A. L. Greer, Strain-hardening and suppression of shear-banding in rejuvenated bulk metallic glass. Nature 578, 559-562 (2020).
|
[4] |
. M. M. Khan et al., Recent Advancements in Bulk Metallic Glasses and Their Applications: A Review. Critical Reviews in Solid State and Materials Sciences 43, 233-268 (2018).
|
[5] |
. M. M. Trexler, N. N. Thadhani, Mechanical properties of bulk metallic glasses. Progress in Materials Science 55, 759-839 (2010).
|
[6] |
. H. X. Li, Z. C. Lu, S. L. Wang, Y. Wu, Z. P. Lu, Fe-based bulk metallic glasses: Glass formation, fabrication, properties and applications. Progress in Materials Science 103, 235-318 (2019).
|
[7] |
. W. H. Wang, The elastic properties, elastic models and elastic perspectives of metallic glasses. Progress in Materials Science 57, 487-656 (2012).
|
[8] |
. W. Johnson, Thermodynamic and kinetic aspects of the crystal to glass transformation in metallic materials. Progress in Materials Science 30, 81-134 (1986).
|
[9] |
. A. L. Greer, M. B. Costa, O. S. Houghton, Metallic glasses. MRS Bulletin 48, 1054-1061 (2023).
|
[10] |
. B. Zberg, P. J. Uggowitzer, J. F. Löffler, MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. Nature Materials 8, 887-891 (2009).
|
[11] |
. H. J. Yu et al., Ductile Biodegradable Mg-Based Metallic Glasses with Excellent Biocompatibility. Advanced Functional Materials 23, 4793-4800 (2013).
|
[12] |
. M. D. Demetriou et al., Amorphous metals for hard-tissue prosthesis. JOM 62, 83-91 (2010).
|
[13] |
. H. F. Li et al., In vitro and in vivo studies on biodegradable CaMgZnSrYb highentropy bulk metallic glass. Acta Biomaterialia 9, 8561-8573 (2013).
|
[14] |
. E. Axinte, Metallic glasses from “alchemy” to pure science: Present and future of design, processing and applications of glassy metals. Materials and Design 35, 518-556 (2012).
|
[15] |
. D. C. Hofmann et al., Investigating bulk metallic glasses as ball-and-cone locators for spacecraft deployable structures. Aerospace Science and Technology 82-83, 513-519 (2018).
|
[16] |
. A. Inoue et al., Development and industrialization of Zr- and Fe-based bulk metallic glasses and light metal-based metastable alloys. Journal of Alloys and Compounds 979, 173546-173546 (2024).
|
[17] |
. L.-C. Zhang, Z. Jia, F. Lyu, S.-X. Liang, J. Lu, A review of catalytic performance of metallic glasses in wastewater treatment: Recent progress and prospects. Progress in Materials Science 105, 100576-100576 (2019).
|
[18] |
. S. X. Liang et al., Metallic Glasses: Compelling Rejuvenated Catalytic Performance in Metallic Glasses (Adv. Mater. 45/2018). Advanced Materials 30, (2018).
|
[19] |
. Z. Jia et al., Metallic Glass Catalysts: Attractive In Situ Self-Reconstructed Hierarchical Gradient Structure of Metallic Glass for High Efficiency and Remarkable Stability in Catalytic Performance (Adv. Funct. Mater. 19/2019). Advanced Functional Materials 29, (2019).
|
[20] |
. A. Baiker, Metallic glasses in heterogeneous catalysis. Faraday Discussions of the Chemical Society 87, 239-239 (1989).
|
[21] |
. C. Suryanarayana, A. Inoue, Iron-based bulk metallic glasses. International Materials Reviews 58, 131-166 (2013).
|
[22] |
. J. Schroers, Q. Pham, A. Desai, Thermoplastic Forming of Bulk Metallic Glass— A Technology for MEMS and Microstructure Fabrication. Journal of Microelectromechanical Systems 16, 240-247 (2007).
|
[23] |
. G. Kumar, H. X. Tang, J. Schroers, Nanomoulding with amorphous metals. Nature 457, 868-872 (2009).
|
[24] |
. J. Q. Wang et al., Rapid Degradation of Azo Dye by Fe-Based Metallic Glass Powder. Advanced Functional Materials 22, 2567-2570 (2012).
|
[25] |
. S. He et al., Semiconductor glass with superior flexibility and high room temperature thermoelectric performance. Science Advances 6, (2020).
|
[26] |
. W. J. Liu et al., A room-temperature magnetic semiconductor from a ferromagnetic metallic glass. Nature communications 7, 13497 (2016).
|
[27] |
. Y.-q. Zhang et al., Widely tunable optical properties via oxygen manipulation in an amorphous alloy. Science China Materials 64, 2305-2312 (2021).
|
[28] |
. C. A. Schuh, T. C. Hufnagel, U. Ramamurty, Mechanical behavior of amorphous alloys. Acta Materialia 55, 4067-4109 (2007).
|
[29] |
. M. F. Ashby, A. L. Greer, Metallic glasses as structural materials. Scripta Materialia 54, 321-326 (2006).
|
[30] |
. A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279-306 (2000).
|
[31] |
. C. Suryanarayana, A. Inoue, Bulk Metallic Glasses. (CRC Press, 2010).
|
[32] |
. A. L. Greer, Confusion by design. Nature 366, 303-304 (1993).
|
[33] |
. Z. Q. Zhou et al., Rational design of chemically complex metallic glasses by hybrid modeling guided machine learning. npj Computational Materials 7, (2021).
|
[34] |
. P. Tsai, K. M. Flores, High-throughput discovery and characterization of multicomponent bulk metallic glass alloys. Acta Materialia 120, 426-434 (2016).
|
[35] |
. F. Ren et al., Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments. Science Advances 4, (2018).
|
[36] |
. L. Ward et al., A machine learning approach for engineering bulk metallic glass alloys. Acta Materialia 159, 102-111 (2018).
|
[37] |
. Z. Lu et al., Interpretable machine-learning strategy for soft-magnetic property and thermal stability in Fe-based metallic glasses. npj Computational Materials 6, (2020).
|
[38] |
. Z. Fan, J. Ding, E. Ma, Machine learning bridges local static structure with multiple properties in metallic glasses. Materials Today 40, 48-62 (2020).
|
[39] |
. Z. Zhou, Y. Shang, X. Liu, Y. Yang, A generative deep learning framework for inverse design of compositionally complex bulk metallic glasses. npj Computational Materials 9, (2023).
|
[40] |
. A. L. Greer, Y. Q. Cheng, E. Ma, Shear bands in metallic glasses. Materials Science and Engineering: R: Reports 74, 71-132 (2013).
|
[41] |
. G. Wang, K. C. Chan, X. H. Xu, W. H. Wang, Instability of crack propagation in brittle bulk metallic glass. Acta Materialia 56, 5845-5860 (2008).
|
[42] |
. P. Murali et al., Atomic Scale Fluctuations Govern Brittle Fracture and Cavitation Behavior in Metallic Glasses. Physical Review Letters 107, (2011).
|
[43] |
. J.-W. Yeh et al., Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-FeTi-V alloys with multiprincipal metallic elements. Metallurgical and Materials Transactions A 35, 2533-2536 (2004).
|
[44] |
. Y. F. Ye, Q. Wang, J. Lu, C. T. Liu, Y. Yang, High-entropy alloy: challenges and prospects. Materials Today 19, 349-362 (2016).
|
[45] |
. Y. J. Duan et al., Intrinsic correlation between the fraction of liquidlike zones and the β relaxation in high-entropy metallic glasses. Physical Review Letters 129, (2022).
|
[46] |
. W. H. Wang, High-Entropy Metallic Glasses. JOM 66, 2067-2077 (2014).
|
[47] |
. Y. J. Duan et al., Connection between Mechanical Relaxation and Equilibration Kinetics in a High-Entropy Metallic Glass. Physical Review Letters 132, (2024).
|
[48] |
. Z. Zhang et al., Intrinsic tensile ductility in strain hardening multiprincipal element metallic glass. Proceedings of the National Academy of Sciences 121, e2400200121 (2024).
|
[49] |
. M. X. Li et al., Data-driven discovery of a universal indicator for metallic glass forming ability. Nature Materials 21, 165-172 (2022).
|
[50] |
. M. X. Li et al., High-temperature bulk metallic glasses developed by combinatorial methods. Nature 569, 99-103 (2019).
|
[51] |
. S. Y. Ding et al., Combinatorial development of bulk metallic glasses. Nature Materials 13, 494-500 (2014).
|
[52] |
. F. Zhang et al., Prediction of Glass Forming Ability Through High Throughput Calculation. Journal of Phase Equilibria and Diffusion 39, 562-570 (2018).
|
[53] |
. Y. Q. Cheng, E. Ma, Atomic-level structure and structure-property relationship in metallic glasses. Progress in Materials Science 56, 379-473 (2011).
|
[54] |
. Z.-Y. Zhou, Q. Yang, H.-B. Yu, Toward atomic-scale understanding of structure-dynamics-properties relations for metallic glasses. Progress in Materials Science 145, 101311-101311 (2024).
|
[55] |
. W. H. Wang, Dynamic relaxations and relaxation-property relationships in metallic glasses. Progress in Materials Science 106, 100561 (2019).
|
[56] |
. D. Turnbull, Under what conditions can a glass be formed? Contemporary Physics 10, 473-488 (1969).
|
[57] |
. D. Wang, H. Tan, Y. Li, Multiple maxima of GFA in three adjacent eutectics in Zr-Cu-Al alloy system-A metallographic way to pinpoint the best glass forming alloys. Acta Materialia 53, 2969-2979 (2005).
|
[58] |
. W. L. Johnson, Bulk Glass-Forming Metallic Alloys: Science and Technology. MRS Bulletin 24, 42-56 (1999).
|
[59] |
. W. H. Wang, Roles of minor additions in formation and properties of bulk metallic glasses. Progress in Materials Science 52, 540-596 (2007).
|
[60] |
. J.-W. Yeh, Physical Metallurgy of High-Entropy Alloys. JOM 67, 2254-2261 (2015).
|
[61] |
. Q. F. He, Z. Y. Ding, Y. F. Ye, Y. Yang, Design of High-Entropy Alloy: A Perspective from Nonideal Mixing. JOM 69, 2092-2098 (2017).
|
[62] |
. A. Peker, W. L. Johnson, A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Applied Physics Letters 63, 2342-2344 (1993).
|
[63] |
. Z. P. Lu, C. T. Liu, A new glass-forming ability criterion for bulk metallic glasses. Acta Materialia 50, 3501-3512 (2002).
|
[64] |
. X. H. Du, J. C. Huang, C. T. Liu, Z. P. Lu, New criterion of glass forming ability for bulk metallic glasses. Journal of Applied Physics 101, (2007).
|
[65] |
. K. Mondal, B. S. Murty, On the parameters to assess the glass forming ability of liquids. Journal of Non-Crystalline Solids 351, 1366-1371 (2005).
|
[66] |
. Z.-Z. Yuan, S.-L. Bao, Y. Lu, D.-P. Zhang, L. Yao, A new criterion for evaluating the glass-forming ability of bulk glass forming alloys. Journal of Alloys and Compounds 459, 251-260 (2008).
|
[67] |
. S. Guo, Z. P. Lu, C. T. Liu, Identify the best glass forming ability criterion. Intermetallics 18, 883-888 (2010).
|
[68] |
. R. Busch, J. Schroers, W. H. Wang, Thermodynamics and Kinetics of Bulk Metallic Glass. MRS Bulletin 32, 620-623 (2007).
|
[69] |
. W. L. Johnson, J. H. Na, M. D. Demetriou, Quantifying the origin of metallic glass formation. Nature Communications 7, (2016).
|
[70] |
. E. S. Park, J. H. Na, D. H. Kim, Correlation between fragility and glass-forming ability/plasticity in metallic glass-forming alloys. Applied Physics Letters 91, (2007).
|
[71] |
. V. N. Novikov, Y. Ding, A. P. Sokolov, Correlation of fragility of supercooled liquids with elastic properties of glasses. Physical Review E 71, (2005).
|
[72] |
. D. Ma et al., Elastic Moduli Inheritance and the Weakest Link in Bulk Metallic Glasses. Physical Review Letters 108, (2012).
|
[73] |
. G. Kumar, P. Neibecker, Y. H. Liu, J. Schroers, Critical fictive temperature for plasticity in metallic glasses. Nature Communications 4, (2013).
|
[74] |
. Y. H. Liu et al., Thermodynamic Origins of Shear Band Formation and the Universal Scaling Law of Metallic Glass Strength. Physical Review Letters 103, (2009).
|
[75] |
. Y. Liu, H. Wu, C. T. Liu, Z. Zhang, V. Keppens, Physical factors controlling the ductility of bulk metallic glasses. Applied Physics Letters 93, (2008).
|
[76] |
. B. Huang, Y. Yang, A. D. Wang, Q. Wang, C. T. Liu, Saturated magnetization and glass forming ability of soft magnetic Fe-based metallic glasses. Intermetallics 84, 74-81 (2017).
|
[77] |
. T. Wang, L. Hu, Y. Liu, X. Hui, Intrinsic correlation of the plasticity with liquid behavior of bulk metallic glass forming alloys. Materials Science and Engineering: A 744, 316-323 (2019).
|
[78] |
. Z. Pei, J. Yin, P. K. Liaw, D. Raabe, Author Correction: Toward the design of ultrahigh-entropy alloys via mining six million texts. Nature Communications 14, (2023).
|
[79] |
. M. P. Polak, D. Morgan, Extracting accurate materials data from research papers with conversational language models and prompt engineering. Nature Communications 15, (2024).
|
[80] |
. T. Gupta, M. Zaki, N. M. A. Krishnan, Mausam, MatSciBERT: A materials domain language model for text mining and information extraction. npj Computational Materials 8, (2022).
|
[81] |
. W. J. Xie, W. H. Wang, Y. H. Liu, On the application of high-throughput experimentation and data-driven approaches in metallic glasses. Materials Genome Engineering Advances 1, e8 (2023).
|
[82] |
. M. Rittiruam et al., High-throughput materials screening algorithm based on first-principles density functional theory and artificial neural network for highentropy alloys. Scientific Reports 12, (2022).
|
[83] |
. B. T. Afflerbach et al., Molecular simulation-derived features for machine learning predictions of metal glass forming ability. Computational Materials Science 199, 110728-110728 (2021).
|
[84] |
. L. M. Ghiringhelli, J. Vybiral, S. V. Levchenko, C. Draxl, M. Scheffler, Big Data of Materials Science: Critical Role of the Descriptor. Physical Review Letters 114, (2015).
|
[85] |
. Z. Zhou, Y. Shang, Y. Yang, A critical review of the machine learning guided design of metallic glasses for superior glass-forming ability. Journal of Materials Informatics, (2022).
|
[86] |
. M. Samavatian, R. Gholamipour, V. Samavatian, Discovery of novel quaternary bulk metallic glasses using a developed correlation-based neural network approach. Computational Materials Science 186, 110025-110025 (2021).
|
[87] |
. J. Xiong, S.-Q. Shi, T.-Y. Zhang, Corrigendum to “A machine-learning approach to predicting and understanding the properties of amorphous metallic alloys” [Mat. Des., Volume 187 (2020), 108378]. Materials & Design 191, 108651-108651 (2020).
|
[88] |
. X. D. Liu et al., Machine learning-based glass formation prediction in multicomponent alloys. Acta Materialia 201, 182-190 (2020).
|
[89] |
. Z. Zhou et al., Machine learning guided appraisal and exploration of phase design for high entropy alloys. npj Computational Materials 5, (2019).
|
[90] |
. Y. Ye, C. Liu, Y. Yang, A geometric model for intrinsic residual strain and phase stability in high entropy alloys. Acta Materialia 94, 152-161 (2015).
|
[91] |
. B. L. Boyce, M. D. Uchic, Progress toward autonomous experimental systems for alloy development. MRS Bulletin 44, 273-280 (2019).
|
[92] |
. K. S. Vecchio, O. F. Dippo, K. R. Kaufmann, X. Liu, High-throughput rapid experimental alloy development (HT-READ). Acta Materialia 221, 117352- 117352 (2021).
|
[93] |
. Y. Shang et al., Customized design of amorphous solids by generative deep learning. The Innovation Materials 2, 100071-100071 (2024).
|
[94] |
. C. Rudin, Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Machine Intelligence 1, 206-215 (2019).
|
[95] |
. M. K. Tripathi, P. P. Chattopadhyay, S. Ganguly, Multivariate analysis and classification of bulk metallic glasses using principal component analysis. Computational Materials Science 107, 79-87 (2015).
|
[96] |
. J. Xiong, T.-Y. Zhang, Data-driven glass-forming ability criterion for bulk amorphous metals with data augmentation. Journal of Materials Science & Technology 121, 99-104 (2022).
|
[97] |
. Y.-C. Wu et al., Data-driven glass-forming ability for Fe-based amorphous alloys. Materials Today Communications 40, 109440-109440 (2024).
|
[98] |
. J. Hafner, Theory of the formation of metallic glasses. Physical Review B 21, 406-426 (1980).
|
[99] |
. F. Shimizu, S. Ogata, J. Li, Theory of Shear Banding in Metallic Glasses and Molecular Dynamics Calculations. MATERIALS TRANSACTIONS 48, 2923- 2927 (2007).
|
[100] |
. T. C. Hufnagel, C. A. Schuh, M. L. Falk, Deformation of metallic glasses: Recent developments in theory, simulations, and experiments. Acta Materialia 109, 375-393 (2016).
|
[101] |
. W. H. Wang, C. Dong, C. H. Shek, Bulk metallic glasses. Materials Science and Engineering: R: Reports 44, 45-89 (2004).
|
[102] |
. Y.-C. Hu, H. Tanaka, Physical origin of glass formation from multicomponent systems. Science Advances 6, (2020).
|
[103] |
. Y. C. Hu, H. Tanaka, Revealing the role of liquid preordering in crystallisation of supercooled liquids. Nat Commun 13, 4519 (2022).
|
[104] |
. M. D. Ediger, P. Harrowell, Perspective: Supercooled liquids and glasses. The Journal of Chemical Physics 137, (2012).
|
[105] |
. G. P. Johari, M. Goldstein, Viscous Liquids and the Glass Transition. II. Secondary Relaxations in Glasses of Rigid Molecules. The Journal of Chemical Physics 53, 2372-2388 (1970).
|
[106] |
. K. L. Ngai, Relaxation and diffusion in complex systems. (Springer Science & Business Media, 2011).
|
[107] |
. Y.-C. Hu, H. Tanaka, Origin of the boson peak in amorphous solids. Nature Physics 18, 669-677 (2022).
|
[108] |
. Y.-C. Hu, H. Tanaka, Universality of stringlet excitations as the origin of the boson peak of glasses with isotropic interactions. Physical Review Research 5, (2023).
|
[109] |
. R. Batra, L. Song, R. Ramprasad, Emerging materials intelligence ecosystems propelled by machine learning. Nature Reviews Materials 6, 655-678 (2021).
|
[110] |
. G. L. W. Hart, T. Mueller, C. Toher, S. Curtarolo, Machine learning for alloys. Nature Reviews Materials 6, 730-755 (2021).
|
[111] |
. Z. Fan, E. Ma, Predicting orientation-dependent plastic susceptibility from static structure in amorphous solids via deep learning. Nature Communications 12, (2021).
|
[112] |
. Y.-C. Hu, Data-driven prediction of the glass-forming ability of modeled alloys by supervised machine learning. Journal of Materials Informatics 3, 1 (2023).
|
[113] |
. S. S. Schoenholz, E. D. Cubuk, D. M. Sussman, E. Kaxiras, A. J. Liu, A structural approach to relaxation in glassy liquids. Nature Physics 12, 469-471 (2016).
|
[114] |
. C. Horejs, Integrating materials databases. Nature Reviews Materials 6, 967- 967 (2021).
|
[115] |
. Z. Xu, Z. Zhang, The need for standardizing fatigue data reporting. Nature Materials 23, 866-868 (2024).
|
[116] |
. P. Raccuglia et al., Machine-learning-assisted materials discovery using failed experiments. Nature 533, 73-76 (2016).
|
[117] |
. S. Batzner et al., E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials. Nature Communications 13, (2022).
|
[118] |
. S. Chmiela, H. E. Sauceda, K.-R. Müller, A. Tkatchenko, Towards exact molecular dynamics simulations with machine-learned force fields. Nature Communications 9, (2018).
|
[119] |
. S. Chmiela et al., Machine learning of accurate energy-conserving molecular force fields. Science Advances 3, (2017).
|
[120] |
. A. Jain et al., Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Materials 1, (2013).
|
[121] |
. M. Liu, S. Meng, Atomly.net materials database and its application in inorganic chemistry. SCIENTIA SINICA Chimica 53, 19-25 (2022).
|
[122] |
. W. Hoeffding, in Springer Series in Statistics. (Springer New York, 1994), pp. 409-426.
|
[123] |
. T. Hey, S. Tansley, K. M. Tolle, The fourth paradigm: data-intensive scientific discovery. (Microsoft research Redmond, WA, 2009), vol. 1.
|
[124] |
. K. G. Keong, W. Sha, S. Malinov, Artificial neural network modelling of crystallization temperatures of the Ni-P based amorphous alloys. Materials Science and Engineering: A 365, 212-218 (2004).
|
[125] |
. A. H. Cai, X. Xiong, Y. Liu, W. K. An, J. Y. Tan, Artificial neural network modeling of reduced glass transition temperature of glass forming alloys. Applied Physics Letters 92, (2008).
|
[126] |
. A. H. Cai et al., Artificial neural network modeling for undercooled liquid region of glass forming alloys. Computational Materials Science 48, 109-114 (2010).
|
[127] |
. A. H. Cai et al., Prediction of critical cooling rate for glass forming alloys by artificial neural network. Materials & Design 52, 671-676 (2013).
|
[128] |
. Y. T. Sun, H. Y. Bai, M. Z. Li, W. H. Wang, Machine learning approach for prediction and understanding of glass-forming ability. Journal of Physical Chemistry Letters 8, 3434-3439 (2017).
|
[129] |
. J. Xiong, T. Y. Zhang, S. Q. Shi, Machine learning prediction of elastic properties and glass-forming ability of bulk metallic glasses. MRS Commun. 9, 576-585 (2019).
|
[130] |
. J. Xiong, S.-Q. Shi, T.-Y. Zhang, Machine learning prediction of glass-forming ability in bulk metallic glasses. Computational Materials Science 192, (2021).
|
[131] |
. L. Ward, A. Agrawal, A. Choudhary, C. Wolverton, A general-purpose machine learning framework for predicting properties of inorganic materials. npj Computational Materials 2, (2016).
|
[132] |
. J. Xiong, S.-Q. Shi, T.-Y. Zhang, A machine-learning approach to predicting and understanding the properties of amorphous metallic alloys. Materials & Design 187, (2020).
|
[133] |
. S. Feng et al., A general and transferable deep learning framework for predicting phase formation in materials. Npj Computational Materials 7, (2021).
|
[134] |
. B. Y. Ren, Z. L. Long, R. J. Deng, A new criterion for predicting the glassforming ability of alloys based on machine learning. Computational Materials Science 189, (2021).
|
[135] |
. Z. Q. Liu, R. F. Wang, R. T. Qu, Z. F. Zhang, Precisely predicting and designing the elasticity of metallic glasses. Journal of Applied Physics 115, (2014).
|
[136] |
. W. H. Wang, Properties inheritance in metallic glasses. Journal of Applied Physics 111, (2012).
|
[137] |
. S. V. Madge, D. V. Louzguine-Luzgin, J. J. Lewandowski, A. L. Greer, Toughness, extrinsic effects and Poisson's ratio of bulk metallic glasses. Acta Materialia 60, 4800-4809 (2012).
|
[138] |
. X. Li, G. Shan, C. H. Shek, Machine learning prediction of magnetic properties of Fe-based metallic glasses considering glass forming ability. Journal of Materials Science & Technology 103, 113-120 (2022).
|
[139] |
. C. P. Royall, S. R. Williams, The role of local structure in dynamical arrest. Physics Reports-Review Section of Physics Letters 560, 1-75 (2015).
|
[140] |
. S. S. Schoenholz, E. D. Cubuk, E. Kaxiras, A. J. Liu, Relationship between local structure and relaxation in out-of-equilibrium glassy systems. Proceedings of the National Academy of Sciences of the United States of America 114, 263-267 (2017).
|
[141] |
. E. D. Cubuk et al., Structure-property relationships from universal signatures of plasticity in disordered solids. Science 358, 1033-1037 (2017).
|
[142] |
. Q. Wang, A. Jain, A transferable machine-learning framework linking interstice distribution and plastic heterogeneity in metallic glasses. Nature Communications 10, (2019).
|
[143] |
. Q. Wang et al., Predicting the propensity for thermally activated β events in metallic glasses via interpretable machine learning. Npj Computational Materials 6, (2020).
|
[144] |
. V. Bapst et al., Unveiling the predictive power of static structure in glassy systems. Nature Physics 16, 448-+ (2020).
|
[145] |
. Q. Wang, L. Zhang, Inverse design of glass structure with deep graph neural networks. Nature Communications 12, (2021).
|
[146] |
. Q. Wang, L.-F. Zhang, Z.-Y. Zhou, H.-B. Yu, Predicting the pathways of stringlike motions in metallic glasses via path-featurizing graph neural networks. Science Advances 10, eadk2799 (2024).
|
[147] |
. X. Jiang, Z. Tian, K. Li, W. Y. Hu, A geometry-enhanced graph neural network for learning the smoothness of glassy dynamics from static structure. Journal of Chemical Physics 159, (2023).
|
[148] |
. H. Shiba, M. Hanai, T. Suzumura, T. Shimokawabe, T. Shimokawabe, BOTAN: BOnd TArgeting Network for prediction of slow glassy dynamics by machine learning relative motion. Journal of Chemical Physics 158, (2023).
|
[149] |
. J. J. Maldonis, A. D. Banadaki, S. Patala, P. M. Voyles, Short-range order structure motifs learned from an atomistic model of a Zr50Cu45Al5 metallic glass. Acta Materialia 175, 35-45 (2019).
|
[150] |
. J. Q. Wu, H. P. Zhang, Y. F. He, M. Z. Li, Unsupervised machine learning study on structural signature of glass transition in metallic glass-forming liquids. Acta Materialia 245, (2023).
|
[151] |
. H. Wang, L. Zhang, J. Han, W. E, DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics. Computer Physics Communications 228, 178-184 (2018).
|
[152] |
. L. Tang et al., Development of interatomic potential for Al-Tb alloys using a deep neural network learning method. Physical Chemistry Chemical Physics 22, 18467-18479 (2020).
|
[153] |
. K. Xie et al., Neural network potential for Zr-Rh system by machine learning. Journal of Physics-Condensed Matter 34, (2022).
|
[154] |
. L. Tang, M. J. Kramer, K.-M. Ho, C.-Z. Wang, Phase selection in aluminum rare-earth metallic alloys by molecular dynamics simulations using machine learning interatomic potentials. Physical Review Materials 7, (2023).
|
[155] |
. A. L. Greer, Metallic Glasses. Science 267, 1947-1953 (1995).
|
[156] |
. P. G. Debenedetti, F. H. Stillinger, Supercooled liquids and the glass transition. Nature 410, 259-267 (2001).
|
[157] |
. D. Wang et al., A Comprehensive Review on Combinatorial Film via HighThroughput Techniques. Materials 16, 6696 (2023).
|
[158] |
. F. Li et al., Achieving Diamond-Like Wear in Ta-Rich Metallic Glasses. Advanced Science, 2301053 (2023).
|
[159] |
. L. W. Hu et al., Combinatorial investigation on corrosion resistance of Ir-Ni-Ta alloys. Corrosion Science 234, 112153 (2024).
|
[160] |
. Y. Liu et al., Combinatorial development of antibacterial Zr-Cu-Al-Ag thin film metallic glasses. Scientific Reports 6, 26950 (2016).
|
[161] |
. J. B. Liu et al., Fast Screening of Corrosion Trends in Metallic Glasses. ACS Combinatorial Science 21, 666-674 (2019).
|
[162] |
. X. Liu et al., Development of Co-Based Amorphous Composite Coatings Synthesized by Laser Cladding for Neutron Shielding. Materials 14, 279 (2021).
|
[163] |
. H. Knoll et al., Combinatorial Alloy Design by Laser Additive Manufacturing. steel research international 88, 1600416 (2017).
|
[164] |
. Z. Yu et al., Accelerated exploration of TRIP metallic glass composite by laser additive manufacturing. Journal of Materials Science & Technology 78, 68-73 (2021).
|
[165] |
. X. Liu, J. Bi, H. Zhao, R. Li, T. Zhang, Rapidly screening out refractory metallic alloys with high glass-forming ability by laser surface remelting. Materials Today Advances 21, 100462 (2024).
|
[166] |
. Y. He et al., In Situ Alloying of Fe-Cr-Co Permanent Magnet by Selective Laser Melting of Elemental Iron, Chromium and Cobalt Mixed Powders. Metals 12, 1634 (2022).
|
[167] |
. Z. Wang, B. A. Sun, H. Y. Bai, W. H. Wang, Evolution of hidden localized flow during glass-to-liquid transition in metallic glass. Nature Communications 5, 5823 (2014).
|
[168] |
. R. M. O. Mota et al., Enhancing ductility in bulk metallic glasses by straining during cooling. Communications Materials 2, 23 (2021).
|
[169] |
. S. V. Ketov et al., Rejuvenation of metallic glasses by non-affine thermal strain. Nature 524, 200-203 (2015).
|
[170] |
. M. Yang et al., Configurational Entropy Effects on Glass Transition in Metallic Glasses. The Journal of Physical Chemistry Letters 13, 7889-7897 (2022).
|
[171] |
. Y. Zhao et al., Ultrastable metallic glass by room temperature aging. Science Advances 8, eabn3623 (2022).
|
[172] |
. R. Zhao et al., A facile strategy to produce monatomic tantalum metallic glass. Applied Physics Letters 117, 131903 (2020).
|
[173] |
. X. Tong et al., Breaking the vitrification limitation of monatomic metals. Nat Mater, (2024).
|
[174] |
. D. Li et al., Micro-alloying effects of Co on structural and dynamic properties of CeAlCu glass-forming melts by ab initio molecular dynamics simulations. Journal of Non-Crystalline Solids 572, 121109 (2021).
|
[175] |
. Y. Sun, A. Concustell, A. L. Greer, Thermomechanical processing of metallic glasses: extending the range of the glassy state. Nature Reviews Materials 1, 16039 (2016).
|
[176] |
. D. C. Hofmann et al., Designing metallic glass matrix composites with high toughness and tensile ductility. Nature 451, 1085-1089 (2008).
|
[177] |
. D. Jang, J. R. Greer, Transition from a strong-yet-brittle to a stronger-andductile state by size reduction of metallic glasses. Nature materials 9, 215-219 (2010).
|
[178] |
. L. Tian et al., Approaching the ideal elastic limit of metallic glasses. Nature Communications 3, 609 (2012).
|
[179] |
. W. H. Wang, Bulk metallic glasses with functional physical properties. Advanced Materials 21, 4524-4544 (2009).
|
[180] |
. J. W. Yeh et al., Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced Engineering Materials 6, 299-303 (2004).
|
[181] |
. B. Cantor, I. T. H. Chang, P. Knight, A. J. B. Vincent, Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering: A 375-377, 213-218 (2004).
|
[182] |
. M. C. Gao, J. W. Yeh, P. K. Liaw, Y. Zhang, High-entropy alloys: Fundamentals and applications. (Springer, 2016).
|
[183] |
. E. P. George, D. Raabe, R. O. Ritchie, High-entropy alloys. Nature Reviews Materials 4, 515-534 (2019).
|
[184] |
. Y. Wang et al., Synthesis of High-Entropy-Alloy Nanoparticles by a StepAlloying Strategy as a Superior Multifunctional Electrocatalyst. Advanced Materials, (2023).
|
[185] |
. Q. Pan et al., Gradient cell-structured high-entropy alloy with exceptional strength and ductility. Science 374, 984-989 (2021).
|
[186] |
. L. Han et al., Ultrastrong and Ductile Soft Magnetic High-Entropy Alloys via Coherent Ordered Nanoprecipitates. Advanced Materials 33, 2102139 (2021).
|
[187] |
. X. Wang et al., Continuous Synthesis of Hollow High-Entropy Nanoparticles for Energy and Catalysis Applications. Advanced Materials 32, (2020).
|
[188] |
. Y. Yao et al., Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science 359, 1489-1494 (2018).
|
[189] |
. Z. Lei et al., Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature 563, 546-550 (2018).
|
[190] |
. Z. Li, K. G. Pradeep, Y. Deng, D. Raabe, C. C. Tasan, Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature 534, 227- 230 (2016).
|
[191] |
. B. Gludovatz et al., A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153-1158 (2014).
|
[192] |
. Q. F. He et al., A highly distorted ultraelastic chemically complex Elinvar alloy. Nature 602, 251-257 (2022).
|
[193] |
. X. Q. Gao et al., High mixing entropy bulk metallic glasses. Journal of NonCrystalline Solids 357, 3557-3560 (2011).
|
[194] |
. K. Zhao, X. Xia, H. Bai, D. Zhao, W. Wang, Room temperature homogeneous flow in a bulk metallic glass with low glass transition temperature. Applied Physics Letters 98, 141913 (2011).
|
[195] |
. A. Takeuchi et al., Pd20Pt20Cu20Ni20P20 high-entropy alloy as a bulk metallic glass in the centimeter. Intermetallics 19, 1546-1554 (2011).
|
[196] |
. L. Ma, L. Wang, T. Zhang, A. Inoue, Bulk Glass Formation of Ti-Zr-Hf-Cu-M (M=Fe, Co, Ni) Alloys. MATERIALS TRANSACTIONS 43, 277-280 (2002).
|
[197] |
. T. Qi et al., Soft magnetic Fe25Co25Ni25 (B, Si)25 high entropy bulk metallic glasses. Intermetallics 66, 8-12 (2015).
|
[198] |
. Y. Li, W. Zhang, T. Qi, New soft magnetic Fe25Co25Ni25(P, C, B)25 high entropy bulk metallic glasses with large supercooled liquid region. Journal of Alloys and Compounds 693, 25-31 (2017).
|
[199] |
. R. Wei, H. Sun, C. Chen, Z. Han, F. Li, Effect of cooling rate on the phase structure and magnetic properties of Fe 26.7 Co 28.5 Ni 28.5 Si 4.6 B 8.7 P 3 high entropy alloy. Journal of Magnetism and Magnetic Materials 435, 184- 186 (2017).
|
[200] |
. Y. Xu, Y. Li, Z. Zhu, W. Zhang, Formation and properties of Fe25Co25Ni25(P, C, B, Si)25 high-entropy bulk metallic glasses. Journal of Non-Crystalline Solids 487, 60-64 (2018).
|
[201] |
. Z. Zhang et al., Polymorphic Transformation and Magnetic Properties of Rapidly Solidified Fe26.7Co26.7Ni26.7Si8.9B11.0 High-Entropy Alloys. Materials 12, (2019).
|
[202] |
. H. Zhang et al., Phase formation and magnetic properties of high-entropy metallic glasses in (Fe, Co, Ni)-P-B alloy system with non-equiatomic ratio. Journal of Magnetism and Magnetic Materials 509, (2020).
|
[203] |
. L. X. Shi et al., Connecting the composition, structure, and magnetic property in high-entropy metallic glasses. Acta Materialia 254, (2023).
|
[204] |
. J. Y. Law, V. Franco, Pushing the limits of magnetocaloric high-entropy alloys. Apl Materials 9, (2021).
|
[205] |
. H. Zhang, R. Li, L. Zhang, T. Zhang, Tunable magnetic and magnetocaloric properties in heavy rare-earth based metallic glasses through the substitution of similar elements. Journal of Applied Physics 115, (2014).
|
[206] |
. J. T. Huo et al., The magnetocaloric effect of Gd-Tb-Dy-Al-M (M= Fe, Co and Ni) high-entropy bulk metallic glasses. Intermetallics. 58, 31-35 (2015).
|
[207] |
. J. Li et al., Distinct spin glass behavior and excellent magnetocaloric effect in Er20Dy20Co20Al20RE20 (RE = Gd, Tb and Tm) high-entropy bulk metallic glasses. Intermetallics. 96, 90-93 (2018).
|
[208] |
. W. Sheng et al., Amorphous microwires of high entropy alloys with large magnetocaloric effect. Intermetallics. 96, 79-83 (2018).
|
[209] |
. J. Huo, J.-Q. Wang, W.-H. Wang, Denary high entropy metallic glass with large magnetocaloric effect. Journal of Alloys and Compounds 776, 202-206 (2019).
|
[210] |
. K. Wu et al., Magnetocaloric effect of Fe25Co25Ni25Mo5P10B10 highentropy bulk metallic glass. Journal of Magnetism and Magnetic Materials 489, (2019).
|
[211] |
. H. Yin et al., Enhancing the magnetocaloric response of high-entropy metallicglass by microstructural control. Science China Materials 65, 1134-1142 (2022).
|
[212] |
. L. Shao et al., Heterogeneous GdTbDyCoAl high-entropy alloy with distinctive magnetocaloric effect induced by hydrogenation. J. Mater. Sci. Technol. 109, 147-156 (2022).
|
[213] |
. M. Yang et al., High thermal stability and sluggish crystallization kinetics of high-entropy bulk metallic glasses. Journal of Applied Physics 119, (2016).
|
[214] |
. P. Gong, S. Zhao, H. Ding, K. Yao, X. Wang, Nonisothermal crystallization kinetics, fragility and thermodynamics of Ti20Zr20Cu20Ni20Be20 high entropy bulk metallic glass. Journal of Materials Research 30, 2772-2782 (2015).
|
[215] |
. Y. Li, S. Wang, X. Wang, M. Yin, W. Zhang, New FeNiCrMo(P, C, B) highentropy bulk metallic glasses with unusual thermal stability and corrosion resistance. J. Mater. Sci. Technol. 43, 32-39 (2020).
|
[216] |
. J. Kim et al., Utilization of high entropy alloy characteristics in Er-Gd-Y-Al-Co high entropy bulk metallic glass. Acta Materialia 155, 350-361 (2018).
|
[217] |
. G. V. Afonin et al., High entropy metallic glasses, what does it mean? Applied Physics Letters 124, (2024).
|
[218] |
. X. Y. Zhang et al., Defect Engineering of a High-Entropy Metallic Glass Surface for High-Performance Overall Water Splitting at Ampere-Level Current Densities. Advanced Materials 35, 2303439 (2023).
|
[219] |
. Z. Jia et al., A Self-Supported High-Entropy Metallic Glass with a Nanosponge Architecture for Efficient Hydrogen Evolution under Alkaline and Acidic Conditions. Advanced Functional Materials 31, 2101586 (2021).
|
[220] |
. X. Yu et al., Layered High-Entropy Metallic Glasses for Photothermal CO2 Methanation. Advanced Materials 36, (2024).
|
[221] |
. M. W. Glasscott et al., Electrosynthesis of high-entropy metallic glass nanoparticles for designer, multi-functional electrocatalysis. Nature Communications 10, (2019).
|
[222] |
. Y. Li et al., In-situ construction and repair of high catalytic activity interface on corrosion-resistant high-entropy amorphous alloy electrode for hydrogen production in high-temperature dilute sulfuric acid electrolysis. Chem. Eng. J. 453, (2023).
|
[223] |
. Z. Ding et al., High Entropy Intermetallic-Oxide Core-Shell Nanostructure as Superb Oxygen Evolution Reaction Catalyst. Advanced Sustainable Systems, (2020).
|
[224] |
. H. Y. Ding, K. F. Yao, High entropy Ti20Zr20Cu20Ni20Be20 bulk metallic glass. Journal of Non-Crystalline Solids 364, 9-12 (2013).
|
[225] |
. H. Y. Ding, Y. Shao, P. Gong, J. F. Li, K. F. Yao, A senary TiZrHfCuNiBe high entropy bulk metallic glass with large glass-forming ability. Materials Letters 125, 151-153 (2014).
|
[226] |
. J. Huo et al., High Mixing Entropy Enhanced Energy States in Metallic Glasses. Chin. Phys. Lett. 39, (2022).
|
[227] |
. G. Adam, J. H. Gibbs, On the temperature dependence of cooperative relaxation properties in glass-forming liquids. The journal of chemical physics 43, 139- 146 (1965).
|
[228] |
. R. Busch, W. Liu, W. L. Johnson, Thermodynamics and kinetics of the Mg65Cu25Y10 bulk metallic glass forming liquid. Journal of Applied Physics 83, 4134-4141 (1998).
|
[229] |
. H. B. Lou et al., 73 mm-diameter bulk metallic glass rod by copper mould casting. Applied Physics Letters 99, 051910 (2011).
|
[230] |
. L. Q. Xing, P. Ochin, M. Harmelin, F. Faudot, J. Bigot, Alloys of high glassforming ability. Journal of non-crystalline solids 205, 597-601 (1996).
|
[231] |
. Y. He, R. Schwarz, J. Archuleta, Bulk glass formation in the Pd-Ni-P system. Applied Physics Letters 69, 1861-1863 (1996).
|
[232] |
. Y. Yokoyama, E. Mund, A. Inoue, L. Schultz, paper presented at the 13th International Conference on Rapidly Quenched and Metastable Materials, Bristol, 2009.
|
[233] |
. T. Zhang et al., Centimeter-scale-diameter Co-based bulk metallic glasses with fracture strength exceeding 5000 MPa. Chinese Science Bulletin 56, 3972-3977 (2011).
|
[234] |
. Q. K. Jiang, G. Q. Zhang, L. Y. Chen, Q. S. Zeng, J. Z. Jiang, Centimeter-sized (La0.5Ce0.5)-based bulk metallic glasses. Journal of Alloys and Compounds 424, 179-182 (2006).
|
[235] |
. S. F. Zhao, N. Chen, P. Gong, K. F. Yao, Centimeter-Sized Quaternary TiBased Bulk Metallic Glasses with High Ti Content of 50 at%. Advanced Engineering Materials 18, 231-235 (2016).
|
[236] |
. S. F. Zhao, Y. Shao, P. Gong, K. F. Yao, A Centimeter-Sized Quaternary TiZr-Be-Ag Bulk Metallic Glass. Advances in Materials Science and Engineering 2014, 1-5 (2014).
|
[237] |
. P. Gong, K. F. Yao, X. Wang, Y. Shao, Centimeter-sized Ti-based bulk metallic glass with high specific strength. Progress in Natural Science-Materials International 22, 401-406 (2012).
|
[238] |
. P. Gong, K. F. Yao, H. Y. Ding, Centimeter-sized Ti-based quaternary bulk metallic glass prepared by water Quenching. Int. J. Mod. Phys. B 27, 9 (2013).
|
[239] |
. H. Ma, L. L. Shi, J. Xu, Y. Li, E. Ma, Discovering inch-diameter metallic glasses in three-dimensional composition space. Applied Physics Letters 87, (2005).
|
[240] |
. F. Guo, H.-J. Wang, S. J. Poon, G. J. Shiflet, Ductile titanium-based glassy alloy ingots. Applied Physics Letters 86, (2005).
|
[241] |
. H. Men, S. J. Pang, T. Zhang, Effect of Er doping on glass-forming ability of Co50Cr15Mo14C15B6 alloy. Journal of Materials Research 21, 958-961 (2006).
|
[242] |
. J. Shen, Q. Chen, J. Sun, H. Fan, G. Wang, Exceptionally high glass-forming ability of an FeCoCrMoCBY alloy. Applied Physics Letters 86, (2005).
|
[243] |
. A. Inoue, T. Zhang, Fabrication of bulk glassy Zr55Al10Ni5Cu30 alloy of 30 mm in diameter by a suction casting methodQ. Materials Transactions Jim 37, 185-187 (1996).
|
[244] |
. K. Amiya, A. Inoue, Fe-(Cr, Mo)-(C, B)-Tm bulk metallic glasses with high strength and high glass-forming ability. Rev. Adv. Mater. Sci 18, (2008).
|
[245] |
. G. J. Ponnambalam S. Joseph Shiflet, V Poon, Fe-based bulk metallic glasses with diameter thickness larger than one centimeter. Journal of Materials Research 19, 1320-1323 (2004).
|
[246] |
. K. Zhou, Y. Liu, S. Pang, T. Zhang, Formation and properties of centimetersize Zr-Ti-Cu-Al-Y bulk metallic glasses as potential biomaterials. Journal of Alloys and Compounds 656, 389-394 (2016).
|
[247] |
. W. Zhang, F. Jia, A. Inoue, Formation and properties of new La-based bulk glassy alloys with diameters up to centimeter order. Materials Transactions 48, 68-73 (2007).
|
[248] |
. Z. Yuqiao, N. Nishiyama, A. Inoue, Formation of a Ni-based glassy alloy in centimeter scale. Materials Transactions 48, 1355-1358 (2007).
|
[249] |
. E. S. Park, D. H. Kim, Formation of Ca-Mg-Zn bulk glassy alloy by casting into cone-shaped copper mold. Journal of Materials Research 19, 685-688 (2004).
|
[250] |
. J. Pan, Q. Chen, N. Li, L. Liu, Formation of centimeter Fe-based bulk metallic glasses in low vacuum environment. Journal of Alloys and Compounds 463, 246-249 (2008).
|
[251] |
. E. Park, D. Kim, Formation of Mg-Cu-Ni-Ag-Zn-Y-Gd bulk glassy alloy by casting into cone-shaped copper mold in air atmosphere. Journal of Materials Research 20, 1465-1469 (2005).
|
[252] |
. A. Inoue et al., Formation, thermal stability and mechanical properties of bulk glassy alloys with a diameter of 20 mm in Zr-(Ti, Nb)-Al-Ni-Cu system. Materials transactions 50, 388-394 (2009).
|
[253] |
. N. Chen et al., Glass-forming ability and thermoplastic formability of a Pd40Ni40Si4P16 glassy alloy. Journal of Materials Science 46, 2091-2096 (2011).
|
[254] |
. A. Inoue, T. Zhang, A. Takeuchi, W. Zhang, Hard magnetic bulk amorphous Nd-Fe-Al alloys of 12 mm in diameter made by suction casting. Materials transactions, JIM 37, 636-640 (1996).
|
[255] |
. L. Zhang, E. Ma, J. Xu, Hf-based bulk metallic glasses with critical diameter on centimeter scale. Intermetallics 16, 584-586 (2008).
|
[256] |
. Q. Zheng, J. Xu, E. Ma, High glass-forming ability correlated with fragility of Mg-Cu (Ag)-Gd alloys. Journal of Applied Physics 102, 113519-113519 (2007).
|
[257] |
. J. Schroers, W. L. Johnson, Highly processable bulk metallic glass-forming alloys in the Pt-Co-Ni-Cu-P system. Applied Physics Letters 84, 3666-3668 (2004).
|
[258] |
. R. Li, S. Pang, C. Ma, T. Zhang, Influence of similar atom substitution on glass formation in (La-Ce)-Al-Co bulk metallic glasses. Acta Materialia 55, 3719- 3726 (2007).
|
[259] |
. X. Gu, S. J. Poon, G. J. Shiflet, Mechanical properties of iron-based bulk metallic glasses. Journal of materials research 22, 344-351 (2007).
|
[260] |
. F. Q. Guo, S. J. Poon, G. J. Shiflet, Metallic glass ingots based on yttrium. Applied Physics Letters 83, 2575-2577 (2003).
|
[261] |
. C. L. Dai et al., A new centimeter-diameter Cu-based bulk metallic glass. Scripta Materialia 54, 1403-1408 (2006).
|
[262] |
. S. F. Zhao, N. Chen, P. Gong, K. F. Yao, New centimeter-sized quaternary TiZr-Be-Cu bulk metallic glasses with large glass forming ability. Journal of Alloys and Compounds 647, 533-538 (2015).
|
[263] |
. P. Gong, K. F. Yao, X. Wang, Y. Shao, A New Centimeter-Sized Ti-Based Quaternary Bulk Metallic Glass with Good Mechanical Properties. Advanced Engineering Materials 15, 691-696 (2013).
|
[264] |
. P. Jia, H. Guo, Y. Li, J. Xu, E. Ma, A new Cu-Hf-Al ternary bulk metallic glass with high glass forming ability and ductility. Scripta Materialia 54, 2165-2168 (2006).
|
[265] |
. Y. Zeng, N. Nishiyama, T. Yamamoto, A. Inoue, Ni-rich bulk metallic glasses with high glass-forming ability and good metallic properties. Materials transactions 50, 2441-2445 (2009).
|
[266] |
. S. F. Guo et al., Novel centimeter-sized Fe-based bulk metallic glass with high corrosion resistance in simulated acid rain and seawater. Journal of NonCrystalline Solids 369, 29-33 (2013).
|
[267] |
. X. Cui et al., On glass forming ability and thermal stability of Zr57Cu20Al10Ni8Ti5 bulk metallic glass by substituting each component with 1 at% Ag. Acta Physica Sinica 62, (2013).
|
[268] |
. H. Tan, Y. Zhang, D. Ma, Y. P. Feng, Y. Li, Optimum glass formation at offeutectic composition and its relation to skewed eutectic coupled zone in the La based La-Al-(Cu,Ni) pseudo ternary system. Acta Materialia 51, 4551-4561 (2003).
|
[269] |
. A. Inoue, N. Nishiyama, H. Kimura, Preparation and thermal stability of bulk amorphous Pd40Cu30Ni10P20 alloy cylinder of 72 mm in diameter. Materials Transactions, JIM 38, 179-183 (1997).
|
[270] |
. A. Inoue, T. Zhang, N. Nishiyama, K. Ohba, T. Masumoto, Preparation of 16 mm diameter rod of amorphous Zr65Al7. 5Ni10Cu17. 5 alloy. Materials Transactions, JIM 34, 1234-1237 (1993).
|
[271] |
. S. F. Zhao, P. Gong, J. F. Li, N. Chen, K. F. Yao, Quaternary Ti-Zr-Be-Ni bulk metallic glasses with large glass-forming ability. Materials & Design 85, 564- 573 (2015).
|
[272] |
. F. W. Li et al., Revisiting Al-Ni-Zr bulk metallic glasses using the 'clusterresonance' model. Chinese Science Bulletin 56, 3902-3907 (2011).
|
[273] |
. Z. P. Lu, C. T. Liu, J. R. Thompson, W. D. Porter, Structural amorphous steels. Physical Review Letters 92, (2004).
|
[274] |
. B. W. Zhou et al., Synthesis and Mechanical Properties of New Cu-Based CuZr-Al Glassy Alloys with Critical Diameters up to Centimeter Order. Materials Transactions 51, 826-829 (2010).
|
[275] |
. W. Zhang, Q. Zhang, C. Qin, A. Inoue, Synthesis and properties of Cu-Zr-Ag- Al glassy alloys with high glass-forming ability. Materials Science and Engineering: B 148, 92-96 (2008).
|
[276] |
. T. Itoi, A. Inoue, Thermal stability and soft magnetic properties of Co-Fe-M- B (M= Nb, Zr) amorphous alloys with large supercooled liquid region. Materials Transactions, JIM 41, 1256-1262 (2000).
|
[277] |
. P. Gong et al., A Ti-Zr-Be-Fe-Cu bulk metallic glass with superior glassforming ability and high specific strength. Intermetallics 43, 177-181 (2013).
|
[278] |
. Y. H. Li et al., Unusual compressive plasticity of a centimeter-diameter Zrbased bulk metallic glass with high Zr content. Journal of Alloys and Compounds 504, S2-S5 (2010).
|
[279] |
. D. H. Xu, G. Duan, W. L. Johnson, Unusual glass-forming ability of bulk amorphous alloys based on ordinary metal copper. Phys Rev Lett 92, 245504 (2004).
|
[280] |
. N. Nishiyama et al., The world's biggest glassy alloy ever made. Intermetallics 30, 19-24 (2012).
|
[281] |
. J. Jiang et al., Decoupling between calorimetric and dynamical glass transitions in high-entropy metallic glasses. Nature Communications 12, (2021).
|
[282] |
. T. Li et al., Effects of atomic size mismatch on glass transition decoupling in high-entropy metallic glasses. Acta Materialia 257, (2023).
|
[283] |
. H. W. Luan et al., High-entropy induced a glass-to-glass transition in a metallic glass. Nature Communications 13, (2022).
|
[284] |
. P. Duwez, S. C. H. Lin, Amorphous ferromagnetic phase in iron-carbonphosphorus alloys. Journal of Applied Physics 38, 4096-4097 (1967).
|
[285] |
. R. Levy, R. Hasegawa, Amorphous magnetism II. (Springer Science & Business Media, 1977).
|
[286] |
. H. Zheng, L. Zhu, S. S. Jiang, Y. G. Wang, F. G. Chen, Bending ductility of stress-relieved Fe-Zr-B metallic glasses with pronounced β-relaxation. Journal of Alloys and Compounds 834, (2020).
|
[287] |
. A. Inoue, T. Zhang, A. Takeuchi, Bulk amorphous alloys with high mechanical strength and good soft magnetic properties in Fe-TM-B (TM=IV-VIII group transition metal) system. Applied Physics Letters 71, 464-466 (1997).
|
[288] |
. B. Shen, H. Kimura, A. Inoue, T. Mizushima, Bulk glassy Fe-Co-Ga-P-C-B alloys with high glass-forming ability, high saturation magnetization and good soft magnetic properties. Materials Transactions, JIM 41, 1675-1678 (2000).
|
[289] |
. B. Shen, H. Kimura, A. Inoue, T. Mizushima, Bulk glassy Fe-Ga-P-C-B alloys with high saturation magnetization and good soft magnetic properties synthesized by fluxing treatment and copper mold casting. Materials Transactions 42, 660-663 (2001).
|
[290] |
. B. L. Shen, A. Inoue, Bulk glassy Fe-Ga-P-C-B-Si alloys with high glassforming ability, high saturation magnetization and good soft magnetic properties. Materials Transactions 43, 1235-1239 (2002).
|
[291] |
. L. X. Shi, K. F. Yao, Composition design for Fe-based soft magnetic amorphous and nanocrystalline alloys with high Fe content. Materials & Design 189, 108511 (2020).
|
[292] |
. A. D. Wang et al., Composition design of high Bs Fe-based amorphous alloys with good amorphous-forming ability. Journal of Alloys and Compounds 656, 729-734 (2016).
|
[293] |
. C. Zhang et al., Correlation among the amorphous forming ability, viscosity, free-energy difference and interfacial tension in Fe-Si-B-P soft magnetic alloys. Journal of Alloys and Compounds 831, (2020).
|
[294] |
. C. L. Zhao et al., Correlation between soft-magnetic properties and Tx1-Tc in high Bs FeCoSiBPC amorphous alloys. Journal of Alloys and Compounds 659, 193-197 (2016).
|
[295] |
. Z. L. Long et al., Cr effects on magnetic and corrosion properties of Fe-Co-Si- B-Nb-Cr bulk glassy alloys with high glass-forming ability. Intermetallics 15, 1453-1458 (2007).
|
[296] |
. H. Chiriac, N. Lupu, Design and preparation of new soft magnetic bulk amorphous alloys for applications. Materials Science and Engineering aStructural Materials Properties Microstructure and Processing 375, 255-259 (2004).
|
[297] |
. S. Meng, H. Ling, Q. Li, J. Zhang, Development of Fe-based bulk metallic glasses with high saturation magnetization. Scripta Materialia 81, 24-27 (2014).
|
[298] |
. J. H. Zhang, C. T. Chang, A. D. Wang, B. L. Shen, Development of quaternary Fe-based bulk metallic glasses with high saturation magnetization above 1.6 T. Journal of Non-Crystalline Solids 358, 1443-1446 (2012).
|
[299] |
. F. J. Liu, T. Zhang, S. J. Pang, K. F. Yao, Ductile Fe-based amorphous alloys with high iron content. Int. J. Miner. Metall. Mater. 17, 199-203 (2010).
|
[300] |
. F. Liu, Q. Yang, S. Pang, C. Ma, T. Zhang, Ductile Fe-based BMGs with high glass forming ability and high strength. Materials Transactions 49, 231-234 (2008).
|
[301] |
. T. Zhang, F. Liu, S. Pang, R. Li, Ductile Fe-based bulk metallic glass with good soft-magnetic properties. Materials Transactions 48, 1157-1160 (2007).
|
[302] |
. F. Liu, S. Pang, R. Li, T. Zhang, Ductile Fe-Mo-P-C-B-Si bulk metallic glasses with high saturation magnetization. Journal of Alloys and Compounds 483, 613- 615 (2009).
|
[303] |
. J. Zhou, W. M. Yang, C. C. Yuan, B. A. Sun, B. L. Shen, Ductile FeNi-based bulk metallic glasses with high strength and excellent soft magnetic properties. Journal of Alloys and Compounds 742, 318-324 (2018).
|
[304] |
. X. Li, Y. Zhang, H. Kato, A. Makino, A. Inoue, The Effect of Co Addition on Glassy Forming Ability and Soft Magnetic Properties of Fe-Si-B-P Bulk Metallic Glass. Key Engineering Materials 508, 112-116 (2012).
|
[305] |
. X. Li et al., Effect of Cr Addition on the Glass-Forming Ability, Magnetic, Mechanical and Corrosion Properties of (Fe0.76Si0.096B0.096P0.048)100-xCrx Bulk Glassy Alloys. Materials Transactions 49, 2887-2890 (2008).
|
[306] |
. Y. Cai, H. Ling, T. Jiang, Effect of industrial raw materials on the glass-forming ability, magnetic and mechanical properties of Fe-based bulk metallic glasses. Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science 46, 2484-2489 (2015).
|
[307] |
. M. Zuo et al., Effect of metalloid elements on magnetic properties of Fe-based bulk metallic glasses. Intermetallics 83, 83-86 (2017).
|
[308] |
. X. H. Yang, X. H. Ma, Q. Li, S. F. Guo, The effect of Mo on the glass forming ability, mechanical and magnetic properties of FePC ternary bulk metallic glasses. Journal of Alloys and Compounds 554, 446-449 (2013).
|
[309] |
. A. Wang et al., Effect of Ni addition on the glass-forming ability and softmagnetic properties of FeNiBPNb metallic glasses. Chinese Science Bulletin 56, 3932-3936 (2011).
|
[310] |
. J. W. Li, A. N. He, B. L. Shen, Effect of Tb addition on the thermal stability, glass-forming ability and magnetic properties of Fe-B-Si-Nb bulk metallic glass. Journal of Alloys and Compounds 586, S46-S49 (2014).
|
[311] |
. Z. B. Jiao, H. X. Li, J. E. Gao, Y. Wu, Z. P. Lu, Effects of alloying elements on glass formation, mechanical and soft-magnetic properties of Fe-based metallic glasses. Intermetallics 19, 1502-1508 (2011).
|
[312] |
. K. Xu et al., Effects of Co substitution for Fe on the glass forming ability and properties of Fe80P13C7 bulk metallic glasses. Intermetallics 51, 53-58 (2014).
|
[313] |
. M. J. Shi, Z. Q. Liu, T. Zhang, Effects of Metalloid B Addition on the Glass Formation, Magnetic and Mechanical Properties of FePCB Bulk Metallic Glasses. Journal of Materials Science & Technology 31, 493-497 (2015).
|
[314] |
. M. Shi et al., Effects of minor Cu addition on glass-forming ability and magnetic properties of FePCBCu alloys with high saturation magnetization. Philosophical Magazine 93, 2182-2189 (2013).
|
[315] |
. M. J. Shi, Z. Q. Liu, T. Zhang, Effects of minor Sn addition on the glass formation and properties of Fe-metalloid metallic glasses with high magnetization and high glass forming ability. Journal of Magnetism and Magnetic Materials 378, 417-423 (2015).
|
[316] |
. W. Zhang, X. Jia, Y. Li, C. Fang, Effects of Mo addition on thermal stability and magnetic properties of a ferromagnetic Fe75P10C10B5 metallic glass. Journal of Applied Physics 115, (2014).
|
[317] |
. Z. Jiao et al., Effects of Mo additions on the glass-forming ability and magnetic properties of bulk amorphous Fe-C-Si-B-P-Mo alloys. Science China Physics, Mechanics and Astronomy 53, 430-434 (2010).
|
[318] |
. R. Wang et al., Effects of Mo on the glass forming ability and properties of FeB-C-P-Si-Mo bulk metallic glasses. Journal of Non-Crystalline Solids 629, (2024).
|
[319] |
. X. Li, J. Liu, C. Qu, K. Song, L. Wang, Effects of Nb on the precipitation of α- Fe, glass forming ability and magnetic properties of Fe85B10P5 alloys. Journal of Alloys and Compounds 694, 643-646 (2017).
|
[320] |
. J. Zhou et al., Effects of Ni and Si additions on mechanical properties and serrated flow behavior in FeMoPCB bulk metallic glasses. Journal of Alloys and Compounds 783, 555-564 (2019).
|
[321] |
. Q. Liu et al., Effects of Ni substitution for Fe on magnetic properties of Fe80−Ni P13C7 (x= 0-30) glassy ribbons. Journal of Non-Crystalline Solids 463, 68-71 (2017).
|
[322] |
. B. L. Shen, M. Akiba, A. Inoue, Effects of Si and Mo additions on glass-forming in FeGaPCB bulk glassy alloys with high saturation magnetization. Physical Review B 73, (2006).
|
[323] |
. Y. Long, W. Zhang, X. Wang, A. Inoue, Effects of transition metal substitution on the glass-formation ability and magnetic properties of Fe62Co9.5Nd3Dy0.5B25 glassy alloy. Journal of Applied Physics 91, 5227- 5229 (2002).
|
[324] |
. H. Y. Jung, M. Stoica, S. Yi, D. H. Kim, J. Eckert, Electrical and magnetic properties of Fe-based bulk metallic glass with minor Co and Ni addition. Journal of Magnetism and Magnetic Materials 364, 80-84 (2014).
|
[325] |
. H. Y. Jung, S. Yi, Enhanced glass forming ability and soft magnetic properties through an optimum Nb addition to a Fe-C-Si-B-P bulk metallic glass. Intermetallics 18, 1936-1940 (2010).
|
[326] |
. M. X. Zhang, A. D. Wang, B. L. Shen, Enhancement of glass-forming ability of Fe-based bulk metallic glasses with high saturation magnetic flux density. AIP Advances 2, (2012).
|
[327] |
. F. Wang et al., Excellent soft magnetic Fe-Co-B-based amorphous alloys with extremely high saturation magnetization above 1.85 T and low coercivity below 3 A/m. Journal of Alloys and Compounds 711, 132-142 (2017).
|
[328] |
. B. L. Shen, M. Akiba, A. Inoue, Excellent soft-ferromagnetic bulk glassy alloys with high saturation magnetization. Applied Physics Letters 88, 131907 (2006).
|
[329] |
. F. Li, B. Shen, A. Makino, A. Inoue, Excellent soft-magnetic properties of (Fe,Co)-Mo-(P,C,B,Si) bulk glassy alloys with ductile deformation behavior. Applied Physics Letters 91, (2007).
|
[330] |
. S. Lee et al., Excellent Thermal Stability and Bulk Glass Forming Ability of FeB-Nb-Y Soft Magnetic Metallic Glass. MATERIALS TRANSACTIONS 49, 506- 512 (2008).
|
[331] |
. J. Wang et al., Fe-Al-P-C-B bulk metallic glass with good mechanical and soft magnetic properties. Journal of Alloys and Compounds 637, 5-9 (2015).
|
[332] |
. S. Hatta, T. Egami, C. D. Graham, Fe-B-C amorphous alloys with roomtemperature saturation induction over 17.5 kG. Applied Physics Letters 34, 113- 115 (1979).
|
[333] |
. A. D. Wang et al., Fe-based amorphous alloys for wide ribbon production with high Bs and outstanding amorphous forming ability. Journal of Alloys and Compounds 630, 209-213 (2015).
|
[334] |
. C. T. Chang, A. D. Wang, C. L. Zhao, H. Men, X. M. Wang, Fe-based amorphous alloys with high Bs and outstanding amorphous forming ability. Chinese patent, CN105088107A, (2015).
|
[335] |
. F. L. Kong, C. T. Chang, A. Inoue, E. Shalaan, F. Al-Marzouki, Fe-based amorphous soft magnetic alloys with high saturation magnetization and good bending ductility. Journal of Alloys and Compounds 615, 163-166 (2014).
|
[336] |
. J. F. Li, X. Liu, S. F. Zhao, H. Y. Ding, K. F. Yao, Fe-based bulk amorphous alloys with iron contents as high as 82at%. Journal of Magnetism and Magnetic Materials 386, 107-110 (2015).
|
[337] |
. F. J. Liu, K. F. Yao, H. Y. Ding, Fe-based glassy alloys with high iron content and high saturation magnetization. Intermetallics 19, 1674-1677 (2011).
|
[338] |
. H. Koshiba, A. Inoue, A. Makino, Fe-based soft magnetic amorphous alloys with a wide supercooled liquid region. Journal of Applied Physics 85, 5136 (1999).
|
[339] |
. C.-Y. Lin, M.-C. Lee, T.-S. Chin, Fe-Y-M-B (M = Nb or Ta) bulk metallic glasses with ultrahigh strength and good soft magnetic properties. Journal of Physics D-Applied Physics 40, 310-314 (2007).
|
[340] |
. F. S. Li, T. Zhang, A. Inoue, S. K. Guan, N. F. Shen, (Fe,Co)-Zr-Nd-B bulk amorphous alloys with good soft magnetic properties. Intermetallics 12, 1139- 1142 (2004).
|
[341] |
. Y. Han et al., FeCo-based soft magnetic alloys with high Bs approaching 1.75 T and good bending ductility. Journal of Alloys and Compounds 691, 364- 368 (2017).
|
[342] |
. C. Chang, B. Shen, A. Inoue, FeNi-based bulk glassy alloys with superhigh mechanical strength and excellent soft-magnetic properties. Applied Physics Letters 89, (2006).
|
[343] |
. H. Matsumoto, A. Urata, Y. Yamada, A. Inoue, in Materials Science Forum. (Trans Tech Publ, 2010), vol. 654, pp. 1098-1101.
|
[344] |
. W. Zhang, C. Fang, Y. Li, Ferromagnetic Fe-based bulk metallic glasses with high thermoplastic formability. Scripta Materialia 69, 77-80 (2013).
|
[345] |
. A. Makino, T. Kubota, M. Makabe, C. T. Chang, A. Inoue, FeSiBP metallic glasses with high glass-forming ability and excellent magnetic properties. Materials Science and Engineering B: Solid-State Materials for Advanced Technology 148, 166-170 (2008).
|
[346] |
. W. Zhang, A. Inoue, Formation and magnetic properties of bulk glassy Fe-CoNd-Dy-B alloys with high boron concentrations. Materials Transactions Jim 41, 1679-1682 (2000).
|
[347] |
. J. M. Park, J. S. Park, D. H. Kim, J. H. Kim, E. Fleury, Formation, and mechanical and magnetic properties of bulk ferromagnetic Fe-Nb-B-Y-(Zr, Co) alloys. Journal of Materials Research 21, 1019-1024 (2006).
|
[348] |
. B. L. Shen, C. Chang, A. Inoue, Formation, ductile deformation behavior and soft-magnetic properties of (Fe,Co,Ni)-B-Si-Nb bulk glassy alloys. Intermetallics 15, 9-16 (2007).
|
[349] |
. P. Murugaiyan et al., Glass forming ability and soft-magnetic properties of Febased glassy alloys developed using high phosphorous pig Iron. Journal of Alloys and Compounds 821, (2020).
|
[350] |
. J. Torrens-Serra, P. Bruna, M. Stoica, S. Roth, J. Eckert, Glass forming ability, thermal stability, crystallization and magnetic properties of [(Fe,Co,Ni)0.75Si0.05B0.20] 95Nb4Zr1 metallic glasses. Journal of NonCrystalline Solids 367, 30-36 (2013).
|
[351] |
. S. Bhattacharya, E. A. Lass, S. J. Poon, G. J. Shiflet, High thermal stability of soft magnetic (Fe,Co)-Mo-B-C-P-Si metallic glasses. Journal of Alloys and Compounds 488, 79-83 (2009).
|
[352] |
. M. Nabiałek et al., Investigation of magnetic properties of Fe61Co8Zr4−xY2+xNi5Nb5B15 amorphous alloys (x = 0, 1) in the form of ribbons. Materials Science and Engineering: B 178, 99-102 (2013).
|
[353] |
. S. Q. Yue et al., Magnetic and thermal stabilities of FeSiB eutectic amorphous alloys: Compositional effects. Journal of Alloys and Compounds 776, 833-838 (2019).
|
[354] |
. Y. Geng et al., Magnetic properties and a structure model for high Fecontent Fe-B-Si-Zr bulk glassy alloys. Journal of Non-Crystalline Solids 450, 1-5 (2016).
|
[355] |
. P. Pawlik, H. A. Davies, M. R. J. Gibbs, Magnetic properties and glass formability of Fe61Co10Zr5W4B20 bulk metallic glassy alloy. Applied Physics Letters 83, 2775-2777 (2003).
|
[356] |
. C. Y. Lin et al., Magnetic properties and glass-forming ability of modified Fe- P-Si-B bulk amorphous alloys. Journal of Magnetism and Magnetic Materials 282, 156-162 (2004).
|
[357] |
. S. Bhattacharya et al., Magnetic properties and thermal stability of (Fe, Co)- Mo-B-P-Si metallic glasses. Journal of Applied Physics 111, 063906 (2012).
|
[358] |
. W. Yang et al., Magnetic properties of (Fe1-xNix)(72)B20Si4Nb4 (x=0.0-0.5) bulk metallic glasses. Journal of Magnetism and Magnetic Materials 335, 172- 176 (2013).
|
[359] |
. A. Sagasti et al., Magnetic, magnetoelastic and corrosion resistant properties of (Fe-Ni)-based metallic glasses for structural health monitoring applications. Materials 13, (2020).
|
[360] |
. R. Hasegawa, R. C. O’Handley, L. E. Tanner, R. Ray, S. Kavesh, Magnetization, magnetic anisotropy, and domain patterns of Fe80B20 glass. Applied Physics Letters 29, 219-221 (1976).
|
[361] |
. L. X. Shi, K. Y. Wang, K. F. Yao, Maintaining high saturation magnetic flux density and reducing coercivity of Fe-based amorphous alloys by addition of Sn. Journal of Non-Crystalline Solids 528, 119710 (2020).
|
[362] |
. X. Li, C. Qin, H. Kato, A. Makino, A. Inoue, Mo microalloying effect on the glass-forming ability, magnetic, mechanical and corrosion properties of (Fe0.76Si0.096B0.084P0.06)100-xMox bulk glassy alloys. Journal of Alloys and Compounds 509, 7688-7691 (2011).
|
[363] |
. A. Inoue, B. Shen, New Fe-based bulk glassy alloys with high saturated magnetic flux density of 1.4-1.5 T. Materials Science and Engineering A 375- 377, 302-306 (2004).
|
[364] |
. Y. Han et al., New Fe-based soft magnetic amorphous alloys with high saturation magnetization and good corrosion resistance for dust core application. Intermetallics 76, 18-25 (2016).
|
[365] |
. A. Masood, L. Belova, V. Ström, On the correlation between glass forming ability (GFA) and soft magnetism of Ni-substituted Fe-based metallic glassy alloys. Journal of Magnetism and Magnetic Materials 504, (2020).
|
[366] |
. H. Ling et al., Preparation and characterization of quaternary magnetic Fe80- xCoxP14B6 bulk metallic glasses. Journal of Applied Physics 115, (2014).
|
[367] |
. N. Aihemaiti et al., Preparation and properties of CoFeMoPB bulk metallic glasses. Intermetallics 123, (2020).
|
[368] |
. L. Zhang et al., Preparation and properties of Fe80−xNixP14B6 bulk metallic glasses. Journal of Alloys and Compounds 608, 79-84 (2014).
|
[369] |
. R. E. Park, A. Inoue, Preparation and soft magnetic properties of Fe-P-B-Ge amorphous alloys. Materials Transactions Jim 40, 1444-1449 (1999).
|
[370] |
. X. Ma, X. Yang, Q. Li, S. Guo, Quaternary magnetic FeNiPC bulk metallic glasses with large plasticity. Journal of Alloys and Compounds 577, 345-350 (2013).
|
[371] |
. K. F. Yao et al., Research progress and application prospect of Fe-based soft magnetic amorphous/nanocrystalline alloys. Acta Physica Sinica 67, (2018).
|
[372] |
. H. Zheng et al., Role of Ni and Co in tailoring magnetic and mechanical properties of Fe84Si2B13P1 metallic glass. Journal of Alloys and Compounds 816, (2020).
|
[373] |
. C. Y. Lin, T. S. Chin, Soft magnetic (Fe, M)-Y-B (M = Co or Ni) bulk metallic glasses. Journal of Alloys and Compounds 437, 191-196 (2007).
|
[374] |
. A. Inoue, B. Shen, Soft magnetic bulk glassy Fe-B-Si-Nb alloys with high saturation magnetization above 1.5 T. Materials Transactions 43, 766-769 (2002).
|
[375] |
. F. Wang et al., Soft magnetic Fe-Co-based amorphous alloys with extremely high saturation magnetization exceeding 1.9 T and low coercivity of 2 A/m. Journal of Alloys and Compounds 723, 376-384 (2017).
|
[376] |
. A. Inoue, R. E. Park, Soft magnetic properties and wide supercooled liquid region of Fe-P-B-Si base amorphous alloys. Materials Transactions Jim 37, 1715-1721 (1996).
|
[377] |
. W. Zhang, A. Inoue, Soft Magnetic Properties of (Fe, Co)-RE-B Amorphous Alloys with a Large Supercooled Liquid Region. MATERIALS TRANSACTIONS 42, 1142-1145 (2001).
|
[378] |
. A. Makino, A. Inoue, T. Mizushima, Soft magnetic properties of Fe-based bulk amorphous alloys. Materials Transactions, JIM 41, 1471-1477 (2000).
|
[379] |
. C. Y. Lin, H. Y. Tien, T. S. Chin, Soft magnetic ternary iron-boron-based bulk metallic glasses. Applied Physics Letters 86, 1-3 (2005).
|
[380] |
. J. Li, H. Men, B. Shen, Soft-ferromagnetic bulk glassy alloys with large magnetostriction and high glass-forming ability. AIP Advances 1, (2011).
|
[381] |
. L. Hawelek et al., The structure and magnetic properties of rapidly quenched Fe72Ni8Nb4Si2B14 alloy. Materials 14, 1-10 (2021).
|
[382] |
. Y. Han et al., Syntheses and corrosion behaviors of Fe-based amorphous soft magnetic alloys with high-saturation magnetization near 1.7 T. Journal of Materials Research 30, 547-555 (2015).
|
[383] |
. X. Jia et al., Synthesis and properties of ferromagnetic Fe-based (Fe, Ni, Co)- Mo-P-C-B bulk metallic glasses with large supercooled liquid region. Physica B: Condensed Matter 476, 141-146 (2015).
|
[384] |
. H. X. Li, Z. B. Jiao, J. E. Gao, Z. P. Lu, Synthesis of bulk glassy Fe-C-Si-B- P-Ga alloys with high glass-forming ability and good soft-magnetic properties. Intermetallics 18, 1821-1825 (2010).
|
[385] |
. D. S. Song, J. H. Kim, E. Fleury, W. T. Kim, D. H. Kim, Synthesis of ferromagnetic Fe-based bulk glassy alloys in the Fe-Nb-B-Y system. Journal of Alloys and Compounds 389, 159-164 (2005).
|
[386] |
. L. X. Shi, X. L. Qin, K. F. Yao, Tailoring soft magnetic properties of Fe-based amorphous alloys through C addition. Progress in Natural Science: Materials International 30, 208-212 (2020).
|
[387] |
. C. C. Tsuei, G. Longworth, S. C. H. Lin, Temperature dependence of the magnetization of an amorphous ferromagnet. Physical Review 170, 603-606 (1968).
|
[388] |
. A. Inoue, Y. Shinohara, J. S. Gook, Thermal and magnetic properties of bulk Fe -based gl assy alloys prepared by copper mold casting. Mater. Trans. JIM 36, 1427-1421 1433 (1995).
|
[389] |
. W. Zhang, A. Inoue, Thermal and magnetic properties of Fe-Co-Ln-B (Ln=Nd, Sm, Tb or Dy) amorphous alloys with high magnetostriction. Materials Transactions, JIM 40, 78-81 (1999).
|
[390] |
. A. Inoue, H. Koshiba, T. Zhang, A. Makino, Thermal and magnetic properties of Fe56Co7Ni7Zr10-xNbxB20 amorphous alloys with wide supercooled liquid range. Materials Transactions Jim 38, 577-582 (1997).
|
[391] |
. K. Amiya, A. Urata, N. Nishiyama, A. Inoue, Thermal stability and magnetic properties of (Fe, Co)-Ga-(P, C, B, Si) bulk glassy alloys. Materials Science and Engineering: A 449-451, 356-359 (2007).
|
[392] |
. M. Stoica et al., Thermal stability and magnetic properties of partially Cosubstituted (Fe71.2B24Y4.8)96Nb4 bulk metallic glasses. Journal of Applied Physics 109, (2011).
|
[393] |
. J. Wang, Y. Di, Z. Fang, S. Guan, T. Zhang, Thermal stability, crystallization and soft magnetic properties of Fe-P-C-based glassy alloys. Journal of NonCrystalline Solids 454, 39-45 (2016).
|
[394] |
. G. Zhao, C. Wu, S. Tao, M. Yan, Thermal, magnetic and mechanical properties of (Fe1−xCox)68Dy6B22Nb4 bulk metallic glasses. Journal of Non-Crystalline Solids 425, 110-113 (2015).
|
[395] |
. G. Zhang et al., Ultra-low cost and energy-efficient production of FePCSi amorphous alloys with pretreated molten iron from a blast furnace. Journal of Non-Crystalline Solids 514, 108-115 (2019).
|
[396] |
. B. Pang et al., Accelerated discovery of Fe-based amorphous/nanocrystalline alloy through explicit expression and interpretable information based on machine learning. Materials & Design 231, 112054 (2023).
|
[397] |
. Y. Wang et al., Accelerated design of Fe-based soft magnetic materials using machine learning and stochastic optimization. Acta Materialia 194, 144-155 (2020).
|
[398] |
. A.-h. Cai, H. Wang, X.-s. Li, H. Chen, W.-k. An, Progress of component design methods for bulk metallic glass. Materials & Design 28, 2694-2697 (2007).
|
[399] |
. S. S. Fang, X. Xiao, X. Lei, W. H. Li, Y. D. Dong, Relationship between the widths of supercooled liquid regions and bond parameters of Mg-based bulk metallic glasses. Journal of Non-Crystalline Solids 321, 120-125 (2003).
|
[400] |
. R. Feng et al., High-throughput design of high-performance lightweight highentropy alloys. Nature Communications 12, (2021).
|
[401] |
. W. Chen et al., A map of single-phase high-entropy alloys. Nature Communications 14, (2023).
|
[402] |
. J. Ma et al., Fast surface dynamics enabled cold joining of metallic glasses. Science Advances 5, eaax7256 (2019).
|
[403] |
. X. Li, Additive Manufacturing of Advanced Multi-Component Alloys: Bulk Metallic Glasses and High Entropy Alloys. Advanced Engineering Materials 20, (2018).
|
[404] |
. N. Guo, M. C. Leu, Additive manufacturing: technology, applications and research needs. Front. Mech. Eng. 8, 215-243 (2013).
|
[405] |
. K. V. Wong, A. Hernandez, A Review of Additive Manufacturing. ISRN Mechanical Engineering 2012, 1-10 (2012).
|
[406] |
. L. E. Murr et al., Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting Technologies. Journal of Materials Science & Technology 28, 1-14 (2012).
|
[407] |
. G. Wu et al., Crystal-Glass High-Entropy Nanocomposites with Near Theoretical Compressive Strength and Large Deformability. Advanced Materials 32, (2020).
|
[408] |
. F. Wang et al., Formation, stability and ultrahigh strength of novel nanostructured alloys by partial crystallization of high-entropy (Fe0.25Co0.25Ni0.25Cr0.125Mo0.125)(86-89)B11-14 amorphous phase. Acta Materialia 170, 50-61 (2019).
|
[409] |
. G. Herzer, Modern soft magnets: Amorphous and nanocrystalline materials. Acta Materialia 61, 718-734 (2013).
|
[410] |
. I. V. Okulov et al., Flash Joule heating for ductilization of metallic glasses. Nature Communications 6, 7932 (2015).
|
[411] |
. F. Jiang et al., Microstructure evolution and mechanical properties of Cu46Zr47Al7 bulk metallic glass composite containing CuZr crystallizing phases. Materials Science and Engineering: A 467, 139-145 (2007).
|
[412] |
. A. L. Greer, Metallic glasses… on the threshold. Materials Today 12, 14-22 (2009).
|
[413] |
. Z. L. Long et al., A new criterion for predicting the glass-forming ability of bulk metallic glasses. Journal of Alloys and Compounds 475, 207-219 (2009).
|
[414] |
. A. Inoue, Amorphous, nanoquasicrystalline and nanocrystalline alloys in Albased systems. Progress in Materials Science 43, 365-520 (1998).
|
[415] |
. G. Kaltenboeck, M. D. Demetriou, S. Roberts, W. L. Johnson, Shaping metallic glasses by electromagnetic pulsing. Nature Communications 7, (2016).
|
[416] |
. W. L. Johnson et al., Beating Crystallization in Glass-Forming Metals by Millisecond Heating and Processing. Science 332, 828-833 (2011).
|
[417] |
. S. Pauly et al., Processing metallic glasses by selective laser melting. Materials Today 16, 37-41 (2013).
|
[418] |
. S. Sohrabi et al., Manufacturing of metallic glass components: Processes, structures and properties. Progress in Materials Science 144, (2024).
|
[419] |
. X. Guoqiang, D. V. Louzguine-Luzgin, H. Kimura, A. Inoue, Nearly full density Ni52.5 Nb10Zr15Ti15 Pt7.5 bulk metallic glass obtained by spark plasma sintering of gas atomized powders. Applied Physics Letters 90, (2007).
|
[420] |
. G. Q. Xie, W. Zhang, D. V. Louzguine-Luzgin, H. Kimura, A. Inoue, Fabrication of porous Zr-Cu-Al-Ni bulk metallic glass by spark plasma sintering process. Scripta Materialia 55, 687-690 (2006).
|
[421] |
. H. Li et al., Nano-amorphous—crystalline dual-phase design of Al80Li5Mg5Zn5Cu5 multicomponent alloy. Science China Materials, 1-8 (2022).
|
[422] |
. C. Zhang, D. Ouyang, S. Pauly, L. Liu, 3D printing of bulk metallic glasses. Materials Science and Engineering: R: Reports 145, 100625 (2021).
|
[423] |
. N. Li, J. Zhang, W. Xing, D. Ouyang, L. Liu, 3D printing of Fe-based bulk metallic glass composites with combined high strength and fracture toughness. Materials & Design 143, 285-296 (2018).
|
[424] |
. S.-X. Liang et al., Selective laser melting manufactured porous Fe-based metallic glass matrix composite with remarkable catalytic activity and reusability. Applied Materials Today 19, 100543 (2020).
|
[425] |
. M. A. Gibson et al., 3D printing metals like thermoplastics: Fused filament fabrication of metallic glasses. Materials Today 21, 697-702 (2018).
|
[426] |
. Y. Kawamura, T. Shoji, Y. Ohno, Welding technologies of bulk metallic glasses. Journal of Non-Crystalline Solids 317, 152-157 (2003).
|
[427] |
. G. Wang, Y. Huang, D. Makhanlall, J. Shen, Friction joining of Ti40Zr25Ni3Cu12Be20 bulk metallic glass. Journal of Materials Processing Technology 212, 1850-1855 (2012).
|
[428] |
. J. Ma et al., Multi-layer laminated Pd-based metallic glass with enhanced plasticity. Materials Science & Engineering A 587, 240-243 (2013).
|
[429] |
. H. Li et al., Interface design enabled manufacture of giant metallic glasses. Science China Materials 64, 964-972 (2021).
|
[430] |
. X. Li et al., Ultrasonic plasticity of metallic glass near room temperature. Applied Materials Today 21, 100866 (2020).
|
[431] |
. Z. Huang et al., Ultrasonic-assisted rapid cold welding of bulk metallic glasses. Science China Materials 65, 255-262 (2022).
|
[432] |
. L. Y. Li et al., Joining of metallic glasses in liquid via ultrasonic vibrations. Nature Communications 14, (2023).
|
[433] |
. X. Li et al., Ultrasonic vibration enabled under-liquid forming of metallic glasses. Sci Bull 69, 163-166 (2024).
|
[434] |
. X. Liang et al., High-entropy alloy and amorphous alloy composites fabricated by ultrasonic vibrations. Science China Physics, Mechanics & Astronomy 63, (2020).
|
[435] |
. X. Liang et al., Fabrication of amorphous and high-entropy biphasic composites using high-frequency ultrasonic vibration. Journal of Non-Crystalline Solids 582, 121458 (2022).
|
[436] |
. J. N. Fu et al., Manufacture of porous metallic glass using dissolvable templates. Sci China Mater 65, 2833-2841 (2022).
|
[437] |
. J. A. Fu et al., Hierarchical porous metallic glass with strong broadband absorption and photothermal conversion performance for solar steam generation. Nano Energy 106, (2023).
|
[438] |
. J. B. Huang et al., Design of Light-Driven Biocompatible and Biodegradable Microrobots Containing Mg-Based Metallic Glass Nanowires. Acs Nano 18, 2006-2016 (2024).
|
[439] |
. J. Lindwall, V. Pacheco, M. Sahlberg, A. Lundbäck, L.-E. Lindgren, Thermal simulation and phase modeling of bulk metallic glass in the powder bed fusion process. Additive Manufacturing 27, 345-352 (2019).
|
[440] |
. J. Y. Zhang et al., Recent development of chemically complex metallic glasses: from accelerated compositional design, additive manufacturing to novel applications. Mater Futures 1, (2022).
|
[441] |
. Z. Chen et al., Plasticity and rejuvenation of aged metallic glasses by ultrasonic vibrations. Journal of Materials Science & Technology 181, 231-239 (2024).
|
[442] |
. F. Fang et al., Towards atomic and close-to-atomic scale manufacturing. International Journal of Extreme Manufacturing 1, 012001 (2019).
|
[443] |
. J.-F. Zhang, J. Ducree, Proposition of atomic and close-to-atomic scale manufacturing. Advances in Manufacturing 12, 1-5 (2024).
|
[444] |
. Y. Ding, C. Wang, M. Zeng, L. Fu, Atomic Manufacturing of Advanced Nanomaterials. Advanced Materials n/a, 2306689 (2023).
|
[445] |
. J. Schroers, Processing of Bulk Metallic Glass. Advanced Materials 22, 1566- 1597 (2010).
|
[446] |
. H. Liu et al., Crystallization in additive manufacturing of metallic glasses: A review. Additive Manufacturing 36, 101568 (2020).
|
[447] |
. D. B. Miracle, A structural model for metallic glasses. Nature Materials 3, 697- 702 (2004).
|
[448] |
. H. W. Sheng, W. K. Luo, F. M. Alamgir, J. M. Bai, E. Ma, Atomic packing and short-to-medium-range order in metallic glasses. Nature 439, 419-425 (2006).
|
[449] |
. A. Hirata et al., Direct observation of local atomic order in a metallic glass. Nature Materials 10, 28-33 (2010).
|
[450] |
. P. F. Damasceno, M. Engel, S. C. Glotzer, Predictive Self-Assembly of Polyhedra into Complex Structures. Science 337, 453-457 (2012).
|
[451] |
. S. F. Swallen et al., Organic Glasses with Exceptional Thermodynamic and Kinetic Stability. Science 315, 353-356 (2007).
|
[452] |
. H. B. Yu, Y. S. Luo, K. Samwer, Ultrastable metallic glass. Advanced Materials 25, 5904-5908 (2013).
|
[453] |
. D. P. Aji et al., Ultrastrong and ultrastable metallic glass. arXiv preprint arXiv:1306.1575, (2013).
|
[454] |
. P. Luo et al., Ultrastable metallic glasses formed on cold substrates. Nature Communications 9, 1389 (2018).
|
[455] |
. L. Zhong, J. Wang, H. Sheng, Z. Zhang, S. X. Mao, Formation of monatomic metallic glasses through ultrafast liquid quenching. Nature 512, 177-180 (2014).
|
[456] |
. M. Ghidelli et al., Novel class of nanostructured metallic glass films with superior and tunable mechanical properties. Acta Materialia 213, 116955 (2021).
|
[457] |
. H. Zhao et al., High-strength and malleable dual-phase nanostructured Ta-based metallic glass via atomic manufacturing. Science China Materials 66, 4226- 4232 (2023).
|
[458] |
. G. H. Cao et al., Liquid metal for high-entropy alloy nanoparticles synthesis. Nature 619, 73-77 (2023).
|
[459] |
. S. Jeon et al., Reversible disorder-order transitions in atomic crystal nucleation. Science 371, 498-503 (2021).
|
[460] |
. R. Zhao et al., Sampling stable amorphous tantalum states from energy landscape. Scripta Materialia 202, 114018 (2021).
|
[461] |
. S.-X. Liang, L.-C. Zhang, S. Reichenberger, S. Barcikowski, Design and perspective of amorphous metal nanoparticles from laser synthesis and processing. Physical Chemistry Chemical Physics 23, 11121-11154 (2021).
|
[462] |
. C. R. Cao et al., Liquid-like behaviours of metallic glassy nanoparticles at room temperature. Nature Communications 10, 1966 (2019).
|
[463] |
. C. A. Angell, K. L. Ngai, G. B. McKenna, P. F. McMillan, S. W. Martin, Relaxation in glassforming liquids and amorphous solids. Journal of Applied Physics 88, 3113 (2000).
|
[464] |
. F. H. Stillinger, A topographic view of supercooled liquids and glass formation. Science 267, 1935-1939 (1995).
|
[465] |
. C. Rodriguez-Tinoco, M. Gonzalez-Silveira, M. A. Ramos, J. Rodriguez-Viejo, Ultrastable glasses: new perspectives for an old problem. La Rivista del Nuovo Cimento 45, 325-406 (2022).
|
[466] |
. X. Lin, C. C. Labandeira, C. Shih, C. L. Hotton, D. Ren, Life habits and evolutionary biology of new two-winged long-proboscid scorpionflies from mid-Cretaceous Myanmar amber. Nature communications 10, 1-14 (2019).
|
[467] |
. S. Self, S. Blake, K. Sharma, M. Widdowson, S. Sephton, Sulfur and chlorine in Late Cretaceous Deccan magmas and eruptive gas release. Science 319, 1654- 1657 (2008).
|
[468] |
. Z. Chen et al., Geological timescales’ aging effects of lunar glasses. Science Advances 9, eadi6086 (2023).
|
[469] |
. A. E. Saal et al., Volatile content of lunar volcanic glasses and the presence of water in the Moon's interior. Nature 454, 192-195 (2008).
|
[470] |
. S. Gin et al., An international initiative on long-term behavior of high-level nuclear waste glass. Materials Today 16, 243-248 (2013).
|
[471] |
. W. Johnson, Bulk amorphous metal—An emerging engineering material. Jom 54, 40-43 (2002).
|
[472] |
. E. M. A. L. Greer, Bulk metallic glasses,at the cutting edge of metals research. MRS Bulletin 32, 611-619 (2007).
|
[473] |
. Y. Zhao, B. Zhang, K. Sato, Unusual volume change associated with crystallization in Ce-Ga-Cu bulk metallic glass. Intermetallics 88, 1-5 (2017).
|
[474] |
. Z. Fakhraai, J. A. Forrest, Measuring the Surface Dynamics of Glassy Polymers. Science 319, 600-604 (2008).
|
[475] |
. L. Zhu et al., Surface Self-Diffusion of an Organic Glass. Physical Review Letters 106, (2011).
|
[476] |
. C. R. Cao, Y. M. Lu, H. Y. Bai, W. H. Wang, High surface mobility and fast surface enhanced crystallization of metallic glass. Applied Physics Letters 107, (2015).
|
[477] |
. T. Dziuba, Y. Luo, K. Samwer, Local mechanical properties of an ultrastable metallic glass. Journal of Physics: Condensed Matter 32, 345101 (2020).
|
[478] |
. Q. Sun et al., Transition towards ultrastable metallic glasses in Zr-based thin films. Applied Surface Science 533, 147453 (2020).
|
[479] |
. M. Liu, C. R. Cao, Y. M. Lu, W. H. Wang, H. Y. Bai, Flexible amorphous metal films with high stability. Applied Physics Letters 110, (2017).
|
[480] |
. A. D. Parmar, M. Ozawa, L. Berthier, Ultrastable metallic glasses in silico. Physical Review Letters 125, 085505 (2020).
|
[481] |
. G. Bokas, L. Zhao, D. Morgan, I. Szlufarska, Increased stability of CuZrAl metallic glasses prepared by physical vapor deposition. Journal of Alloys and Compounds 728, 1110-1115 (2017).
|
[482] |
. M. Lüttich et al., Anti-aging in ultrastable metallic glasses. Physical review letters 120, 135504 (2018).
|
[483] |
. J.-H. Chu et al., Modification of structure and property in Zr-based thin film metallic glass via processing temperature control. Thin Solid Films 561, 38-42 (2014).
|
[484] |
. B. Zhang, D. Q. Zhao, M. X. Pan, W. H. Wang, A. L. Greer, Amorphous metallic plastic. Phys Rev Lett 94, 205502 (2005).
|
[485] |
. S. Venkataraman, H. Hermann, D. Sordelet, J. Eckert. (American Institute of Physics, 2008), vol. 104, pp. 066107.
|
[486] |
. N. Van Steenberge et al., Microstructural inhomogeneities introduced in a Zrbased bulk metallic glass upon low-temperature annealing. Materials Science and Engineering: A 491, 124-130 (2008).
|
[487] |
. J. H. Perepezko et al., Nanocrystallization reactions in amorphous aluminum alloys. Materials transactions 44, 1982-1992 (2003).
|
[488] |
. B. Sarac et al., Structural modifications in sub-Tg annealed CuZr-based metallic glass. Materials Science and Engineering: A 707, 245-252 (2017).
|
[489] |
. Y. X. Zhuang, W. H. Wang, Effects of relaxation on glass transition and crystallization of ZrTiCuNiBe bulk metallic glass. Journal of Applied Physics 87, 8209-8211 (2000).
|
[490] |
. N. Chen, K.-F. Yao, F. Ruan, Microstructural features of phase transformation in a binary Pd-Si metallic glass. Philosophical magazine letters 87, 677-686 (2007).
|
[491] |
. D. V. Louzguine-Luzgin, J. Jiang, On Long-Term Stability of Metallic Glasses. Metals 9, 1076 (2019).
|
[492] |
. Y. Zhao, B. Zhang, Evaluating the correlation between liquid fragility and glass-forming ability in the extremely strong Ce-based bulk metallic glasses. Journal of Applied Physics 122, 115107 (2017).
|
[493] |
. T. Pérez-Castañeda, R. J. Jiménez-Riobóo, M. A. Ramos, Two-level systems and boson peak remain stable in 110-million-year-old amber glass. Physical review letters 112, 165901 (2014).
|
[494] |
. K. L. Kearns et al., Hiking down the energy landscape: Progress toward the Kauzmann temperature via vapor deposition. The Journal of Physical Chemistry B 112, 4934-4942 (2008).
|
[495] |
. Y. P. Koh, S. L. Simon, Enthalpy Recovery of Polystyrene: Does a Long-Term Aging Plateau Exist? Macromolecules 46, 5815-5821 (2013).
|
[496] |
. T. Ichitsubo et al., Microstructure of fragile metallic glasses inferred from ultrasound-accelerated crystallization in Pd-based metallic glasses. Physical review letters 95, 245501 (2005).
|
[497] |
. R. J. Xue et al., Enhanced kinetic stability of a bulk metallic glass by high pressure. Applied Physics Letters 109, 221904 (2016).
|
[498] |
. Y. Zhao, P. F. Liu, L. Wu, B. Zhang, K. Sato, The role of open spaces to glassforming ability in bulk metallic glasses. Intermetallics 100, 112-115 (2018).
|
[499] |
. Y. Zhao et al., Anomalous packing state in Ce-Ga-Cu bulk metallic glasses. Intermetallics 84, 25-29 (2017).
|
[500] |
. W. Kauzmann, The nature of the glassy state and the behavior of liquids at low temperatures. Chemical reviews 43, 219-256 (1948).
|
[501] |
. H. D. Vogel, Das Temperaturabhängigkeitsgesestz der Viskosität von Flüssigkeite. J. Phys. Z 22, 645-646 (1921).
|
[502] |
. G. S. Fulcher, Analysis of recent measurements of the viscosity of glasses. Journal of the American Ceramic Society 8, 339-355 (1925).
|
[503] |
. G. Tammann, W. Hesse, Die Abhängigkeit der Viscosität von der Temperatur bie unterkühlten Flüssigkeiten. Zeitschrift für anorganische und allgemeine Chemie 156, 245-257 (1926).
|
[504] |
. Y. Yoshizawa, S. Oguma, K. Yamauchi, New Fe-based soft magnetic alloys composed of ultrafine grain structure. Journal of Applied Physics 64, 6044-6046 (1988).
|
[505] |
. Y. H. Liu et al., Super Plastic Bulk Metallic Glasses at Room Temperature. Science 315, 1385-1388 (2007).
|
[506] |
. W. H. Wang, The nature and properties of amorphous matter Progress in physics 33, 177-351 (2013).
|
[507] |
. J. Couzin, How much can human life span be extended? Science 309, 83-83 (2005).
|
[508] |
. A. L. Greer, New horizons for glass formation and stability. Nat Mater 14, 542- 546 (2015).
|
[509] |
. Y. Yuan et al., Three-dimensional atomic packing in amorphous solids with liquid-like structure. Nature Materials 21, 95-102 (2022).
|
[510] |
. Y. E. Zhang et al., Evidence of intrinsic structural heterogeneity by monatomic metallic glass. Scripta Materialia 252, 116261 (2024).
|
[511] |
. Y. Hong et al., Structural heterogeneity governing deformability of metallic glass. Matter 6, 1160-1172 (2023).
|
[512] |
. M. H. Cohen, D. Turnbull, Molecular Transport in Liquids and Glasses. The Journal of Chemical Physics 31, 1164 (1959).
|
[513] |
. D. Turnbull, M. H. Cohen, Concerning reconstructive transformation and formation of glass. The Journal of Chemical Physics 29, 1049-1054 (1958).
|
[514] |
. M. H. Cohen, D. Turnbull, Composition requirements for glass formation in metallic and ionic systems. Nature 189, 131-132 (1961).
|
[515] |
. D. Turnbull, The Subcooling of Liquid Metals. Journal of Applied Physics 20, 817-817 (1949).
|
[516] |
. D. Turnbull, Correlation of Liquid-Solid Interfacial Energies Calculated from Supercooling of Small Droplets. The Journal of Chemical Physics 18, 769-769 (1950).
|
[517] |
. Y. Li, S. Zhao, Y. Liu, P. Gong, J. Schroers, How Many Bulk Metallic Glasses Are There? ACS Comb Sci 19, 687-693 (2017).
|
[518] |
. J. Kramer, Der amorphe Zustand der Metalle. Zeitschrift für Physik 106, 675- 691 (1937).
|
[519] |
. W. Buckel, R. Hilsch, Einfluß der Kondensation bei tiefen Temperaturen auf den elektrischen Widerstand und die Supraleitung für verschiedene Metalle. Zeitschrift für Physik 138, 109-120 (1954).
|
[520] |
. J. E. Nestell, K. J. Scoles, R. W. Christy, Optical conductivity of amorphous Ta and β-Ta films. Journal of Applied Physics 53, 8993-8998 (1982).
|
[521] |
. H. A. Davies, J. Aucote, J. B. Hull, Amorphous Nickel produced by Splat Quenching. Nature Physical Science 246, 13-14 (1973).
|
[522] |
. Y. W. Kim, H. M. Lin, T. F. Kelly, Amorphous solidification of pure metals in submicron spheres. Acta Metallurgica 37, 247-255 (1989).
|
[523] |
. S. Fujime, Electron Diffraction at Low Temperature II. Radial Distribution Analysis of Metastable Structure of Metal Films Prepa ed by Low Temperature Condensation. Japanese Journal of Applied Physics 5, (1966).
|
[524] |
. S. Fujime, Electron Diffraction at Low Temperature IV. Amorphous Films of Iron and Chromium Prepared by Low Temperature Condensation. Japanese Journal of Applied Physics 5, 1029-1035 (1966).
|
[525] |
. S. Fujime, Electron Diffraction at Low Temperature V. On Amorphous Films of Transition Metals and Alloys Prepared by Low Temperature Condensation. Japanese Journal of Applied Physics 6, 305 (1967).
|
[526] |
. L. B. Davies, P. J. Grundy, An investigation of the structure of non-crystalline films of nickel, cobalt, and cobalt-phosphorus by electron diffraction. physica status solidi (a) 8, 189-197 (1971).
|
[527] |
. L. B. Davies, P. J. Grundy, An electron diffraction and resistivity study of noncrystalline thin films of gold and silver. Journal of Non-Crystalline Solids 11, 179-191 (1972).
|
[528] |
. P. Grundy, S. Nandra, A. Ali, The magnetization of amorphous films of some ferromagnetic transition metals and their alloys. IEEE Transactions on Magnetics 11, 1329-1331 (1975).
|
[529] |
. S. Nagata, M. Ogino, S. Taniguchi, Electrical Resistivity of Thin Metal Films Vapor-Quenched at 77 K. Cu, Ag, Au, Ni, Pd, and Pt. Physica Status Solidi (a) 102, 711-717 (1987).
|
[530] |
. K. S. Suslick, S.-B. Choe, A. A. Cichowlas, M. W. Grinstaff, Sonochemical synthesis of amorphous iron. Nature 353, 414-416 (1991).
|
[531] |
. M. H. Bhat et al., Vitrification of a monatomic metallic liquid. Nature 448, 787- 790 (2007).
|
[532] |
. D. S. He et al., Single-element amorphous palladium nanoparticles formed via phase separation. Nano Research 15, 5575-5580 (2022).
|
[533] |
. J. M. Rojo et al., Observation and Characterization of Ferromagnetic Amorphous Nickel. Physical Review Letters 76, 4833-4836 (1996).
|
[534] |
. D. M. Tang et al., Amorphization and Directional Crystallization of Metals Confined in Carbon Nanotubes Investigated by in Situ Transmission Electron Microscopy. Nano Lett 15, 4922-4927 (2015).
|
[535] |
. Q. An et al., Synthesis of single-component metallic glasses by thermal spray of nanodroplets on amorphous substrates. Applied Physics Letters 100, 041909 (2012).
|
[536] |
. S. An et al., Ultrasmall nanoparticles inducing order-to-disorder transition. Physical Review B 98, 134101 (2018).
|
[537] |
. Y. Yu, Deposited Mono-component Cu Metallic Glass: A Molecular Dynamics Study. Materials Today Communications 26, 102083 (2021).
|
[538] |
. Z. Yan et al., Intermediate structural evolution preceding growing BCC crystal interface in deeply undercooled monatomic metallic liquids. Acta Materialia 202, 387-398 (2021).
|
[539] |
. Z. Wu et al., Topologically close-packed characteristic of amorphous tantalum. Phys Chem Chem Phys 20, 28088-28104 (2018).
|
[540] |
. J. Orava, A. L. Greer, Fast and slow crystal growth kinetics in glass-forming melts. J Chem Phys 140, 214504 (2014).
|
[541] |
. G. Sun, J. Xu, P. Harrowell, The mechanism of the ultrafast crystal growth of pure metals from their melts. Nat Mater 17, 881-886 (2018).
|
[542] |
. M. C. Lee, J. M. Kendall, W. L. Johnson, Spheres of the metallic glass Au55Pb22.5Sb22.5 and their surface characteristics. Applied Physics Letters 40, 382-384 (1982).
|
[543] |
. D. M. Herlach, R. F. Cochrane, I. Egry, H. J. Fecht, A. L. Greer, Containerless processing in the study of metallic melts and their solidification. International Materials Reviews 38, 273-347 (1993).
|
[544] |
. H. W. Kui, A. L. Greer, D. Turnbull, Formation of bulk metallic glass by fluxing. Applied Physics Letters 45, 615-616 (1984).
|
[545] |
. A. Castellero et al., Improvement of the glass-forming ability of Zr55Cu30Al10Ni5 and Cu47Ti34Zr11Ni8 alloys by electro-deoxidation of the melts. Scripta Materialia 55, 87-90 (2006).
|
[546] |
. B. J. Yang, W. Y. Lu, J. L. Zhang, J. Q. Wang, E. Ma, Melt fluxing to elevate the forming ability of Al-based bulk metallic glasses. Sci Rep 7, 11053 (2017).
|
[547] |
. H. A. Davies, J. B. Hull, The formation, structure and crystallization of noncrystalline nickel produced by splat-quenching. Journal of Materials Science 11, 215-223 (1976).
|
[548] |
. A. K. Gangopadhyay, K. F. Kelton, Prediction of elemental glass-transition temperatures of metals from thermophysical properties of liquids. Journal of Non-Crystalline Solids: X 2, 100016 (2019).
|
[549] |
. P. Luo et al., High-density stable glasses formed on soft substrates. Nature Materials 23, 688-694 (2024).
|
[550] |
. M. Salinga et al., Monatomic phase change memory. Nat Mater 17, 681-685 (2018).
|
[551] |
. X. Wang et al., Glassy Li metal anode for high-performance rechargeable Li batteries. Nat Mater 19, 1339-1345 (2020).
|
[552] |
. D. B. Miracle, T. Egami, K. M. Flores, K. F. Kelton, Structural Aspects of Metallic Glasses. MRS Bulletin 32, 629-634 (2007).
|
[553] |
. J. Dong et al., Non-affine atomic rearrangement of glasses through stressinduced structural anisotropy. Nature Physics 19, 1896-1903 (2023).
|
[554] |
. J. Wang, R. Li, N. Hua, T. Zhang, Co-based ternary bulk metallic glasses with ultrahigh strength and plasticity. Journal of Materials Research 26, 2072-2079 (2011).
|
[555] |
. J. Bi et al., OsCo-based high-temperature bulk metallic glasses with robust mechanical properties. Scripta Materialia 228, 115336 (2023).
|
[556] |
. A. D. Phan, A. Zaccone, V. D. Lam, K. Wakabayashi, Theory of PressureInduced Rejuvenation and Strain Hardening in Metallic Glasses. Physical Review Letters 126, (2021).
|
[557] |
. X. Yuan, D. Şopu, J. Eckert, Origin of strain hardening in monolithic metallic glasses. Physical Review B 103, (2021).
|
[558] |
. H. Tanaka, H. Tong, R. Shi, J. Russo, Revealing key structural features hidden in liquids and glasses. Nature Reviews Physics 1, 333-348 (2019).
|
[559] |
. S. Lan et al., A medium-range structure motif linking amorphous and crystalline states. Nature Materials 20, 1347-1352 (2021).
|
[560] |
. F. F. C, M. N. F, Supercooling of liquids. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 215, 43-46 (1952).
|
[561] |
. F. C. Frank, J. S. Kasper, Complex alloy structures regarded as sphere packings. I. Definitions and basic principles. Acta Crystallographica 11, 184-190 (1958).
|
[562] |
. F. C. Frank, J. S. Kasper, Complex alloy structures regarded as sphere packings. II. Analysis and classification of representative structures. Acta Crystallographica 12, 483-499 (1959).
|
[563] |
. J. D. Bernal, Geometry of the Structure of Monatomic Liquids. Nature 185, 68- 70 (1960).
|
[564] |
. J. L. Finney, J. D. Bernal, Random Close Packing and the Heats of Fusion of Simple Liquids. Nature 213, 1079-1082 (1967)
|
[565] |
. M. H. Cohen, D. Turnbull, Metastability of Amorphous Structures. Nature 203, 964-964 (1964).
|
[566] |
. T. Egami, Understanding the properties and structure of metallic glasses at the atomic level. JOM 62, 70-75 (2010).
|
[567] |
. B. J. D, The Bakerian Lecture, 1962 The structure of liquids. Proc. R. Soc. Lond. A 280, 299-322 (1964).
|
[568] |
. G. Voronoi, Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908, 198-287 (1908).
|
[569] |
. F. J. L, Random packings and the structure of simple liquids. I. The geometry of random close packing. Proc. R. Soc. Lond. A 319, 479-493 (1970).
|
[570] |
. P. H. Gaskell, A new structural model for transition metal-metalloid glasses. Nature 276, 484-485 (1978).
|
[571] |
. D. L. Price, S. C. Moss, R. Reijers, M. L. Saboungi, S. Susman, Intermediaterange order in glasses and liquids. Journal of Physics: Condensed Matter 1, 1005-1008 (1989).
|
[572] |
. D. L. Price et al., Short-, intermediate-, and extended-range order in rubidium germanate glasses. Physical Review B 55, 11249-11255 (1997).
|
[573] |
. S. Sampath et al., Intermediate-Range Order in Permanently Densified GeO2 Glass. Physical Review Letters 90, (2003).
|
[574] |
. J. D. Martin, S. J. Goettler, N. Fossé, L. Iton, Designing intermediate-range order in amorphous materials. Nature 419, 381-384 (2002).
|
[575] |
. H. Reichert et al., Observation of five-fold local symmetry in liquid lead. Nature 408, 839-841 (2000).
|
[576] |
. G. W. Lee et al., Difference in Icosahedral Short-Range Order in Early and Late Transition Metal Liquids. Physical Review Letters 93, (2004).
|
[577] |
. S. R. Elliott, Medium-range structural order in covalent amorphous solids. Nature 354, 445-452 (1991).
|
[578] |
. D. Ma, A. D. Stoica, X. L. Wang, Power-law scaling and fractal nature of medium-range order in metallic glasses. Nature Materials 8, 30-34 (2008).
|
[579] |
. D. Z. Chen et al., Fractal atomic-level percolation in metallic glasses. Science 349, 1306-1310 (2015).
|
[580] |
. D. B. Miracle, The efficient cluster packing model-An atomic structural model for metallic glasses. Acta Materialia 54, 4317-4336 (2006).
|
[581] |
. Y. Yang et al., Determining the three-dimensional atomic structure of an amorphous solid. Nature 592, 60-64 (2021).
|
[582] |
. Y. Q. Cheng, E. Ma, H. W. Sheng, Atomic Level Structure in Multicomponent Bulk Metallic Glass. Physical Review Letters 102, (2009).
|
[583] |
. W. K. Luo, H. W. Sheng, E. Ma, Pair correlation functions and structural building schemes in amorphous alloys. Applied Physics Letters 89, (2006).
|
[584] |
. J. Ding, E. Ma, M. Asta, R. O. Ritchie, Second-Nearest-Neighbor Correlations from Connection of Atomic Packing Motifs in Metallic Glasses and Liquids. Scientific Reports 5, (2015).
|
[585] |
. S. Lan et al., Structural crossover in a supercooled metallic liquid and the link to a liquid-to-liquid phase transition. Applied Physics Letters 108, (2016).
|
[586] |
. S. P. Pan, J. Y. Qin, W. M. Wang, T. K. Gu, Origin of splitting of the second peak in the pair-distribution function for metallic glasses. Physical Review B 84, (2011).
|
[587] |
. S. Lan et al., Engineering medium-range order and polyamorphism in a nanostructured amorphous alloy. Communications Physics 2, (2019).
|
[588] |
. S. Lan et al., Hidden amorphous phase and reentrant supercooled liquid in PdNi-P metallic glasses. Nature Communications 8, (2017).
|
[589] |
. S. Lan et al., Structure origin of a transition of classic-to-avalanche nucleation in Zr-Cu-Al bulk metallic glasses. Acta Materialia 149, 108-118 (2018).
|
[590] |
. S. Lan et al., In-situ study of crystallization kinetics in ternary bulk metallic glass alloys with different glass forming abilities. Applied Physics Letters 105, (2014).
|
[591] |
. W. Dong et al., In situ neutron scattering studies of a liquid-liquid phase transition in the supercooled liquid of a Zr-Cu-Al-Ag glass-forming alloy. Applied Physics Letters 118, (2021).
|
[592] |
. W. Dong et al., In-situ observation of an unusual phase transformation pathway with Guinier-Preston zone-like precipitates in Zr-based bulk metallic glasses. Journal of Alloys and Compounds 819, 153049 (2020).
|
[593] |
. S. Fu et al., In situ study on medium-range order evolution during the polyamorphous phase transition in a Pd-Ni-P nanostructured glass. Journal of Materials Science & Technology 125, 145-156 (2022).
|
[594] |
. Y. Lou et al., An anomalous structure disordering in Zr-Cu-Ag supercooled glass-forming liquids. Intermetallics 159, 107930 (2023).
|
[595] |
. S. Liu et al., Deformation-enhanced hierarchical multiscale structure heterogeneity in a Pd-Si bulk metallic glass. Acta Materialia 200, 42-55 (2020).
|
[596] |
. S. Liu et al., Medium-range order endows a bulk metallic glass with enhanced tensile ductility. Journal of Materials Science & Technology 159, 10-20 (2023).
|
[597] |
. J. Ge et al., Correlations of multiscale structural evolution and homogeneous flows in metallic glass ribbons. Materials Research Letters 11, 547-555 (2023).
|
[598] |
. F.-Y. Gao et al., Nickel-molybdenum-niobium metallic glass for efficient hydrogen oxidation in hydroxide exchange membrane fuel cells. Nature Catalysis 5, 993-1005 (2022).
|
[599] |
. J. Ge et al., Evolution of medium-range order and its correlation with magnetic nanodomains in Fe-Dy-B-Nb bulk metallic glasses. Journal of Materials Science & Technology 176, 224-235 (2024).
|
[600] |
. Q. Du et al., Reentrant glass transition leading to ultrastable metallic glass. Materials Today 34, 66-77 (2020).
|
[601] |
. S. Hilke et al., The influence of deformation on the medium-range order of a Zr-based bulk metallic glass characterized by variable resolution fluctuation electron microscopy. Acta Materialia 171, 275-281 (2019).
|
[602] |
. K. Nomoto et al., Deformation-induced medium-range order changes in bulk metallic glasses. Physical Review Materials 6, (2022).
|
[603] |
. H. Zhou, L. Shen, B. Sun, W. Wang, Research progress on the shear band of metallic glasses. Journal of Alloys and Compounds 955, 170164 (2023).
|
[604] |
. F. A. Davani et al., Correlations between the ductility and medium-range order of bulk metallic glasses. Journal of Applied Physics 128, (2020).
|
[605] |
. Y.-C. Yang, Z. Xia, S. Mukherjee, Unraveling the Structural Statistics and Its Relationship with Mechanical Properties in Metallic Glasses. Nano Letters 21, 9108-9114 (2021).
|
[606] |
. K. Nomoto et al., Medium-range orider dictates local hardness in bulk metallic glasses. Materials Today 44, 48-57 (2021).
|
[607] |
. S. Luo, J. C. Khong, S. Huang, G. Yang, J. Mi, Revealing in situ stress-induced short- and medium-range atomic structure evolution in a multicomponent metallic glassy alloy. Acta Materialia 272, 119917 (2024).
|
[608] |
. J. Ge et al., In-situ scattering study of a liquid-liquid phase transition in Fe-BNb-Y supercooled liquids and its correlation with glass-forming ability. Journal of Alloys and Compounds 787, 831-839 (2019).
|
[609] |
. Y. Wu et al., Substantially enhanced plasticity of bulk metallic glasses by densifying local atomic packing. Nature Communications 12, (2021).
|
[610] |
. H.-R. Jiang et al., Influence of sulfur addition on the glass formation, phase transformation and mechanical properties of Cu50Zr50 alloy. Acta Materialia 255, 119064 (2023).
|
[611] |
. H. Voigt et al., Differences in structure and dynamics of ternary Pd-Ni-based bulk metallic glasses containing sulfur or phosphorous. Acta Materialia 264, 119574 (2024).
|
[612] |
. A. Kuball, O. Gross, B. Bochtler, R. Busch, Sulfur-bearing metallic glasses: A new family of bulk glass-forming alloys. Scripta Materialia 146, 73-76 (2018).
|
[613] |
. Q. H. Pham et al., The effects of Ni or Nb additions on the relaxation behavior of Zr55Cu35Al10 metallic glass. Materials Today Communications 29, 102909 (2021).
|
[614] |
. J. Li et al., Thermal stability, magnetic and mechanical properties of Fe-Dy- B-Nb bulk metallic glasses with high glass-forming ability. Intermetallics 46, 85-90 (2014).
|
[615] |
. P. S. Salmon, R. A. Martin, P. E. Mason, G. J. Cuello, Topological versus chemical ordering in network glasses at intermediate and extended length scales. Nature 435, 75-78 (2005).
|
[616] |
. W. Qian, S. Wu, L. Lei, Q. Hu, C. Liu, Time lapse in situ X-ray imaging of failure in structural materials under cyclic loads and extreme environments. Journal of Materials Science & Technology 175, 80-103 (2024).
|
[617] |
. R. Shi, H. Tanaka, Distinct signature of local tetrahedral ordering in the scattering function of covalent liquids and glasses. Science Advances 5, (2019).
|
[618] |
. H. L. Smith et al., Separating the configurational and vibrational entropy contributions in metallic glasses. Nature Physics 13, 900-905 (2017).
|
[619] |
. S. Moniri et al., Three-dimensional atomic structure and local chemical order of medium- and high-entropy nanoalloys. Nature 624, 564-569 (2023).
|
[620] |
. F. Li, X. J. Liu, Z. P. Lu, Atomic structural evolution during glass formation of a Cu-Zr binary metallic glass. Computational Materials Science 85, 147-153 (2014).
|
[621] |
. A. L. Greer, Metallic Glasses. Physical Metallurgy, 305-385 (2014).
|
[622] |
. J. Ding, E. Ma, Computational modeling sheds light on structural evolution in metallic glasses and supercooled liquids. npj Computational Materials 3, (2017).
|
[623] |
. X. J. Liu et al., Metallic Liquids and Glasses: Atomic Order and Global Packing. Physical Review Letters 105, (2010).
|
[624] |
. M. Ghaemi, R. Tavakoli, A. Foroughi, Comparing short-range and medium- range ordering in CuZr and NiZr metallic glasses -Correlation between structure and glass form ability. Journal of Non-Crystalline Solids 499, 227-236 (2018).
|
[625] |
. K. F. Kelton et al., First X-Ray Scattering Studies on Electrostatically Levitated Metallic Liquids: Demonstrated Influence of Local Icosahedral Order on the Nucleation Barrier. Physical Review Letters 90, (2003).
|
[626] |
. H. W. Sheng et al., Polyamorphism in a metallic glass. Nature materials 6, 192- 197 (2007).
|
[627] |
. W. Xu et al., Evidence of liquid-liquid transition in glass-forming La50Al35Ni15 melt above liquidus temperature. Nat Commun 6, 7696 (2015).
|
[628] |
. J. Li, Z. L. Wang, T. C. Hufnagel, Characterization of nanometer-scale defects in metallic glasses by quantitative high-resolution transmission electron microscopy. Physical Review B 65, (2002).
|
[629] |
. P. D. Nellist et al., Direct sub-Angstron imaging of a crystal lattice. Science, (2004).
|
[630] |
. P. E. Batson, N. Dellby, O. L. Krivanek, Sub-ångstrom resolution using aberration corrected electron optics. Nature 418, 617-620 (2002).
|
[631] |
. E. Pekarskaya, C.P. Kim, W. L. Johnson, In situ transmission electron microscopy studies of shear bands in a bulk metallic glass beased composite. J. Mater. Res., 16, (2001).
|
[632] |
. M. Chen, A. Inoue, W. Zhang, T. Sakurai, Extraordinary Plasticity of Ductile Bulk Metallic Glasses. Physical Review Letters 96, (2006).
|
[633] |
. E. Ma, Z. Zhang, Reflections from the glass maze. Nature Materials 10, 10-11 (2010).
|
[634] |
. H. Guo et al., Tensile ductility and necking of metallic glass. Nature Materials 6, 735-739 (2007).
|
[635] |
. J. H. Luo, F. F. Wu, J. Y. Huang, J. Q. Wang, S. X. Mao, Superelongation and Atomic Chain Formation in Nanosized Metallic Glass. Physical Review Letters 104, 4 (2010).
|
[636] |
. Y. Xie et al., Supercluster-coupled crystal growth in metallic glass forming liquids. Nature Communications 10, (2019).
|
[637] |
. S. J. Pennycook, The impact of STEM aberration correction on materials science. Ultramicroscopy 180, 22-33 (2017).
|
[638] |
. L. L. Shao et al., Dual-phase nano-glass-hydrides overcome the strengthductility trade-off and magnetocaloric bottlenecks of rare earth based amorphous alloys. Nat. Commun. 15, 4159 (2024).
|
[639] |
. U. Rabe et al., Imaging and measurement of local mechanical material properties by atomic force acoustic microscopy. Surface and Interface Analysis 33, 65-70 (2002).
|
[640] |
. Y. H. Liu et al., Characterization of Nanoscale Mechanical Heterogeneity in a Metallic Glass by Dynamic Force Microscopy. Physical Review Letters 106, (2011).
|
[641] |
. H. Wagner et al., Local elastic properties of a metallic glass. Nat Mater 10, 439- 442 (2011).
|
[642] |
. F. Zhu et al., Intrinsic correlation between β-relaxation and spatial heterogeneity in a metallic glass. Nature Communications 7, (2016).
|
[643] |
. T. Schenk, D. Holland-Moritz, V. Simonet, R. Bellissent, D. Herlach, Icosahedral short-range order in deeply undercooled metallic melts. Physical review letters 89, 075507 (2002).
|
[644] |
. A. Hirata et al., Geometric frustration of icosahedron in metallic glass. Science 341, (2013).
|
[645] |
. J. Hwang et al., Nanoscale Structure and Structural Relaxation inZr50Cu45Al5Bulk Metallic Glass. Physical Review Letters 108, (2012).
|
[646] |
. J. M. Cowley, Electron nanodiffraction methods for measuring MRO. Ultramicroscopy 90, 197-206 (2002).
|
[647] |
. S. Im et al., Medium-range ordering, structural heterogeneity, and their influence on properties of Zr-Cu-Co-Al metallic glasses. Physical Review Materials 5, (2021).
|
[648] |
. V. Schmidt, H. Rösner, M. Peterlechner, G. Wilde, P. M. Voyles, Quantitative Measurement of Density in a Shear Band of Metallic Glass Monitored Along its Propagation Direction. Physical Review Letters 115, (2015).
|
[649] |
. S. Wei et al., Liquid-liquid transition in a strong bulk metallic glass-forming liquid. Nat Commun 4, 2083 (2013).
|
[650] |
. B. Gault et al., Atom probe tomography. Nature Reviews Methods Primers 1, (2021).
|
[651] |
. M. K. Miller, T. D. Shen, R. B. Schwarz, Atom probe tomography study of the decomposition of a bulk metallic glass. Intermetallics 10, 1047-1052 (2002).
|
[652] |
. S. H. Nandam et al., Cu-Zr nanoglasses: Atomic structure, thermal stability and indentation properties. Acta Materialia 136, 181-189 (2017).
|
[653] |
. R. Gemma, M. t. Baben, A. Pundt, V. Kapaklis, B. Hjörvarsson, The impact of nanoscale compositional variation on the properties of amorphous alloys. Scientific Reports 10, (2020).
|
[654] |
. J. Orava et al., In situ correlation between metastable phase-transformation mechanism and kinetics in a metallic glass. Nature Communications 12, (2021).
|
[655] |
. A. Pryor Jr et al., GENFIRE: A generalized Fourier iterative reconstruction algorithm for high-resolution 3D imaging. Scientific reports 7, 10409 (2017).
|
[656] |
. J. Miao, P. Ercius, S. J. L. Billinge, Atomic electron tomography: 3D structures without crystals. Science 353, aaf2157-aaf2157 (2016).
|
[657] |
. J. Zhou et al., Observing crystal nucleation in four dimensions using atomic electron tomography. Nature 570, 500-503 (2019).
|
[658] |
. J. Zhou, Y. Yang, P. Ercius, J. Miao, Atomic electron tomography in three and four dimensions. MRS Bulletin 45, 290-297 (2020).
|
[659] |
. Z. Li et al., Probing the atomically diffuse interfaces in Pd@Pt core-shell nanoparticles in three dimensions. Nature Communications 14, (2023).
|
[660] |
. Maya Bar Sadan et al., Toward Atomic-Scale Bright-Field Electron Tomography for the Study of Fullerene-Like Nanostructures. Nano Lett. 8, (2008).
|
[661] |
. P. Nellist, S. Pennycook, in Advances in imaging and electron physics. (Elsevier, 2000), vol. 113, pp. 147-203.
|
[662] |
. D. Ren, C. Ophus, M. Chen, L. Waller, A multiple scattering algorithm for three dimensional phase contrast atomic electron tomography. Ultramicroscopy 208, 112860 (2020).
|
[663] |
. X. Tian et al., Correlating the three-dimensional atomic defects and electronic properties of two-dimensional transition metal dichalcogenides. Nature Materials 19, 867-873 (2020).
|
[664] |
. K. Shimomura, M. Hirose, T. Higashino, Y. Takahashi, Three-dimensional iterative multislice reconstruction for ptychographic X-ray computed tomography. Opt Express 26, 31199-31208 (2018).
|
[665] |
. G. McMullan, A. R. Faruqi, R. Henderson, Direct Electron Detectors. Methods Enzymol 579, 1-17 (2016).
|
[666] |
. D. Zhang et al., Atomic-resolution transmission electron microscopy of electron beam-sensitive crystalline materials. Science 359, 675-679 (2018).
|
[667] |
. B. H. Goodge, E. Bianco, N. Schnitzer, H. W. Zandbergen, L. F. Kourkoutis, Atomic-Resolution Cryo-STEM Across Continuously Variable Temperatures. Microsc Microanal 26, 439-446 (2020).
|
[668] |
. N. Amigo, S. Palominos, F. J. Valencia, Machine learning modeling for the prediction of plastic properties in metallic glasses. Sci Rep 13, 348 (2023).
|
[669] |
. M. Telford, The case for bulk metallic glass. Materials Today 7, 36-43 (2004).
|
[670] |
. K. L. Edwards, E. Axinte, L. L. Tabacaru, A critical study of the emergence of glass and glassy metals as “green” materials. Materials & Design 50, 713-723 (2013).
|
[671] |
. P.-F. Guan et al., Heterogeneity: the soul of metallic glasses. Acta Physica Sinica 66, 176112-176112 (2017).
|
[672] |
. A. Hirata et al., Geometric frustration of icosahedron in metallic glasses. Science 341, 376-379 (2013).
|
[673] |
. W. H. Wang, Metallic glasses: Family traits. Nat. Mater. 11, 275-276 (2012).
|
[674] |
. Y. C. Hu, F. X. Li, M. Z. Li, H. Y. Bai, W. H. Wang, Five-fold symmetry as indicator of dynamic arrest in metallic glass-forming liquids. Nature Communications 6, 8310 (2015).
|
[675] |
. J. Ding, M. Asta, R. O. Ritchie, Anomalous structure-property relationships in metallic glasses through pressure-mediated glass formation. Phys. Rev. B. 93, (2016).
|
[676] |
. M. R. Chellali, S. H. Nandam, H. Hahn, Deformation-Induced Chemical Inhomogeneity and Short-Circuit Diffusion in Shear Bands of a Bulk Metallic Glass. Phys. Rev. Lett. 125, 205501 (2020).
|
[677] |
. C. Liu, R. Maaß, Elastic Fluctuations and Structural Heterogeneities in Metallic Glasses. Advanced Functional Materials 28, 1800388 (2018).
|
[678] |
. E. Park, D. Kim, Phase separation and enhancement of plasticity in Cu-Zr-Al- Y bulk metallic glasses. Acta Mater. 54, 2597-2604 (2006).
|
[679] |
. F. Zhu, S. Song, K. M. Reddy, A. Hirata, M. Chen, Spatial heterogeneity as the structure feature for structure-property relationship of metallic glasses. Nature Communications 9, (2018).
|
[680] |
. H. B. Yu et al., Tensile plasticity in metallic glasses with pronounced β relaxations. Phys Rev Lett 108, 015504 (2012).
|
[681] |
. F. Zhu et al., Correlation between Local Structure Order and Spatial Heterogeneity in a Metallic Glass. Physical Review Letters 119, 215501 (2017).
|
[682] |
. P. Zhang, J. J. Maldonis, Z. Liu, J. Schroers, P. M. Voyles, Spatially heterogeneous dynamics in a metallic glass forming liquid imaged by electron correlation microscopy. Nature Communications 9, (2018).
|
[683] |
. H. L. Peng, M. Z. Li, W. H. Wang, Structural Signature of Plastic Deformation in Metallic Glasses. Physical Review Letters 106, 135503 (2011).
|
[684] |
. L. Z. Zhao, W. H. Wang, H. Y. Bai, Modulation of β-relaxation by modifying structural configurations in metallic glasses. J. Non Cryst. Solids 405, 207-210 (2014).
|
[685] |
. Y. C. Hu et al., A Highly Efficient and Self-Stabilizing Metallic-Glass Catalyst for Electrochemical Hydrogen Generation. Advanced Materials, n/a-n/a (2016).
|
[686] |
. A. Agarwala, V. B. Shenoy, Topological insulators in amorphous systems. Phys. Rev. Lett. 118, (2017).
|
[687] |
. P. Sharma, X. Zhang, Y. Zhang, A. Makino, Competition driven nanocrystallization in high Bs and low coreloss Fe-Si-B-P-Cu soft magnetic alloys. Scr. Mater. 95, 3-6 (2015).
|
[688] |
. K. K. Song et al., Formation of Cu-Zr-Al-Er bulk metallic glass composites with enhanced deformability. Intermetallics (Barking) 30, 132-138 (2012).
|
[689] |
. H. Gleiter, Our thoughts are ours, their ends none of our own: Are there ways to synthesize materials beyond the limitations of today? Acta Mater. 56, 5875- 5893 (2008).
|
[690] |
. L. Berthier, Dynamic heterogeneity in amorphous materials. Physics (College Park Md.) 4, (2011).
|
[691] |
. M. D. Ediger, Spatially Heterogeneous Dynamics in Supercooled Liquids. Annual Review of Physical Chemistry 51, 99-128 (2000).
|
[692] |
. J. Horbach, W. Kob, Relaxation dynamics of a viscous silica melt: the intermediate scattering functions. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64, 041503 (2001).
|
[693] |
. F. Spaepen, Five-fold symmetry in liquids. Nature 408, 781-782 (2000).
|
[694] |
. M. Shimono, H. Onodera, Icosahedral Order in Supercooled Liquids and Glassy Alloys. Materials Science Forum 539-543, 2031-2035 (2007).
|
[695] |
. H. Shintani, H. Tanaka, Frustration on the way to crystallization in glass. Nature Physics 2, 200-206 (2006).
|
[696] |
. N. Ren, L. Hu, B. Wang, K. Song, P. Guan, Structural topological signature of high-temperature non-Arrhenius crossover in metallic glass-forming liquids. Scripta Materialia 200, 113926 (2021).
|
[697] |
. T. Fujita et al., Atomic-scale heterogeneity of a multicomponent bulk metallic glass with excellent glass forming ability. Phys. Rev. Lett. 103, 075502 (2009).
|
[698] |
. J. Pan, L. Liu, K. C. Chan, Enhanced plasticity by phase separation in CuZrAl bulk metallic glass with micro-addition of Fe. Scr. Mater. 60, 822-825 (2009).
|
[699] |
. P. F. Guan, T. Fujita, A. Hirata, Y. H. Liu, M. W. Chen, Structural origins of the excellent glass forming ability of Pd40Ni40P20. Phys. Rev. Lett. 108, 175501 (2012).
|
[700] |
. Y. W. Tan et al., Noble-Metal-Free Metallic Glass as a Highly Active and Stable Bifunctional Electrocatalyst for Water Splitting. Adv. Mater. Interfaces 4, 7 (2017).
|
[701] |
. A. S. Argon, Plastic deformation in metallic glasses. Acta Metallurgica 27, 47- 58 (1979).
|
[702] |
. Y. Fan, T. Iwashita, T. Egami, Energy landscape-driven non-equilibrium evolution of inherent structure in disordered material. Nat. Commun. 8, 15417 (2017).
|
[703] |
. Y. Fan, T. Iwashita, T. Egami, How thermally activated deformation starts in metallic glass. Nat. Commun. 5, 5083 (2014).
|
[704] |
. P. Lunkenheimer, U. Schneider, R. Brand, A. Loidl, Glassy dynamics. Contemporary Physics 41, 15-36 (2000).
|
[705] |
. L. Wang, Y. Duan, N. Xu, Non-monotonic pressure dependence of the dynamics of soft glass-formers at high compressions. Soft Matter 8, 11831 (2012).
|
[706] |
. Y. C. Hu et al., Unveiling atomic-scale features of inherent heterogeneity in metallic glass by molecular dynamics simulations. Phys. Rev. B. 93, (2016).
|
[707] |
. B. Wang et al., Understanding the maximum dynamical heterogeneity during the unfreezing process in metallic glasses. J. Appl. Phys. 121, 175106 (2017).
|
[708] |
. C. Fan et al., Atomic migration and bonding characteristics during a glass transition investigated using as-cast Zr-Cu-Al. Physical Review B 83, (2011).
|
[709] |
. W. Song et al., Microstructural control via copious nucleation manipulated by in situ formed nucleants: Large-sized and ductile metallic glass composites. Adv. Mater. 28, 8156-8161 (2016).
|
[710] |
. G. Parisi, F. Sciortino, Structural glasses: Flying to the bottom. Nat. Mater. 12, 94-95 (2013).
|
[711] |
. B. Wang et al., Understanding atomic-scale features of low temperaturerelaxation dynamics in metallic glasses. J. Phys. Chem. Lett. 7, 4945-4950 (2016).
|
[712] |
. Y. Zhang, W. H. Wang, A. L. Greer, Making metallic glasses plastic by control of residual stress. Nat. Mater. 5, 857-860 (2006).
|
[713] |
. A. Concustell, F. Méar, S. Surinach, M. Baró, A. Greer, Structural relaxation and rejuvenation in a metallic glass induced by shot-peening. Philosophical magazine letters 89, 831-840 (2009).
|
[714] |
. M. Wakeda, J. Saida, J. Li, S. Ogata, Controlled rejuvenation of amorphous metals with thermal processing. Sci. Rep. 5, 10545 (2015).
|
[715] |
. J. W. Qiao, S. Wang, Y. Zhang, P. K. Liaw, G. L. Chen, Large plasticity and tensile necking of Zr-based bulk-metallic-glass-matrix composites synthesized by the Bridgman solidification. Appl. Phys. Lett. 94, 151905 (2009).
|
[716] |
. Y. Wu, Y. Xiao, G. Chen, C. T. Liu, Z. Lu, Bulk metallic glass composites with transformation-mediated work-hardening and ductility. Adv. Mater. 22, 2770- 2773 (2010).
|
[717] |
. Z. Liu et al., Microstructural tailoring and improvement of mechanical properties in CuZr-based bulk metallic glass composites. Acta Mater. 60, 3128- 3139 (2012).
|
[718] |
. M. Zhang, F. Kong, A. Wang, C. Chang, B. Shen, Soft magnetic properties of bulk FeCoMoPCBSi glassy core prepared by copper mold casting. J. Appl. Phys. 111, 07A312 (2012).
|
[719] |
. D. Z. Chen et al., Nanometallic glasses: size reduction brings ductility, surface state drives its extent. Nano Lett. 13, 4462-4468 (2013).
|
[720] |
. B. Sarac, J. Schroers, Designing tensile ductility in metallic glasses. Nat. Commun. 4, 2158 (2013).
|
[721] |
. H. Wang et al., Plasticity improvement in a bulk metallic glass composed of an open-cell Cu foam as the skeleton. Compos. Sci. Technol. 75, 49-54 (2013).
|
[722] |
. Z. Śniadecki et al., Nanoscale morphology of Ni50Ti45Cu5 nanoglass. Mater. Charact. 113, 26-33 (2016).
|
[723] |
. S. Q. Jiang, Z. W. Wu, M. Z. Li, Effect of local structures on crystallization in deeply undercooled metallic glass-forming liquids. J Chem Phys 144, 154502 (2016).
|
[724] |
. N. Chen, D. V. Louzguine-Luzgin, K. Yao, A new class of non-crystalline materials: Nanogranular metallic glasses. J. Alloys Compd. 707, 371-378 (2017).
|
[725] |
. J. Q. Wang, Y. Shen, J. H. Perepezko, M. D. Ediger, Increasing the kinetic stability of bulk metallic glasses. Acta Mater. 104, 25-32 (2016).
|
[726] |
. L. Li et al., Polyamorphism in Yb-based metallic glass induced by pressure. Sci Rep 7, 46762 (2017).
|
[727] |
. X. Qi et al., Elastic Anomaly and Polyamorphic Transition in (La, Ce)-based Bulk Metallic Glass under Pressure. Sci Rep 7, 724 (2017).
|
[728] |
. Y. Y. Wang, X. Dong, X. Song, X. P. Li, G. Li, The effect of composition on pressure-induced polyamorphism in metallic glasses. Materials Letters 192, 142-145 (2017).
|
[729] |
. F. Zhang et al., Polymorphism in a high-entropy alloy. Nat Commun 8, 15687 (2017).
|
[730] |
. P. Dziegielewski et al., Pressure-induced transformations in Ce-Al metallic glasses: The role of stiffness of interatomic pairs. Journal of Alloys and Compounds 757, 484-488 (2018).
|
[731] |
. S. Ali Khan et al., Temperature- and Pressure-Induced Polyamorphic Transitions in AuCuSi Alloy. The Journal of Physical Chemistry C 123, 20342- 20350 (2019).
|
[732] |
. Q. Du et al., Polyamorphic transition in a transition metal based metallic glass under high pressure. Physical Review B 99, (2019).
|
[733] |
. A. Fadhil et al., Pressure-induced atomic packing change in Pd37Ni37S26 metallic glass. Acta Materialia 216, (2021).
|
[734] |
. Z. Yin et al., Polyamorphism in a solute-lean Al-Ce metallic glass. Journal of Applied Physics 129, (2021).
|
[735] |
. Q.-K. Li, M. Li, Surface structure and properties of NiZr model metallic glasses: A molecular dynamics simulation. J. Non Cryst. Solids 354, 2060-2065 (2008).
|
[736] |
. B. Wang, X. Gao, R. Su, P. Guan, Quasi-two-dimensional strong liquid-like dynamics of surface atoms in metallic glasses. Science China Physics, Mechanics & Astronomy 67, (2024).
|
[737] |
. X. Liu et al., Multi-scale inhomogeneity and anomalous mechanical response of nanoscale metallic glass pillar by cryogenic thermal cycling. Rare Metals 43, 6771-6780 (2024).
|
[738] |
. R. Zhu, J. Pan, X. Li, K. Lu, Decomposition-induced enhancement of elastic modulus in CuZr metallic glass. Matter 7, 2581-2590 (2024).
|
[739] |
. Y.-C. Hu, H. Bai, W.-H. Wang, Accessing versatile tensile ductility of amorphous materials by fractal nanoarchitecture design. Acta Materialia 276, (2024).
|
[740] |
. Z. Yang et al., Oxide-Metal Hybrid Glass Nanomembranes with Exceptional Thermal Stability. Nano Lett 24, 14475-14483 (2024).
|
[741] |
. W. H. Wang, Family traits. Nature Materials 11, 275-276 (2012).
|
[742] |
. Y.-T. Sun et al., Distinct relaxation mechanism at room temperature in metallic glass. Nature Communications 14, 540 (2023).
|
[743] |
. L. J. Song et al., Detecting the exponential relaxation spectrum in glasses by high-precision nanocalorimetry. Proceedings of the National Academy of Sciences 120, e2302776120 (2023).
|
[744] |
. P. Luo, Y. Z. Li, H. Y. Bai, P. Wen, W. H. Wang, Memory Effect Manifested by a Boson Peak in Metallic Glass. Physical Review Letters 116, 175901 (2016).
|
[745] |
. P. Luo, P. Wen, H. Y. Bai, B. Ruta, W. H. Wang, Relaxation decoupling in metallic glasses at low temperatures. Physical Review Letters 118, 225901 (2017).
|
[746] |
. M. Z. Li, C. Z. Wang, S. G. Hao, M. J. Kramer, K. M. Ho, Structural heterogeneity and medium-range order in ZrCu metallic glasses. Physical Review B 80, 184201 (2009).
|
[747] |
. M. Wakeda, Y. Shibutani, Icosahedral clustering with medium-range order and local elastic properties of amorphous metals. Acta Materialia 58, 3963-3969 (2010).
|
[748] |
. J. Ding, M. Asta, R. O. Ritchie, On the question of fractal packing structure in metallic glasses. Proceedings of the National Academy of Sciences 114, 8458- 8463 (2017).
|
[749] |
. Z. Wu, R. Li, Revisiting the breakdown of Stokes-Einstein relation in glassforming liquids with machine learning. Science China Physics, Mechanics & Astronomy 63, 276111 (2020).
|
[750] |
. Z. W. Wu, M. Z. Li, W. H. Wang, K. X. Liu, Hidden topological order and its correlation with glass-forming ability in metallic glasses. Nat Commun 6, 6035 (2015).
|
[751] |
. X. X. Li et al., Stress-tunable abilities of glass forming and mechanical amorphization. Acta Materialia 277, 120218 (2024).
|
[752] |
. J. D. Bernal, A Geometrical Approach to the Structure Of Liquids. Nature 183, 141-147 (1959).
|
[753] |
. J. L. Finney, Random Packings and the Structure of Simple Liquids. I. The Geometry of Random Close Packing. Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences 319, 479-493 (1970).
|
[754] |
. D. Ma, A. D. Stoica, X. L. Wang, Power-law scaling and fractal nature of medium-range order in metallic glasses. Nat Mater 8, 30-34 (2009).
|
[755] |
. Z. W. Wu, M. Z. Li, W. H. Wang, W. J. Song, K. X. Liu, Effect of local structures on structural evolution during crystallization in undercooled metallic glass-forming liquids. The Journal of Chemical Physics 138, 074502 (2013).
|
[756] |
. Z. W. Wu, M. Z. Li, W. H. Wang, K. X. Liu, Correlation between structural relaxation and connectivity of icosahedral clusters in CuZr metallic glassforming liquids. Physical Review B 88, 054202 (2013).
|
[757] |
. Z. W. Wu et al., Critical scaling of icosahedral medium-range order in CuZr metallic glass-forming liquids. Scientific Reports 6, 35967 (2016).
|
[758] |
. Z. W. Wu, W. Kob, W.-H. Wang, L. Xu, Stretched and compressed exponentials in the relaxation dynamics of a metallic glass-forming melt. Nature Communications 9, 5334 (2018).
|
[759] |
. M. E. J. Newman, The Structure and Function of Complex Networks. SIAM Review 45, 167-256 (2003).
|
[760] |
. Z.-W. Wu, W.-H. Wang, Linking local connectivity to atomic-scale relaxation dynamics in metallic glass-forming systems. Acta Physica Sinica 69, 066101- 066101-066101-066116 (2020).
|
[761] |
. L. Ma, X.-D. Yang, F. Yang, X.-J. Zhou, Z.-W. Wu, Unveiling the early stage evolution of local atomic structures in the crystallization process of a metallic glass. Chinese Physics B 33, 036402 (2024).
|
[762] |
. F. X. Li, M. Z. Li, Local environments of atomic clusters and the effect on dynamics in CuZr metallic glass-forming liquids. Journal of Applied Physics 122, 225103 (2017).
|
[763] |
. M. Ozawa, Y. Iwashita, W. Kob, F. Zamponi, Creating bulk ultrastable glasses by random particle bonding. Nature Communications 14, 113 (2023).
|
[764] |
. M. Ozawa, J.-L. Barrat, W. Kob, F. Zamponi, Creating equilibrium glassy states via random particle bonding. Journal of Statistical Mechanics: Theory and Experiment 2024, 013303 (2024).
|
[765] |
. R. M. Martin, Electronic Structure: Basic Theory and Practical Methods. (Cambridge University Press, 2020).
|
[766] |
. N. W. Ashcroft, N. D. Mermin, Solid State Physics. (Holt, Rinehart and Winston, 1976).
|
[767] |
. K. Binder, W. Kob, Glassy Materials and Disordered Solids: An Introduction to Their Statistical Mechanics. (World Scientific, 2011).
|
[768] |
. A. Inoue, K. Hashimoto, Amorphous and Nanocrystalline Materials: Preparation, Properties, and Applications. (Springer Berlin Heidelberg, 2013).
|
[769] |
. P. W. Anderson, Absence of diffusion in certain random lattices. Physical review 109, 1492 (1958).
|
[770] |
. E. A. Davis, N. F. Mott, Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philosophical magazine 22, 0903-0922 (1970).
|
[771] |
. M. W. Chen, A brief overview of bulk metallic glasses. NPG Asia Materials 3, 82-90 (2011).
|
[772] |
. T. E. Faber, J. M. Ziman, A theory of the electrical properties of liquid metals: III. The resistivity of binary alloys. Philosophical Magazine 11, 153-173 (1965).
|
[773] |
. S. R. Nagel, J. Tauc, Nearly-free-electron approach to the theory of metallic glass alloys. Physical Review Letters 35, 380 (1975).
|
[774] |
. H. Nowak, P. Häussler, Concept of resonances in disordered metallic matter. Journal of non-crystalline solids 250, 389-392 (1999).
|
[775] |
. H. B. Yu, W. H. Wang, H. Y. Bai, An electronic structure perspective on glassforming ability in metallic glasses. Applied Physics Letters 96, (2010).
|
[776] |
. W. Jiao, D. Q. Zhao, D. W. Ding, H. Y. Bai, W. H. Wang, Effect of free electron concentration on glass-forming ability of Ca-Mg-Cu system. Journal of noncrystalline solids 358, 711-714 (2012).
|
[777] |
. W. M. Yang et al., Nearly free electron model to glass-forming ability of multicomponent metallic glasses. Journal of non-crystalline solids 361, 82-85 (2013).
|
[778] |
. N. C. Wu, L. Zuo, J. Q. Wang, E. Ma, Designing aluminum-rich bulk metallic glasses via electronic-structure-guided microalloying. Acta Materialia 108, 143-151 (2016).
|
[779] |
. N. C. Wu, J. B. Lian, R. Wang, R. H. Li, W. Liu, Effect of element types on the glass forming ability of Al-TM-RE ternary metallic glasses using electron structure guiding. Journal of Alloys and Compounds 723, 123-128 (2017).
|
[780] |
. G. Han et al., Composition formulae of ideal metallic glasses and their relevant eutectics established by a cluster-resonance model. Philosophical Magazine 91, 2404-2418 (2011).
|
[781] |
. G. Han et al., The e/a values of ideal metallic glasses in relation to cluster formulae. Acta materialia 59, 5917-5923 (2011).
|
[782] |
. C. Dong, Z. J. Wang, S. Zhang, Y. M. Wang, Review of structural models for the compositional interpretation of metallic glasses. International Materials Reviews 65, 286-296 (2020).
|
[783] |
. C. C. Yuan, J. F. Xiang, X. K. Xi, W. H. Wang, NMR signature of evolution of ductile-to-brittle transition in bulk metallic glasses. Physical Review Letters 107, 236403 (2011).
|
[784] |
. C. C. Yuan et al., Impact of hybridization on metallic-glass formation and design. Materials Today 32, 26-34 (2020).
|
[785] |
. W. M. Yang et al., Inheritance factor on the physical properties in metallic glasses. Mater Futures 1, 035601 (2022).
|
[786] |
. Q. S. Zeng et al., Anomalous compression behavior in lanthanum/cerium-based metallic glass under high pressure. Proceedings of the National Academy of Sciences 104, 13565-13568 (2007).
|
[787] |
. Q. S. Zeng et al., Origin of pressure-induced polyamorphism in Ce75Al25 metallic glass. Physical review letters 104, 105702 (2010).
|
[788] |
. G. Li, Y. Y. Wang, P. K. Liaw, Y. C. Li, R. P. Liu, Electronic Structure Inheritance and Pressure-Induced Polyamorphism in Lanthanide-Based Metallic Glasses. Physical Review Letters 109, 125501 (2012).
|
[789] |
. J. M. Ziman, The electron transport properties of pure liquid metals. Advances in Physics 16, 551-580 (1967).
|
[790] |
. D. J. Thouless, Electrons in disordered systems and the theory of localization. Physics Reports 13, 93-142 (1974).
|
[791] |
. U. Mizutani, Electronic structure of metallic glasses. Progress in Materials Science 28, 97-228 (1983).
|
[792] |
. R. Street, Technology and applications of amorphous silicon. (Springer Science & Business Media, 1999), vol. 37.
|
[793] |
. P. Corbae et al., Observation of spin-momentum locked surface states in amorphous Bi2Se3. Nature Materials 22, 200-206 (2023).
|
[794] |
. R. Hasegawa, R. C. O’Handley, Soft magnetic properties of metallic glasses— Recent developments. Journal of Applied Physics 50, 1551-1556 (1979).
|
[795] |
. L. A. Johnson, E. P. Cornell, D. J. Bailey, S. M. Hegyi, Application of low loss amorphous metals in motors and transformers. IEEE Transactions on Power Apparatus and Systems, 2109-2114 (1982).
|
[796] |
. J. M. Silveyra, E. Ferrara, D. L. Huber, T. C. Monson, Soft magnetic materials for a sustainable and electrified world. Science 362, eaao0195 (2018).
|
[797] |
. X. S. Li et al., Exceptionally High Saturation Magnetic Flux Density and Ultralow Coercivity via an Amorphous-Nanocrystalline Transitional Microstructure in an FeCo-Based Alloy. Advanced Materials 35, 10 (2023).
|
[798] |
. J. Zhou et al., Ultrahigh Permeability at High Frequencies via A Magnetic- Heterogeneous Nanocrystallization Mechanism in an Iron-Based Amorphous Alloy. Advanced Materials 35, 2304490 (2023).
|
[799] |
. W. W. Wu et al., Ultra-small topological spin textures with size of 1.3 nm at above room temperature in Fe78Si9B13 amorphous alloy. arXiv preprint arXiv:2305.17880, (2023).
|
[800] |
. T. Bayaraa, S. M. Griffin, Ab initio amorphous spin Hamiltonian for the description of topological spin textures in FeGe. arXiv preprint arXiv:2311.07725, (2023).
|
[801] |
. P. W. Anderson, Through the glass lightly. Science 267, 1615-1616 (1995).
|
[802] |
. C. A. Angell, Formation of glasses from liquids and biopolymers. Science 267, 1924-1935 (1995).
|
[803] |
. L. Berthier, G. Biroli, Theoretical perspective on the glass transition and amorphous materials. Reviews of Modern Physics 83, 587-645 (2011).
|
[804] |
. M. M. Collver, R. H. Hammond, Superconductivity in "Amorphous" Transition-Metal Alloy Films. Physical Review Letters 30, 92-95 (1973).
|
[805] |
. Z. Altounian, J. O. Strom-Olsen, Superconductivity and spin fluctuations inM−Zrmetallic glasses (M=Cu,Ni,Co,andFe). Physical Review B 27, 4149- 4156 (1983).
|
[806] |
. M. B. Tang, H. Y. Bai, M. X. Pan, D. Q. Zhao, W. H. Wang, Bulk metallic superconductive La60Cu20Ni10Al10 glass. Journal of Non-Crystalline Solids 351, 2572-2575 (2005).
|
[807] |
. Y. Li, H. Y. Bai, Superconductivity in a representative Zr-based bulk metallic glass. Journal of Non-Crystalline Solids 351, 2378-2382 (2005).
|
[808] |
. Y. Yeshurun, M. B. Salamon, K. V. Rao, H. S. Chen, Critical phenomena in amorphous ferromagnetic and spin-glass alloys. Physical Review B 24, 1536 (1981).
|
[809] |
. H. Hiroyoshi, K. Fukamichi, Ferromagnetic-spin glass transition in Fe-Zr amorphous alloy system. Journal of Applied Physics 53, 2226-2228 (1982).
|
[810] |
. Y. H. Zhao, M. X. Pan, D. Q. Zhao, W. H. Wang, J. Eckert, Magnetic transitions in Dy-microalloyed Fe-based bulk metallic glasses. Journal of Physics D: Applied Physics 38, 2162 (2005).
|
[811] |
. S. F. Edwards, P. W. Anderson, Theory of spin glasses. Journal of Physics F: Metal Physics 5, 965 (1975).
|
[812] |
. D. Sherrington, S. Kirkpatrick, Solvable model of a spin-glass. Physical review letters 35, 1792 (1975).
|
[813] |
. G. Parisi, The order parameter for spin glasses: a function on the interval 0-1. Journal of Physics A: Mathematical and General 13, 1101 (1980).
|
[814] |
. S. A. Kivelson, G. Tarjus, In search of a theory of supercooled liquids. Nature Materials 7, 831-833 (2008).
|
[815] |
. W. H. Wang, Y. Yang, T. G. Nieh, C. T. Liu, On the source of plastic flow in metallic glasses: Concepts and models. Intermetallics 67, 81-86 (2015).
|
[816] |
. P. Lunkenheimer, R. Wehn, U. Schneider, A. Loidl, Glassy Aging Dynamics. Physical Review Letters 95, 055702 (2005).
|
[817] |
. B. Ruta, E. Pineda, Z. Evenson, Relaxation processes and physical aging in metallic glasses. J. Phys.: Condens. Matter 29, 503002 (2017).
|
[818] |
. C. E. Pueblo, M. Sun, K. F. Kelton, Strength of the repulsive part of the interatomic potential determines fragility in metallic liquids. Nature Materials 16, 792-796 (2017).
|
[819] |
. M. E. Blodgett, T. Egami, Z. Nussinov, K. F. Kelton, Proposal for universality in the viscosity of metallic liquids. Scientific Reports 5, 13837 (2015).
|
[820] |
. F. H. Stillinger, Supercooled liquids, glass transitions, and the Kauzmann paradox. The Journal of Chemical Physics 88, 7818-7825 (1988).
|
[821] |
. S. P. Das, Mode-coupling theory and the glass transition in supercooled liquids. Reviews of Modern Physics 76, 785-851 (2004).
|
[822] |
. P. Lunkenheimer, A. Loidl, B. Riechers, A. Zaccone, K. Samwer, Thermal expansion and the glass transition. Nature Physics 19, 694-699 (2023).
|
[823] |
. R. Busch, J. Schroers, W. H. Wang, Thermodynamics and Kinetics of Bulk Metallic Glass. MRS Bulletin 32, 620-623 (2011).
|
[824] |
. A. Sepulveda, M. Tylinski, A. Guiseppi-Elie, R. Richert, M. D. Ediger, Role of Fragility in the Formation of Highly Stable Organic Glasses. Physical Review Letters 113, (2014).
|
[825] |
. Y. Li et al., Surface Diffusion Is Controlled by Bulk Fragility across All Glass Types. Physical Review Letters 128, 075501 (2022).
|
[826] |
. C. W. Ryu, T. Egami, Origin of liquid fragility. Physical Review E 102, 042615 (2020).
|
[827] |
. J. Klafter, M. F. Shlesinger, On the relationship among three theories of relaxation in disordered systems. Proceedings of the National Academy of Sciences 83, 848-851 (1986).
|
[828] |
. B. S. Shang, J. Rottler, P. Guan, J.-L. Barrat, Local versus global stretched mechanical response in a supercooled liquid near the glass transition. Physical Review Letters 122, 105501 (2019).
|
[829] |
. S. Meng et al., Quantitative assessment of physical aging on dynamical heterogeneity of amorphous alloys: Insight from stress relaxation. Journal of Applied Physics 137, (2025).
|
[830] |
. R. Yamamoto, A. Onuki, Dynamics of highly supercooled liquids: Heterogeneity, rheology, and diffusion. Physical Review E 58, 3515-3529 (1998).
|
[831] |
. Z. Lu, W. Jiao, W. H. Wang, H. Y. Bai, Flow unit perspective on room temperature homogeneous plastic deformation in metallic glasses. Physical Review Letters 113, 045501 (2014).
|
[832] |
. S. Y. Liang et al., A model on the coupling between cyclic fatigue and microstructure evolution in a metallic glass. International Journal of Fatigue 187, 108446 (2024).
|
[833] |
. C. Chang et al., Liquid-like atoms in dense-packed solid glasses. Nature Materials 21, 1240 (2022).
|
[834] |
. X. Monnier, D. Cangialosi, B. Ruta, R. Busch, I. Gallino, Vitrification decoupling from alpha-relaxation in a metallic glass. Science Advances 6, 6 (2020).
|
[835] |
. F. H. Stillinger, P. G. Debenedetti, Glass transition thermodynamics and kinetics. Annu. Rev. Condens. Matter Phys. 4, 263-285 (2013).
|
[836] |
. S. Sastry, The relationship between fragility, configurational entropy and the potential energy landscape of glass-forming liquids. Nature 409, 164 (2001).
|
[837] |
. H. Tanaka, Relation between Thermodynamics and Kinetics of Glass-Forming Liquids. Physical Review Letters 90, 055701 (2003).
|
[838] |
. K. F. Kelton, A perspective on metallic liquids and glasses. Journal of Applied Physics 134, (2023).
|
[839] |
. R. G. Palmer, D. L. Stein, E. Abrahams, P. W. Anderson, Models of Hierarchically Constrained Dynamics for Glassy Relaxation. Physical Review Letters 53, 958-961 (1984).
|
[840] |
. J. C. Phillips, Stretched exponential relaxation in molecular and electronic glasses. Reports on Progress in Physics 59, 1133 (1996).
|
[841] |
. T. Hecksher, A. I. Nielsen, N. B. Olsen, J. C. Dyre, Little evidence for dynamic divergences in ultraviscous molecular liquids. Nature Physics 4, 737-741 (2008).
|
[842] |
. J. Zhao, S. L. Simon, G. B. McKenna, Using 20-million-year-old amber to test the super-Arrhenius behaviour of glass-forming systems. Nature communications 4, 1-6 (2013).
|
[843] |
. G. Parisi, F. Sciortino, Flying to the bottom. Nature Materials 12, 94-95 (2013).
|
[844] |
. P. Luo, Z. Fakhraai, Surface-Mediated Formation of Stable Glasses. Annual Review of Physical Chemistry 74, 361-389 (2023).
|
[845] |
. A. Vila-Costa, M. Gonzalez-Silveira, C. Rodríguez-Tinoco, M. RodríguezLópez, J. Rodriguez-Viejo, Emergence of equilibrated liquid regions within the glass. Nature Physics 19, 114-119 (2023).
|
[846] |
. J. C. Qiao et al., Structural heterogeneities and mechanical behavior of amorphous alloys. Progress in Materials Science 104, 250-329 (2019).
|
[847] |
. B. A. Sun, W. H. Wang, The fracture of bulk metallic glasses. Progress in Materials Science 74, 211-307 (2015).
|
[848] |
. K. L. Ngai, Universal properties of relaxation and diffusion in complex materials: Originating from fundamental physics with rich applications. Progress in Materials Science 139, (2023).
|
[849] |
. H. B. Callen, T. A. Welton, Irreversibility and Generalized Noise. Physical Review 83, 34-40 (1951).
|
[850] |
. D. W. Van Krevelen, K. Te Nijenhuis, in Properties of Polymers (Fourth Edition), D. W. Van Krevelen, K. Te Nijenhuis, Eds. (Elsevier, Amsterdam, 2009), pp. 383-503.
|
[851] |
. K. L. Ngai, M. Paluch, Classification of secondary relaxation in glass-formers based on dynamic properties. Journal of Chemical Physics 120, 857-873 (2004).
|
[852] |
. H.-B. Yu, L. Gao, J.-Q. Gao, K. Samwer, Universal origin of glassy relaxation as recognized by configuration pattern-matching. National Science Review, (2024).
|
[853] |
. H.-B. Yu, Q. Wang, Liquid-like clusters in glassy solids as a unique state of matter: Dissipative but non-diffusive. Next Materials 3, 100168 (2024).
|
[854] |
. H.-B. Yu, W.-H. Wang, K. Samwer, The β relaxation in metallic glasses: an overview. Materials Today 16, 183-191 (2013).
|
[855] |
. H. B. Yu, W. H. Wang, H. Y. Bai, K. Samwer, The β-relaxation in metallic glasses. National Science Review 1, 429-461 (2014).
|
[856] |
. Q. Yang, S. X. Peng, Z. Wang, H. B. Yu, Shadow glass transition as a thermodynamic signature of β relaxation in hyper-quenched metallic glasses. National Science Review 7, 1896-1905 (2020).
|
[857] |
. H. B. Yu, K. Samwer, W. H. Wang, H. Y. Bai, Chemical influence on β- relaxations and the formation of molecule-like metallic glasses. Nature Communications 4, (2013).
|
[858] |
. B. Huang et al., Influence of short- to medium-range electronic and atomic structure on secondary relaxations in metallic glasses. Acta Materialia 196, 88- 100 (2020).
|
[859] |
. W. Jiang, Y. Zhao, B. Zhang, Intrinsic correlation between β relaxation and electronic heterogeneity in high entropy metallic glasses. Journal of NonCrystalline Solids 571, (2021).
|
[860] |
. H. B. Yu, K. Samwer, Atomic mechanism of internal friction in a model metallic glass. Physical Review B 90, (2014).
|
[861] |
. H.-B. Yu, R. Richert, K. Samwer, Structural rearrangements governing JohariGoldstein relaxations in metallic glasses. Science Advances 3, e1701577 (2017).
|
[862] |
. Y. Sun et al., Predicting Complex Relaxation Processes in Metallic Glass. Physical Review Letters 123, 105701 (2019).
|
[863] |
. C.-T. Yip et al., Direct Evidence of Void-Induced Structural Relaxations in Colloidal Glass Formers. Physical Review Letters 125, (2020).
|
[864] |
. L. Gao, Y. Sun, H.-B. Yu, Mobility percolation as a source of Johari-Goldstein relaxation in glasses. Physical Review B 108, 014201 (2023).
|
[865] |
. X. Gong et al., β-Relaxation and Crystallization Behaviors in a Pulse-CurrentThermoplastic-Formed La-Based Bulk Metallic Glass. Journal of Physical Chemistry B 125, 657-664 (2021).
|
[866] |
. K. K. Qiu et al., Unravelling the origin of in-cage vibrations in a La50Al15Ni35 metallic glass. Materials Today Physics 21, (2021).
|
[867] |
. S. F. Wei et al., Short-range order controlling atomic dynamics in Y-based metallic glasses. Physical Review B 105, (2022).
|
[868] |
. T. Xu et al., Unveiling the Structural Origins of Dynamic Diversity in Pd-Based Metallic Glasses. Small, (2024).
|
[869] |
. Y. J. Ding et al., Evolution of coupling modes between α and β relaxations in metallic glass-forming liquids revealed by nano-calorimetry. Acta Materialia 266, 119698 (2024).
|
[870] |
. M. W. da Silva Pinto, L. Daum, H. Rösner, G. Wilde, Correlations between shadow glass transition, enthalpy recovery and medium range order in a Pd40Ni40P20 bulk metallic glass. Acta Materialia, 120034 (2024).
|
[871] |
. Y. H. Liu, T. Fujita, D. P. B. Aji, M. Matsuura, M. W. Chen, Structural origins of Johari-Goldstein relaxation in a metallic glass. Nature Communications 5, 3238 (2014).
|
[872] |
. H. B. Yu, K. Samwer, Y. Wu, W. H. Wang, Correlation between β relaxation and self-diffusion of the smallest constituting atoms in metallic glasses. Physical review letters 109, 095508 (2012).
|
[873] |
. M. D. Ediger, J. A. Forrest, Dynamics near Free Surfaces and the Glass Transition in Thin Polymer Films: A View to the Future. Macromolecules 47, 471-478 (2013).
|
[874] |
. K. L. Ngai, L.-M. Wang, H.-B. Yu, Relating Ultrastable Glass Formation to Enhanced Surface Diffusion via the Johari-Goldstein β-Relaxation in Molecular Glasses. The Journal of Physical Chemistry Letters 8, 2739-2744 (2017).
|
[875] |
. K. Shiraishi, H. Mizuno, A. Ikeda, Johari-Goldstein relaxation in glassy dynamics originates from two-scale energy landscape. Proceedings of the National Academy of Sciences 120, e2215153120 (2023).
|
[876] |
. X. Peng et al., Uncovering β-relaxations in amorphous phase-change materials. Science Advances 6, (2020).
|
[877] |
. Y. Cheng et al., Highly tunable β-relaxation enables the tailoring of crystallization in phase-change materials. Nature Communications 13, (2022).
|
[878] |
. Q. Yang, C.-Q. Pei, H.-B. Yu, T. Feng, Metallic Nanoglasses with Promoted β- Relaxation and Tensile Plasticity. Nano Letters 21, 6051-6056 (2021).
|
[879] |
. Z.-Y. Zhou, Y. Sun, L. Gao, Y.-J. Wang, H.-B. Yu, Fundamental links between shear transformation, β relaxation, and string-like motion in metallic glasses. Acta Materialia 246, 118701 (2023).
|
[880] |
. K. Geirhos, P. Lunkenheimer, A. Loidl, Johari-Goldstein Relaxation Far Below Tg: Experimental Evidence for the Gardner Transition in Structural Glasses? Physical Review Letters 120, 085705 (2018).
|
[881] |
. X.-M. Yang, Q. Yang, T. Zhang, H.-B. Yu, Probing slow glass dynamics down to 10−5 Hz. Applied Physics Reviews 11, (2024).
|
[882] |
. R. Brand, P. Lunkenheimer, A. Loidl, Relaxation dynamics in plastic crystals. Journal of Chemical Physics 116, 10386-10401 (2002).
|
[883] |
. Z. Hui-Ru, Y. Qun, W. Shuai, Y. Yuan-Zheng, Y. Haibin, Impact of Shadow Glass Transition on Crystallization in Metallic Glass. National Science Open, https://doi.org/10.1360/nso/20230064 (2024).
|
[884] |
. H. B. Yu, M. Tylinski, A. Guiseppi-Elie, M. D. Ediger, R. Richert, Suppression of β Relaxation in Vapor-Deposited Ultrastable Glasses. Physical Review Letters 115, (2015).
|
[885] |
. B. Huang et al., Hand in hand evolution of boson heat capacity anomaly and slow β-relaxation in La-based metallic glasses. Acta Materialia 110, 73-83 (2016).
|
[886] |
. R. Su, J. Yu, P. Guan, W. Wang. (2023).
|
[887] |
. H.-R. Zhang et al., Fragility crossover mediated by covalent-like electronic interactions in metallic liquids. Mater Futures 3, 025002 (2024).
|
[888] |
. E. Ma, Tuning order in disorder. Nature Materials 14, 547-552 (2015).
|
[889] |
. J. S. Harmon, M. D. Demetriou, W. L. Johnson, K. Samwer, Anelastic to Plastic Transition in Metallic Glass-Forming Liquids. Physical Review Letters 99, 135502 (2007).
|
[890] |
. S. Küchemann, R. Maaß, Gamma relaxation in bulk metallic glasses. Scripta Materialia 137, 5 (2017).
|
[891] |
. Q. Wang et al., Unusual fast secondary relaxation in metallic glass. Nature Communications 6, 7876 (2015).
|
[892] |
. L. Z. Zhao et al., A fast dynamic mode in rare earth based glasses. The Journal of Chemical Physics 144, 204507 (2016).
|
[893] |
. T. Lu et al., Dynamic relaxations of a metallic glass studied on cooling. Journal of Alloys and Compounds 846, 5 (2020).
|
[894] |
. Q. Wang et al., Universal secondary relaxation and unusual brittle-to-ductile transition in metallic glasses. Materials Today 20, 293-300 (2017).
|
[895] |
. A. Jaiswal, T. Egami, K. F. Kelton, K. S. Schweizer, Y. Zhang, Correlation between fragility and the Arrhenius crossover phenomenon in metallic, molecular, and network liquids. Physical Review Letters 117, 205701 (2016).
|
[896] |
. S. Sastry, P. G. Debenedetti, F. H. Stillinger, Signatures of distinct dynamical regimes in the energy landscape of a glass-forming liquid. Nature 393, 554 (1998).
|
[897] |
. B. Wang, X. Gao, J. Qiao, Relaxation Behavior in Metallic Glasses and Related Mechanisms by Simulation Method: A Brief Review. Rare Metal Materials and Engineering 53, 70-77 (2024).
|
[898] |
. C. Donati et al., Stringlike cooperative motion in a supercooled liquid. Physical Review Letters 80, 2338-2341 (1998).
|
[899] |
. J. D. Stevenson, J. Schmalian, P. G. Wolynes, The shapes of cooperatively rearranging regions in glass-forming liquids. Nature Physics 2, 268-274 (2006).
|
[900] |
. J. D. Stevenson, P. G. Wolynes, A universal origin for secondary relaxations in supercooled liquids and structural glasses. Nat. Phys. 6, 62-68 (2010).
|
[901] |
. A. S. Keys, L. O. Hedges, J. P. Garrahan, S. C. Glotzer, D. Chandler, Excitations Are Localized and Relaxation Is Hierarchical in Glass-Forming Liquids. Physical Review X 1, 021013 (2011).
|
[902] |
. T. Salez, J. Salez, K. Dalnoki-Veress, E. Raphaël, J. A. Forrest, Cooperative strings and glassy interfaces. Proceedings of the National Academy of Sciences 112, 8227-8231 (2015).
|
[903] |
. H. B. Yu, W. H. Wang, H. Y. Bai, Y. Wu, M. W. Chen, Relating activation of shear transformation zones to beta relaxations in metallic glasses. Physical Review B 81, 4 (2010).
|
[904] |
. E. J. Frankberg et al., Highly ductile amorphous oxide at room temperature and high strain rate. Science 366, 864-+ (2019).
|
[905] |
. P. Y. Huang et al., Imaging atomic rearrangements in two-dimensional silica glass: Watching silica's dance. Science 342, 224-227 (2013).
|
[906] |
. B. Ruta et al., Revealing the fast atomic motion of network glasses. Nature Communications 5, 3939 (2014).
|
[907] |
. C. Cavazzoni et al., Superionic and metallic states of water and ammonia at giant planet conditions. Science 283, 44-46 (1999).
|
[908] |
. Y. He et al., Superionic iron alloys and their seismic velocities in Earth’s inner core. Nature 602, 258-262 (2022).
|
[909] |
. Y. Wang et al., Electronically Driven 1D Cooperative Diffusion in a Simple Cubic Crystal. Physical Review X 11, 011006 (2021).
|
[910] |
. H. L. Liu et al., Copper ion liquid-like thermoelectrics. Nature Materials 11, 422-425 (2012).
|
[911] |
. Q. Zhao, S. Stalin, C.-Z. Zhao, L. A. Archer, Designing solid-state electrolytes for safe, energy-dense batteries. Nature Reviews Materials 5, 229-252 (2020).
|
[912] |
. W. Zhang et al., Deforming lanthanum trihydride for superionic conduction. Nature 616, 73-76 (2023).
|
[913] |
. A. Lemaître, C. Caroli, Plastic response of a two-dimensional amorphous solid to quasistatic shear: Transverse particle diffusion and phenomenology of dissipative events. Physical Review E 76, 036104 (2007).
|
[914] |
. Z. Wang, W. H. Wang, Flow units as dynamic defects in metallic glassy materials. National Science Review 6, 304-323 (2019).
|
[915] |
. Z. Wang, P. Wen, L. S. Huo, H. Y. Bai, W. H. Wang, Signature of viscous flow units in apparent elastic regime of metallic glasses. Applied Physics Letters 101, 121906 (2012).
|
[916] |
. T. P. Ge, W. H. Wang, H. Y. Bai, Revealing flow behaviors of metallic glass based on activation of flow units. Journal of Applied Physics 119, 204905 (2016).
|
[917] |
. L. S. Huo, J. F. Zeng, W. H. Wang, C. T. Liu, Y. Yang, The dependence of shear modulus on dynamic relaxation and evolution of local structural heterogeneity in a metallic glass. Acta Materialia 61, 4329-4338 (2013).
|
[918] |
. J. C. Dyre, Colloquium: The glass transition and elastic models of glass-forming liquids. Reviews of Modern Physics 78, 953-972 (2006).
|
[919] |
. R. Ranko, Heterogeneous dynamics in liquids: fluctuations in space and time. Journal of Physics: Condensed Matter 14, R703-R738 (2002).
|
[920] |
. X. F. Cao, M. Gao, L. Z. Zhao, W. H. Wang, H. Y. Bai, Microstructural heterogeneity perspective on the yield strength of metallic glasses. Journal of Applied Physics 119, 084906 (2016).
|
[921] |
. D. J. Lacks, Energy landscapes and the non-newtonian viscosity of liquids and glasses. Physical Review Letters 87, 225502 (2001).
|
[922] |
. P. F. Guan, M. W. Chen, T. Egami, Stress-temperature scaling for steady-state flow in metallic glasses. Phys Rev Lett 104, 205701 (2010).
|
[923] |
. S. T. Liu, Z. Wang, H. L. Peng, H. B. Yu, W. H. Wang, The activation energy and volume of flow units of metallic glasses. Scripta Materialia 67, 9-12 (2012).
|
[924] |
. J. J. Lewandowski, W. H. Wang, A. L. Greer, Intrinsic plasticity or brittleness of metallic glasses. Philosophical Magazine Letters 85, 77-87 (2005).
|
[925] |
. M. Gao, B. A. Sun, C. C. Yuan, J. Ma, W. H. Wang, Hidden order in the fracture surface morphology of metallic glasses. Acta Materialia 60, 6952-6960 (2012).
|
[926] |
. Z. G. Zhu et al., Characterization of flow units in metallic glass through structural relaxations. Journal of Applied Physics 114, 083512 (2013).
|
[927] |
. L. Z. Zhao et al., Evaluation of flow units and free volumes in metallic glasses. Journal of Applied Physics 116, 103516 (2014).
|
[928] |
. C. Wang et al., High stored energy of metallic glasses induced by high pressure. Applied Physics Letters 110, 111901 (2017).
|
[929] |
. S. K. Meng et al., Property evolution and service life prediction of novel metallic materials for future lunar bases. Rare Metals, (2024).
|
[930] |
. Z. Wang, F. Yang, A. Bernasconi, K. Samwer, A. Meyer, Predicting structural and dynamical behavior of La-based glasses and melts from the anharmonicity in their interatomic potential. Physical Review B 98, 024204 (2018).
|
[931] |
. J. H. Yu, Z. Wang, L. N. Hu, W. Chu, Y. W. Bai, The anharmonicity role of interatomic potential in predicting glass formation. Scripta Materialia 216, 114737 (2022).
|
[932] |
. W. Chu et al., Entropy-driven atomic activation in supercooled liquids and its link to the fragile-to-strong transition. Science China Physics, Mechanics & Astronomy 66, 246112 (2023).
|
[933] |
. J. H. Yu, Z. Wang, W. Chu, Y. W. Bai, L. N. Hu, Interatomic potential controlled glass forming processes of binary CuZr melts. Journal of NonCrystalline Solids: X 17, 100150 (2023).
|
[934] |
. G. Ehrlich, K. Stolt, Surface Diffusion. Annual Review of Physical Chemistry 31, 603-637 (1980).
|
[935] |
. L. Chen et al., Fast Surface Dynamics of Metallic Glass Enable Superlatticelike Nanostructure Growth. Physical Review Letters 118, (2017).
|
[936] |
. H. Tian, Q. Xu, H. Zhang, R. D. Priestley, B. Zuo, Surface dynamics of glasses. Applied Physics Reviews 9, (2022).
|
[937] |
. S. P. Delcambre, R. A. Riggleman, J. J. de Pablo, P. F. Nealey, Mechanical properties of antiplasticized polymer nanostructures. Soft Matter 6, 2475 (2010).
|
[938] |
. X. Li, X. Liang, Z. Zhang, J. Ma, J. Shen, Cold joining to fabricate large size metallic glasses by the ultrasonic vibrations. Scripta Materialia 185, 100-104 (2020).
|
[939] |
. J. T. Yates, C. T. Campbell, Surface chemistry: Key to control and advance myriad technologies. Proceedings of the National Academy of Sciences 108, 911-916 (2011).
|
[940] |
. H. Peng, H. Liu, T. Voigtmann, Nonmonotonic Dynamical Correlations beneath the Surface of Glass-Forming Liquids. Physical Review Letters 129, (2022).
|
[941] |
. C. W. Brian, L. Yu, Surface Self-Diffusion of Organic Glasses. The Journal of Physical Chemistry A 117, 13303-13309 (2013).
|
[942] |
. R. N. Barnett, U. Landman, Surface premelting of Cu(110). Physical Review B 44, 3226-3239 (1991).
|
[943] |
. B. Li et al., Modes of surface premelting in colloidal crystals composed of attractive particles. Nature 531, 485-488 (2016).
|
[944] |
. C. Huang, S. Ruan, T. Cai, L. Yu, Fast Surface Diffusion and Crystallization of Amorphous Griseofulvin. The Journal of Physical Chemistry B 121, 9463-9468 (2017).
|
[945] |
. W. Zhang, R. Teerakapibal, L. Yu, Surface Mobility of Amorphous o- Terphenyl: A Strong Inhibitory Effect of Low-Concentration Polystyrene. The Journal of Physical Chemistry B 120, 6842-6847 (2016).
|
[946] |
. L. Yu, Surface mobility of molecular glasses and its importance in physical stability. Advanced Drug Delivery Reviews 100, 3-9 (2016).
|
[947] |
. W. Zhang, L. Yu, Surface Diffusion of Polymer Glasses. Macromolecules 49, 731-735 (2016).
|
[948] |
. M. Liu et al., Strong adhesion induced by liquid-like surface of metallic glasses. Applied Physics Letters 120, (2022).
|
[949] |
. C. R. Daley, Z. Fakhraai, M. D. Ediger, J. A. Forrest, Comparing surface and bulk flow of a molecular glass former. Soft Matter 8, 2206 (2012).
|
[950] |
. Y. Chai et al., A Direct Quantitative Measure of Surface Mobility in a Glassy Polymer. Science 343, 994-999 (2014).
|
[951] |
. J. D. McGraw, N. M. Jago, K. Dalnoki-Veress, Capillary levelling as a probe of thin film polymer rheology. Soft Matter 7, 7832 (2011).
|
[952] |
. J. Haddad et al., Surface structure evolution in a homologous series of ionic liquids. Proceedings of the National Academy of Sciences 115, (2018).
|
[953] |
. M. Liu, H. Liu, H. Peng, Orientational wetting and dynamical correlations toward glass transition on the surface of imidazolium-based ionic liquids. The Journal of Chemical Physics 157, (2022).
|
[954] |
. H. Mo et al., Observation of Surface Layering in a Nonmetallic Liquid. Physical Review Letters 96, (2006).
|
[955] |
. E. Chacón, M. Reinaldo-Falagán, E. Velasco, P. Tarazona, Layering at Free Liquid Surfaces. Physical Review Letters 87, (2001).
|
[956] |
. Q. L. Bi, Y. J. Lü, W. H. Wang, Multiscale Relaxation Dynamics in Ultrathin Metallic Glass-Forming Films. Physical Review Letters 120, (2018).
|
[957] |
. A. Roder, W. Kob, K. Binder, Structure and dynamics of amorphous silica surfaces. The Journal of Chemical Physics 114, 7602-7614 (2001).
|
[958] |
. A. Annamareddy, P. M. Voyles, J. Perepezko, D. Morgan, Mechanisms of bulk and surface diffusion in metallic glasses determined from molecular dynamics simulations. Acta Materialia 209, 116794 (2021).
|
[959] |
. T. R. Kirkpatrick, D. Thirumalai, P. G. Wolynes, Scaling concepts for the dynamics of viscous liquids near an ideal glassy state. Physical Review A 40, 1045-1054 (1989).
|
[960] |
. V. Lubchenko, P. G. Wolynes, Barrier softening near the onset of nonactivated transport in supercooled liquids: Implications for establishing detailed connection between thermodynamic and kinetic anomalies in supercooled liquids. The Journal of Chemical Physics 119, 9088-9105 (2003).
|
[961] |
. J. D. Stevenson, P. G. Wolynes, On the surface of glasses. The Journal of Chemical Physics 129, (2008).
|
[962] |
. Z. Wang, J. H. Perepezko, Surface diffusion on a palladium-based metallic glass. Applied Physics Letters 124, (2024).
|
[963] |
. K. L. Ngai, A. K. Rajagopal, S. Teitler, Slowing down of relaxation in a complex system by constraint dynamics. The Journal of Chemical Physics 88, 5086-5094 (1988).
|
[964] |
. S. Capaccioli, K. L. Ngai, M. Paluch, D. Prevosto, Mechanism of fast surface self-diffusion of an organic glass. Physical Review E 86, (2012).
|
[965] |
. K. L. Ngai, M. Paluch, C. Rodríguez-Tinoco, Why is surface diffusion the same in ultrastable, ordinary, aged, and ultrathin molecular glasses? Physical Chemistry Chemical Physics 19, 29905-29912 (2017).
|
[966] |
. S. Mirigian, K. S. Schweizer, Elastically cooperative activated barrier hopping theory of relaxation in viscous fluids. I. General formulation and application to hard sphere fluids. The Journal of Chemical Physics 140, (2014).
|
[967] |
. S. Mirigian, K. S. Schweizer, Influence of chemistry, interfacial width, and nonisothermal conditions on spatially heterogeneous activated relaxation and elasticity in glass-forming free standing films. The Journal of Chemical Physics 146, (2017).
|
[968] |
. D. Chatterjee et al., Fast Surface Dynamics on a Metallic Glass Nanowire. Acs Nano 15, 11309-11316 (2021).
|
[969] |
. Y. Zhang, Z. Fakhraai, Decoupling of surface diffusion and relaxation dynamics of molecular glasses. Proceedings of the National Academy of Sciences 114, 4915-4919 (2017).
|
[970] |
. Y. Zhang, Z. Fakhraai, Invariant Fast Diffusion on the Surfaces of Ultrastable and Aged Molecular Glasses. Physical Review Letters 118, (2017).
|
[971] |
. D. M. Sussman, S. S. Schoenholz, E. D. Cubuk, A. J. Liu, Disconnecting structure and dynamics in glassy thin films. Proceedings of the National Academy of Sciences 114, 10601-10605 (2017).
|
[972] |
. N. Kuon, E. Flenner, G. Szamel, Comparison of single particle dynamics at the center and on the surface of equilibrium glassy films. The Journal of Chemical Physics 149, (2018).
|
[973] |
. G. Sun, S. Saw, I. Douglass, P. Harrowell, Erratum: Structural Origin of Enhanced Dynamics at the Surface of a Glassy Alloy [Phys. Rev. Lett. 119 , 245501 (2017)]. Physical Review Letters 125, (2020).
|
[974] |
. D. Diaz-Vela, J.-H. Hung, D. S. Simmons, Temperature-Independent Rescaling of the Local Activation Barrier Drives Free Surface Nanoconfinement Effects on Segmental-Scale Translational Dynamics near Tg. ACS Macro Letters 7, 1295-1301 (2018).
|
[975] |
. K. S. Schweizer, D. S. Simmons, Progress towards a phenomenological picture and theoretical understanding of glassy dynamics and vitrification near interfaces and under nanoconfinement. The Journal of Chemical Physics 151, (2019).
|
[976] |
. A. Ghanekarade, A. D. Phan, K. S. Schweizer, D. S. Simmons, Signature of collective elastic glass physics in surface-induced long-range tails in dynamical gradients. Nature Physics 19, 800-806 (2023).
|
[977] |
. W. A. Phillips, Amorphous solids : low-temperature properties. (springer, 1981).
|
[978] |
. U. Buchenau, N. Nücker, A. J. Dianoux, Neutron Scattering Study of the LowFrequency Vibrations in Vitreous Silica. Physical Review Letters 53, 2316-2319 (1984).
|
[979] |
. F. Sette, M. H. Krisch, C. Masciovecchio, G. Ruocco, G. Monaco, Dynamics of Glasses and Glass-Forming Liquids Studied by Inelastic X-ray Scattering. Science 280, 1550-1555 (1998).
|
[980] |
. B. Rufflé, G. Guimbretière, E. Courtens, R. Vacher, G. Monaco, Glass-Specific Behavior in the Damping of Acousticlike Vibrations. Physical Review Letters 96, 045502 (2006).
|
[981] |
. P. Benassi et al., Evidence of High Frequency Propagating Modes in Vitreous Silica. Physical Review Letters 77, 3835-3838 (1996).
|
[982] |
. R. Berman, Thermal Conductivity of Glasses at Low Temperatures. Physical Review 76, 315-316 (1949).
|
[983] |
. R. C. Zeller, R. O. Pohl, Thermal Conductivity and Specific Heat of Noncrystalline Solids. Physical Review B 4, 2029-2041 (1971).
|
[984] |
. B. Hehlen et al., Hyper-Raman Scattering Observation of the Boson Peak in Vitreous Silica. Physical Review Letters 84, 5355-5358 (2000).
|
[985] |
. H. Y. Bai, J. L. Luo, Z. J. Chen, W. H. Wang, Low temperature specific heat of bulk glassy and crystalline Zr41Ti14Cu12.5Ni10Be22.5 alloys. Applied Physics Letters 78, 2697-2699 (2001).
|
[986] |
. B. Ruzicka et al., Evidence of anomalous dispersion of the generalized sound velocity in glasses. Physical Review B 69, 100201 (2004).
|
[987] |
. L. E. Bove, C. Petrillo, A. Fontana, A. P. Sokolov, Damping of sound waves in the terahertz range and strength of the boson peak. The Journal of Chemical Physics 128, 184502 (2008).
|
[988] |
. Y. Li, H. Y. Bai, W. H. Wang, K. Samwer, Low-temperature specific-heat anomalies associated with the boson peak in CuZr-based bulk metallic glasses. Physical Review B 74, 052201 (2006).
|
[989] |
. Y. Li, P. Yu, H. Y. Bai, Study on the boson peak in bulk metallic glasses. Journal of Applied Physics 104, 013520 (2008).
|
[990] |
. A. P. Jeapes, A. J. Leadbetter, C. G. Waterfiel, K. E. Wycherley, The lowtemperature heat capacity of GeO2. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics 29, 803-812 (1974).
|
[991] |
. M. Moratalla et al., Emergence of glassy features in halomethane crystals. Physical Review B 99, 024301 (2019).
|
[992] |
. S. Ren et al., Boson-peak-like anomaly caused by transverse phonon softening in strain glass. Nature Communications 12, 5755 (2021).
|
[993] |
. V. Malinovsky, V. N. Novikov, P. P. Parshin, A. P. Sokolov, M. G. J. E. Zemlyanov, Universal Form of the Low-Energy (2 to 10 meV) Vibrational Spectrum of Glasses. Europhysics Letters 11, 43-47 (1990).
|
[994] |
. R. B. Stephens, Low-Temperature Specific Heat and Thermal Conductivity of Noncrystalline Dielectric Solids. Physical Review B 8, 2896-2905 (1973).
|
[995] |
. J. J. De Yoreo, W. Knaak, M. Meissner, R. O. Pohl, Low-temperature properties of crystalline (KBr)x(KCN)1-x: A model glass. Physical Review B 34, 8828- 8842 (1986).
|
[996] |
. M. Kabeya et al., Boson peak dynamics of glassy glucose studied by integrated terahertz-band spectroscopy. Physical Review B 94, 224204 (2016).
|
[997] |
. C. C. Yu, J. J. Freeman, Thermal conductivity and specific heat of glasses. Physical Review B 36, 7620-7624 (1987).
|
[998] |
. Q. Guo et al., Boson peak: Damped phonon in solids. Applied Physics Letters 121, 142204 (2022).
|
[999] |
. L. Zhang et al., Experimental studies of vibrational modes in a two-dimensional amorphous solid. Nature Communications 8, 67 (2017).
|
[1000] |
. M. A. Strzhemechny, A. I. Krivchikov, A. Jeżowski, Heat capacity of molecular solids: The special case of cryocrystals. Low Temperature Physics 45, 1290- 1295 (2019).
|
[1001] |
. J. F. Gebbia et al., Glassy Anomalies in the Low-Temperature Thermal Properties of a Minimally Disordered Crystalline Solid. Physical Review Letters 119, 215506 (2017).
|
[1002] |
. G. Reményi et al., Incommensurate Systems as Model Compounds for Disorder Revealing Low-Temperature Glasslike Behavior. Physical Review Letters 114, 195502 (2015).
|
[1003] |
. A. Jeżowski et al., Glassy anomalies in the heat capacity of an ordered 2- bromobenzophenone single crystal. Physical Review B 97, 201201 (2018).
|
[1004] |
. T. Scopigno, G. Ruocco, F. Sette, G. Monaco, Is the Fragility of a Liquid Embedded in the Properties of Its Glass? Science 302, 849-852 (2003).
|
[1005] |
. A. P. Sokolov et al., Low-Temperature Anomalies in Strong and Fragile Glass Formers. Physical Review Letters 78, 2405-2408 (1997).
|
[1006] |
. V. N. Novikov, A. P. Sokolov, Poisson's ratio and the fragility of glass-forming liquids. Nature 431, 961-963 (2004).
|
[1007] |
. M. B. Tang, H. Y. Bai, M. X. Pan, D. Q. Zhao, W. H. Wang, Einstein oscillator in highly-random-packed bulk metallic glass. Applied Physics Letters 86, 021910 (2005).
|
[1008] |
. B. Huang, H. Y. Bai, W. H. Wang, Relationship between boson heat capacity peaks and evolution of heterogeneous structure in metallic glasses. Journal of Applied Physics 115, 153505 (2014).
|
[1009] |
. Y. P. Mitrofanov, M. Peterlechner, S. V. Divinski, G. Wilde, Impact of Plastic Deformation and Shear Band Formation on the Boson Heat Capacity Peak of a Bulk Metallic Glass. Physical Review Letters 112, 135901 (2014).
|
[1010] |
. J. Bünz et al., Low Temperature Heat Capacity of a Severely Deformed Metallic Glass. Physical Review Letters 112, 135501 (2014).
|
[1011] |
. C. A. Angell, Relaxation in liquids, polymers and plastic crystals — strong/fragile patterns and problems. Journal of Non-Crystalline Solids 131-133, 13-31 (1991).
|
[1012] |
. A. Marruzzo, W. Schirmacher, A. Fratalocchi, G. Ruocco, Heterogeneous shear elasticity of glasses: the origin of the boson peak. Scientific Reports 3, 1407 (2013).
|
[1013] |
. H. Shintani, H. Tanaka, Universal link between the boson peak and transverse phonons in glass. Nature Materials 7, 870 (2008).
|
[1014] |
. D. P. B. Aji, P. Wen, G. P. Johari, Memory effect in enthalpy relaxation of two metal-alloy glasses. Journal of Non-Crystalline Solids 353, 3796-3811 (2007).
|
[1015] |
. A. Monaco et al., Effect of Densification on the Density of Vibrational States of Glasses. Physical Review Letters 97, 135501 (2006).
|
[1016] |
. L. Hong et al., Influence of Pressure on Quasielastic Scattering in Glasses: Relationship to the Boson Peak. Physical Review Letters 102, 145502 (2009).
|
[1017] |
. V. L. Gurevich, D. A. Parshin, H. R. Schober, Pressure dependence of the boson peak in glasses. Physical Review B 71, 014209 (2005).
|
[1018] |
. K. Niss et al., Influence of Pressure on the Boson Peak: Stronger than Elastic Medium Transformation. Physical Review Letters 99, 055502 (2007).
|
[1019] |
. V. Karpov, D. Parshin, The thermal conductivity of glasses at temperatures below the Debye temperature. Zh. Eksp. Teor. Fiz 88, 2212-2227 (1985).
|
[1020] |
. U. Buchenau et al., Interaction of soft modes and sound waves in glasses. Physical Review B 46, 2798-2808 (1992).
|
[1021] |
. T. S. Grigera, V. Martín-Mayor, G. Parisi, P. Verrocchio, Phonon interpretation of the ‘boson peak’ in supercooled liquids. Nature 422, 289 (2003).
|
[1022] |
. V. Lubchenko, P. G. Wolynes, The origin of the boson peak and thermal conductivity plateau in low-temperature glasses. Proceedings of the National Academy of Sciences 100, 1515-1518 (2003).
|
[1023] |
. S. R. Elliott, A Unified Model for the Low-Energy Vibrational Behaviour of Amorphous Solids. Europhysics Letters 19, 201 (1992).
|
[1024] |
. W. Schirmacher, G. Ruocco, T. Scopigno, Acoustic Attenuation in Glasses and its Relation with the Boson Peak. Physical Review Letters 98, 25501-25500 (2007).
|
[1025] |
. H. R. Schober, C. Oligschleger, Low-frequency vibrations in a model glass. Physical Review B 53, 11469-11480 (1996).
|
[1026] |
. A. N. Vasiliev et al., Relationship between low-temperature boson heat capacity peak and high-temperature shear modulus relaxation in a metallic glass. Physical Review B 80, 172102 (2009).
|
[1027] |
. A. I. Chumakov et al., Equivalence of the Boson Peak in Glasses to the Transverse Acoustic van Hove Singularity in Crystals. Physical Review Letters 106, 225501 (2011).
|
[1028] |
. A. I. Chumakov et al., Role of Disorder in the Thermodynamics and Atomic Dynamics of Glasses. Physical Review Letters 112, 025502 (2014).
|
[1029] |
. R. Zorn, The boson peak demystified? physics 4, (2011).
|
[1030] |
. Y. Wang, L. Hong, Y. Wang, W. Schirmacher, J. Zhang, Disentangling boson peaks and Van Hove singularities in a model glass. Physical Review B 98, 174207 (2018).
|
[1031] |
. J. Yang et al., Structural Parameter of Orientational Order to Predict the Boson Vibrational Anomaly in Glasses. Physical Review Letters 122, 015501 (2019).
|
[1032] |
. H. Zhang, X. Wang, H.-B. Yu, J. F. Douglas, Fast dynamics in a model metallic glass-forming material. The Journal of Chemical Physics 154, (2021).
|
[1033] |
. L. Wondraczek, Locality resolved. Nature Physics 18, 614-615 (2022).
|
[1034] |
. M. Baggioli, A. Zaccone, Universal Origin of Boson Peak Vibrational Anomalies in Ordered Crystals and in Amorphous Materials. Physical Review Letters 122, 145501 (2019).
|
[1035] |
. M. Baggioli, A. Zaccone, Unified theory of vibrational spectra in hard amorphous materials. Physical Review Research 2, 013267 (2020).
|
[1036] |
. M. Baggioli, A. Zaccone, Low-energy optical phonons induce glassy-like vibrational and thermal anomalies in ordered crystals. Journal of Physics: Materials 3, 015004 (2020).
|
[1037] |
. A. Shvaika, M. Shpot, W. Schirmacher, T. Bryk, G. Ruocco, Comment on ``Universal Origin of Boson Peak Vibrational Anomalies in Ordered Crystals and in Amorphous Materials''. Physical Review Letters 127, 179601 (2021).
|
[1038] |
. A. J. Kovacs, in Fortschritte der hochpolymeren-forschung. (Springer, 1964), pp. 394-507.
|
[1039] |
. A. Q. Tool, Relation between inelastic deformability and thermal expansion of glass in its annealing range. Journal of the American Ceramic society 29, 240- 253 (1946).
|
[1040] |
. O. Narayanaswamy, A model of structural relaxation in glass. Journal of the American Ceramic Society 54, 491-498 (1971).
|
[1041] |
. C. Moynihan et al., Structural relaxation in vitreous materials. Annals of the New York Academy of Sciences 279, 15-35 (1976).
|
[1042] |
. A. J. Kovacs, J. J. Aklonis, J. M. Hutchinson, A. R. Ramos, Isobaric volume and enthalpy recovery of glasses. II. A transparent multiparameter theory. Journal of Polymer Science: Polymer Physics Edition 17, 1097-1162 (1979).
|
[1043] |
. L. Grassia, Y. P. Koh, M. Rosa, S. L. Simon, Complete set of enthalpy recovery data using Flash DSC: experiment and modeling. Macromolecules 51, 1549- 1558 (2018).
|
[1044] |
. A. L. Greer, F. Spaepen, Creep, diffusion, and structural relaxation in metallic glasses. Unknown, (1982).
|
[1045] |
. M. Gibbs, J. Evetts, J. Leake, Activation energy spectra and relaxation in amorphous materials. Journal of Materials Science 18, 278-288 (1983).
|
[1046] |
. E. Lopez, S. L. Simon, Signatures of structural recovery in polystyrene by nanocalorimetry. Macromolecules 49, 2365-2374 (2016).
|
[1047] |
. Y. Wang, P. Li, L.-M. Wang, Strong dependence of the hardness on fictive temperatures in far-from-equilibrium La57. 5Ni12. 5Al17. 5Cu12. 5 metallic glasses. Intermetallics 93, 197-200 (2018).
|
[1048] |
. C. Volkert, F. Spaepen, Crossover relaxation of the viscosity of Pd40Ni40P19Si1 near the glass transition. Acta Metallurgica 37, 1355-1362 (1989).
|
[1049] |
. A. Eisenbach et al., Glassy dynamics in disordered electronic systems reveal striking thermal memory effects. Physical review letters 117, 116601 (2016).
|
[1050] |
. L. Boesch, A. Napolitano, P. Macedo, Spectrum of volume relaxation times in B2O3. Journal of the American Ceramic Society 53, 148-153 (1970).
|
[1051] |
. A. Amir, Y. Oreg, Y. Imry, On relaxations and aging of various glasses. Proceedings of the National Academy of Sciences 109, 1850-1855 (2012).
|
[1052] |
. E. Van Bruggen, E. Van Der Linden, M. Habibi, Tailoring relaxation dynamics and mechanical memory of crumpled materials by friction and ductility. Soft Matter 15, 1633-1639 (2019).
|
[1053] |
. E. Trizac, A. Prados, Memory effect in uniformly heated granular gases. Physical Review E 90, 012204 (2014).
|
[1054] |
. A. Vaknin, Z. Ovadyahu, M. Pollak, Nonequilibrium field effect and memory in the electron glass. Physical Review B 65, 134208 (2002).
|
[1055] |
. A. Amir, Y. Oreg, Y. Imry, Electron glass dynamics. Annu. Rev. Condens. Matter Phys. 2, 235-262 (2011).
|
[1056] |
. X. Di et al., Signatures of structural recovery in colloidal glasses. Physical review letters 106, 095701 (2011).
|
[1057] |
. S. Banik, G. B. McKenna, Isochoric structural recovery in molecular glasses and its analog in colloidal glasses. Physical Review E 97, 062601 (2018).
|
[1058] |
. C. Rossel, Y. Maeno, I. Morgenstern, Memory effects in a superconducting yba-cu-o single crystal: A similarity to spin-glasses. Physical review letters 62, 681 (1989).
|
[1059] |
. B. Kou et al., Granular materials flow like complex fluids. Nature 551, 360-363 (2017).
|
[1060] |
. J. J. Brey, A. Prados, Memory effects in vibrated granular systems. Journal of Physics: Condensed Matter 14, 1489 (2002).
|
[1061] |
. S. Dillavou, S. M. Rubinstein, Nonmonotonic aging and memory in a frictional interface. Physical review letters 120, 224101 (2018).
|
[1062] |
. K. A. Murphy, J. W. Kruppe, H. M. Jaeger, Memory in nonmonotonic stress relaxation of a granular system. Physical Review Letters 124, 168002 (2020).
|
[1063] |
. Y. He et al., Non-monotonic relaxation and memory effect of rock salt. Rock Mechanics and Rock Engineering 52, 2471-2479 (2019).
|
[1064] |
. Y. Lahini, O. Gottesman, A. Amir, S. M. Rubinstein, Nonmonotonic aging and memory retention in disordered mechanical systems. Physical review letters 118, 085501 (2017).
|
[1065] |
. N. C. Keim, J. D. Paulsen, Z. Zeravcic, S. Sastry, S. R. Nagel, Memory formation in matter. Reviews of Modern Physics 91, 035002 (2019).
|
[1066] |
. M. Baity-Jesi et al., Memory and rejuvenation effects in spin glasses are governed by more than one length scale. Nature Physics 19, 978-985 (2023).
|
[1067] |
. Y. Sun, M. Salamon, K. Garnier, R. Averback, Memory effects in an interacting magnetic nanoparticle system. Physical review letters 91, 167206 (2003).
|
[1068] |
. D. De, S. Goswami, M. Chakraborty, Magnetic memory effect: Unfolding magnetic metastabilities. Journal of Magnetism and Magnetic Materials 565, 170175 (2023).
|
[1069] |
. A. Bhattacharyya, S. Giri, S. Majumdar, Spin-glass-like state in GdCu: Role of phase separation and magnetic frustration. Physical Review B—Condensed Matter and Materials Physics 83, 134427 (2011).
|
[1070] |
. J. Q. Wang, L. J. Song, J. T. Huo, M. Gao, Y. Zhang, Designing Advanced Amorphous/Nanocrystalline Alloys by Controlling the Energy State. Advanced Materials, 2311406 (2024).
|
[1071] |
. L. Song et al., Activation entropy as a key factor controlling the memory effect in glasses. Physical Review Letters 125, 135501 (2020).
|
[1072] |
. M. Li et al., Significantly enhanced memory effect in metallic glass by multistep training. Physical Review B 96, 174204 (2017).
|
[1073] |
. Y. Meng et al., Rejuvenation by enthalpy relaxation in metallic glasses. Acta Materialia 241, 118376 (2022).
|
[1074] |
. Y. Tong et al., Strain-driven Kovacs-like memory effect in glasses. Nature Communications 14, 8407 (2023).
|
[1075] |
. A. Prados, J. Brey, The Kovacs effect: a master equation analysis. Journal of Statistical Mechanics: Theory and Experiment 2010, P02009 (2010).
|
[1076] |
. S. Mossa, F. Sciortino, Crossover (or Kovacs) Effect in an Aging Molecular Liquid. Physical Review Letters 92, 045504 (2004).
|
[1077] |
. A. Greer, J. Leake, Structural relaxation and crossover effect in a metallic glass. Journal of Non-Crystalline Solids 33, 291-297 (1979).
|
[1078] |
. S. Song, F. Zhu, M. Chen, Universal scaling law of glass rheology. Nature Materials 21, 404-409 (2022).
|
[1079] |
. J. Hem, C. Crauste-Thibierge, F. Clément, D. Long, S. Ciliberto, Simultaneous memory effects in the stress and in the dielectric susceptibility of a stretched polymer glass. Physical Review E 103, L040502 (2021).
|
[1080] |
. R. Mandal, D. Tapias, P. Sollich, Memory in non-monotonic stress response of an athermal disordered solid. Physical Review Research 3, 043153 (2021).
|
[1081] |
. I. L. Morgan, R. Avinery, G. Rahamim, R. Beck, O. A. Saleh, Glassy dynamics and memory effects in an intrinsically disordered protein construct. Physical Review Letters 125, 058001 (2020).
|
[1082] |
. W. H. Zhou et al., Synchronously enhancing the plasticity and soft magnetism in Fe-based metallic glasses through memory effect. Journal of Materials Science & Technology, (2024).
|
[1083] |
. M. B. Costa, A. L. Greer, Enthalpy of anelasticity and rejuvenation of metallic glasses. Acta Materialia 265, 119609 (2024).
|
[1084] |
. A. L. Greer, Y. H. Sun, Stored energy in metallic glasses due to strains within the elastic limit. Philosophical Magazine 96, 1643-1663 (2016).
|
[1085] |
. B. Shang, W. Wang, P. Guan, Cycle deformation enabled controllable mechanical polarity of bulk metallic glasses. Acta Materialia 225, 117557 (2022).
|
[1086] |
. L. T. Zhang, Y. Wang, E. Pineda, Y. Yang, J. Qiao, Achieving structural rejuvenation in metallic glass by modulating β relaxation intensity via easy-tooperate mechanical cycling. International Journal of Plasticity 157, 103402 (2022).
|
[1087] |
. T. Xu et al., Shape memory effect in metallic glasses. Matter 4, 3327-3338 (2021).
|
[1088] |
. K. Qiu et al., Two-step annealing induced structural rejuvenation: A cause for memory effect in metallic glasses. Materials Today Physics 27, 100824 (2022).
|
[1089] |
. G. Xia, Y. Wang, J. Dai, Y. Dai, Effects of Cu cluster evolution on soft magnetic properties of Fe83B10C6Cu1 metallic glass in two-step annealing. Journal of Alloys and Compounds 690, 281-286 (2017).
|
[1090] |
. M. Gao, C. Kursun, J. H. Perepezko, Unraveling structural relaxation induced ductile-to-brittle transition from perspective of shear band nucleation kinetics in metallic glass. Journal of Alloys and Compounds 952, 170022 (2023).
|
[1091] |
. K. Tao, V. Khonik, J. Qiao, Indentation creep dynamics in metallic glasses under different structural states. International Journal of Mechanical Sciences 240, 107941 (2023).
|
[1092] |
. D. Wang et al., Structural perspectives on the elastic and mechanical properties of metallic glasses. Journal of Applied Physics 114, 173505 (2013).
|
[1093] |
. R. Kohlrausch, Theorie des elektrischen Rückstandes in der Leidener Flasche. Annalen der Physik 167, 179-214 (1854).
|
[1094] |
. Y. J. Duan et al., Analysis of the anelastic deformation of high-entropy Pd20Pt20Cu20Ni20P20 metallic glass under stress relaxation and recovery Journal of Materials Science & Technology 107, 82-91 (2022).
|
[1095] |
. H. Vogel, The law of the relation between the viscosity of liquids and the temperature. Phys. Z 22, 645-646 (1921).
|
[1096] |
. Y. P. Koh, L. Grassia, S. L. Simon, Structural recovery of a single polystyrene thin film using nanocalorimetry to extend the aging time and temperature range. Thermochimica Acta 603, 135-141 (2015).
|
[1097] |
. A. Amir, Y. Oreg, Y. Imry, Slow relaxations and aging in the electron glass. Physical review letters 103, 126403 (2009).
|
[1098] |
. V. Khonik, G. Afonin, A. Y. Vinogradov, A. Tsyplakov, S. Tyutin, Crossover and normal structural relaxation in naturally aged glassy Pd40Cu30Ni10P20. Intermetallics 74, 53-59 (2016).
|
[1099] |
. F. W. Cagle Jr, H. Eyring, An application of the absolute reaction rate theory to some problems in annealing. Journal of Applied Physics 22, 771-775 (1951).
|
[1100] |
. H. Eyring, The theory of absolute reaction rates. Transactions of the Faraday Society 34, 41-48 (1938).
|
[1101] |
. G. B. McKenna, S. L. Simon, 50th anniversary perspective: Challenges in the dynamics and kinetics of glass-forming polymers. Macromolecules 50, 6333- 6361 (2017).
|
[1102] |
. A. Kovacs, Glass transition in amorphous polymers: a phenomenological study. Adv. Polym. Sci 3, 394-507 (1963).
|
[1103] |
. H. Yin et al., Relating microstructure to magnetocaloric properties in RE36Tb20Co20Al24 (RE = Gd, Dy or Ho) high-entropy metallic-glass microwires designed by binary eutectic clusters method. Journal of Materials Science & Technology 149, 167-176 (2023).
|
[1104] |
. L. Song et al., Inheritance from glass to liquid: β relaxation depresses the nucleation of crystals. Acta Materialia 185, 38-44 (2020).
|
[1105] |
. L. Song et al., Two-step relaxations in metallic glasses during isothermal annealing. Intermetallics 93, 101-105 (2018).
|
[1106] |
. Y. Tong, W. Dmowski, H. Bei, Y. Yokoyama, T. Egami, Mechanical rejuvenation in bulk metallic glass induced by thermo-mechanical creep. Acta Materialia 148, 384-390 (2018).
|
[1107] |
. M. Zhang et al., Mechanical relaxation-to-rejuvenation transition in a Zr-based bulk metallic glass. Scientific Reports 7, 625 (2017).
|
[1108] |
. M. JIang, Y. GAO, Structural rejuvenation of metallic glasses and its effect on mechanical behaviors. Acta Metall Sin 57, 425-438 (2021).
|
[1109] |
. Y. Tong et al., Structural rejuvenation in bulk metallic glasses. Acta Materialia 86, 240-246 (2015).
|
[1110] |
. Y. Gao, C. Yang, G. Ding, L.-H. Dai, M.-Q. Jiang, Structural rejuvenation of a well-aged metallic glass. Fundamental Research, (2022).
|
[1111] |
. S. Mukherji, N. Kandula, A. Sood, R. Ganapathy, Strength of mechanical memories is maximal at the yield point of a soft glass. Physical review letters 122, 158001 (2019).
|
[1112] |
. I. Sudreau et al., Residual stresses and shear-induced overaging in boehmite gels. Physical Review Materials 6, L042601 (2022).
|
[1113] |
. V. Di Lisio, L. A. Rocchi, D. Cangialosi, Twofold Facet of Kinetics of Glass Aging. Physical Review Letters 133, 048201 (2024).
|
[1114] |
. Y. Tong et al., Unexpected non-monotonic changing in the heterogeneity of glasses during annealing. Journal of Materials Science & Technology 177, 96- 102 (2024).
|
[1115] |
. J. C. Mauro, S. S. Uzun, W. Bras, S. Sen, Nonmonotonic evolution of density fluctuations during glass relaxation. Physical review letters 102, 155506 (2009).
|
[1116] |
. Y. Gao et al., Continuous transition from gamma to beta dynamics during stress relaxation. Scripta Materialia 224, 115114 (2023).
|
[1117] |
. J. Pan et al., Extreme rejuvenation and softening in a bulk metallic glass. Nature communications 9, 560 (2018).
|
[1118] |
. G. Ding et al., Ultrafast extreme rejuvenation of metallic glasses by shock compression. Science Advances 5, eaaw6249 (2019).
|
[1119] |
. M. B. Costa et al., Anelastic-like nature of the rejuvenation of metallic glasses by cryogenic thermal cycling. Acta Materialia 244, 118551 (2023).
|
[1120] |
. P. W. Anderson, More Is Different: Broken symmetry and the nature of the hierarchical structure of science. Science 177, 393-396 (1972).
|
[1121] |
. C. Scalliet, L. Berthier, Rejuvenation and memory effects in a structural glass. Physical review letters 122, 255502 (2019).
|
[1122] |
. A. He, S. Yue, A. Wang, C. Chang, X. Wang, Dynamic magnetic characteristics and relaxation of Fe73. 5Cu1Nb3Si15. 5B7 nanocrystalline alloy under operating temperature and magnetizing frequency. Journal of Magnetism and Magnetic Materials 443, 261-266 (2017).
|
[1123] |
. J. Wang et al., The ultrastable kinetic behavior of an Au-based nanoglass. Acta materialia 79, 30-36 (2014).
|
[1124] |
. J. Ren et al., Various sizes of sliding event bursts in the plastic flow of metallic glasses based on a spatiotemporal dynamic model. Journal of Applied Physics 116, (2014).
|
[1125] |
. Y. Zhao, Y. Bai, Y. Ding, L. Hu, Predicting the glass-forming ability of rare earth-contained Fe-based alloys by features of dynamic transition in their melts. Journal of Non-Crystalline Solids 537, 120020 (2020).
|
[1126] |
. J. Shen, Y. H. Sun, J. Orava, H. Y. Bai, W. H. Wang, Liquid-to-liquid transition around the glass-transition temperature in a glass-forming metallic liquid. Acta Materialia 225, 117588 (2022).
|
[1127] |
. D. S. Sanditov, M. I. Ojovan, Relaxation aspects of the liquid-glass transition. Physics-Uspekhi 62, 111-130 (2019).
|
[1128] |
. R. A. Konchakov et al., Critical behavior of the fluctuation heat capacity near the glass transition of metallic glasses. Journal of Non-Crystalline Solids 619, 122555 (2023).
|
[1129] |
. M. Tan et al., Accelerated crystallization kinetics and grain refinement in MgNi-Y metallic glass via multiple rare earth elements doping. Journal of Alloys and Compounds 999, 175080 (2024).
|
[1130] |
. K. J. Laws, D. Granata, J. F. Löffler, Alloy design strategies for sustained ductility in Mg-based amorphous alloys-Tackling structural relaxation. Acta Materialia 103, 735-745 (2016).
|
[1131] |
. G. Wu et al., Elemental partitioning-mediated crystalline-to-amorphous phase transformation under quasi-static deformation. Nature Communications 15, 1223 (2024).
|
[1132] |
. Z.-Q. Song, T. Kawaguchi, C. Dong, L.-M. Wang, S. Zhu, Improving fatigue property of Zr-Ni-Al metallic glass by tailoring chemical composition with high structure stability. Materials Science and Engineering: A 882, 145476 (2023).
|
[1133] |
. W. J. Sun et al., Thermal annealing affected microstructure evolution and creep behavior in amorphous TaTiZr medium-entropy alloy. Journal of Materials Science & Technology 225, 174-187 (2025).
|
[1134] |
. C. Chen et al., Prominent β-relaxation and stress relaxation decoupling phenomenon in Gd-Ni-Al metallic glasses. Journal of Alloys and Compounds 948, 169629 (2023).
|
[1135] |
. P. Luo et al., Prominent β-relaxations in yttrium based metallic glasses. Applied Physics Letters 106, (2015).
|
[1136] |
. M. Stringe, K. Spangenberg, M. W. da Silva Pinto, M. Peterlechner, G. Wilde, Decoupled alpha and beta relaxation kinetics in a thermally cycled bulk Pd40Ni40P20 glass. Journal of Alloys and Compounds 915, 165386 (2022).
|
[1137] |
. Y. R. Gao et al., Continuous transition from gamma to beta dynamics during stress relaxation. Scripta Materialia 224, 115114 (2023).
|
[1138] |
. N. Neuber et al., Disentangling structural and kinetic components of the α- relaxation in supercooled metallic liquids. Communications Physics 5, (2022).
|
[1139] |
. J. Wang et al., Achieving identical glassy state through different thermal paths. Science China Materials 66, 3706-3712 (2023).
|
[1140] |
. X. Zhai et al., The connection between the fragile-to-strong transition and the liquid-liquid transition in a binary alloy system. Acta Materialia 239, 118246 (2022).
|
[1141] |
. K. Peng et al., Tailorable fragile-to-strong kinetics features of metal oxides nanocomposite phase-change antimony films. Acta Materialia 234, 118013 (2022).
|
[1142] |
. Q. G. Meng, S. G. Zhang, J. G. Li, X. F. Bian, Strong liquid behavior of Pr55Ni25Al20 bulk metallic glass. Journal of Alloys and Compounds 431, 191- 196 (2007).
|
[1143] |
. J. Shen et al., Metallic Glacial Glass Formation by a First-Order Liquid-Liquid Transition. The Journal of Physical Chemistry Letters 11, 6718-6723 (2020).
|
[1144] |
. C. Zhang, L. Hu, Y. Yue, J. C. Mauro, Fragile-to-strong transition in metallic glass-forming liquids. The Journal of Chemical Physics 133, (2010).
|
[1145] |
. Q. Yang, X.-M. Yang, T. Zhang, X.-W. Liu, H.-B. Yu, Structure and entropy control of polyamorphous transition in high-entropy metallic glasses. Acta Materialia 266, 119701 (2024).
|
[1146] |
. D. H. Kim, W. T. Kim, E. S. Park, N. Mattern, J. Eckert, Phase separation in metallic glasses. Progress in Materials Science 58, 1103-1172 (2013).
|
[1147] |
. G. Xing et al., Correlating dynamic relaxation and viscoelasticity in metallic glasses. Science China Physics, Mechanics & Astronomy 67, (2024).
|
[1148] |
. C. Chen et al., Dynamic heterogeneity in Pd40Ni40P20 glass-forming metallic melt and crystallization behavior probed by quasi-elastic neutron scattering and ultrafast scanning calorimetry. Journal of Alloys and Compounds 967, 171691 (2023).
|
[1149] |
. D. Zhou et al., A comparative study of the rate effect on deformation mode in ductile and brittle bulk metallic glasses. Intermetallics 96, 94-103 (2018).
|
[1150] |
. J. L. Ren, C. Chen, G. Wang, N. Mattern, J. Eckert, Dynamics of serrated flow in a bulk metallic glass. AIP Advances 1, (2011).
|
[1151] |
. W. Zheng, Y. J. Huang, G. Y. Wang, P. K. Liaw, J. Shen, Influence of Strain Rate on Compressive Deformation Behavior of a Zr-Cu-Ni-Al Bulk Metallic Glass at Room Temperature. Metallurgical and Materials Transactions A 42, 1491-1498 (2011).
|
[1152] |
. J. L. Ren, C. Chen, Z. Y. Liu, R. Li, G. Wang, Plastic dynamics transition between chaotic and self-organized critical states in a glassy metal via a multifractal intermediate. Physical Review B 86, (2012).
|
[1153] |
. X. Li et al., Quasi-static and dynamic deformation behavior of Hf28Be18Ti17Zr17Cu7.5Ni12.5 high-entropy bulk metallic glass. Journal of Materials Research and Technology 21, 1331-1343 (2022).
|
[1154] |
. Y. Tan, Y. W. Wang, H. W. Cheng, X. W. Cheng, Dynamic fracture behavior of Zr63Cu12Ni12Al10Nb3 metallic glass under high strain-rate loading. Journal of Alloys and Compounds 853, 157110 (2021).
|
[1155] |
. B. A. Sun et al., Chaotic dynamics in shear-band-mediated plasticity of metallic glasses. Physical Review B 101, (2020).
|
[1156] |
. C. Chen, J. Ren, G. Wang, K. A. Dahmen, P. K. Liaw, Scaling behavior and complexity of plastic deformation for a bulk metallic glass at cryogenic temperatures. Physical Review E 92, (2015).
|
[1157] |
. Z. Hao et al., Effect of P addition on soft magnetic properties of Fe-Si-B-P- Cu-C nano-crystalline alloys. Intermetallics 151, 107713 (2022).
|
[1158] |
. M. Salaheldeen et al., Anomalous magnetic behavior in half-metallic Heusler Co2FeSi alloy glass-coated microwires with high Curie temperature. Journal of Alloys and Compounds 923, 166379 (2022).
|
[1159] |
. G. Wei et al., Short-to-medium range structure and glass-forming ability in metallic glasses. Physical Review Materials 6, (2022).
|
[1160] |
. L. Yu et al., Extracting governing system for the plastic deformation of metallic glasses using machine learning. Science China Physics, Mechanics & Astronomy 65, 264611 (2022).
|
[1161] |
. J. L. Ren, L. P. Yu, L. Y. Zhang, Critical phenomena in amorphous materials. Acta Physica Sinica 66, 176401 (2017).
|
[1162] |
. M. Chen, Mechanical behavior of metallic glasses: microscopic understanding of strength and ductility. Annu. Rev. Mater. Res. 38, 445-469 (2008).
|
[1163] |
. S. Takeuchi, K. Edagawa, Atomistic simulation and modeling of localized shear deformation in metallic glasses. Progress in Materials Science 56, 785-816 (2011).
|
[1164] |
. A. R. Yavari, J. Lewandowski, J. Eckert, Mechanical properties of bulk metallic glasses. Mrs Bulletin 32, 635-638 (2007).
|
[1165] |
. F. Spaepen, A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metallurgica 25, 407-415 (1977).
|
[1166] |
. M. L. Falk, J. S. Langer, Dynamics of viscoplastic deformation in amorphous solids. Physical Review E 57, 7192-7205 (1998).
|
[1167] |
. W. L. Johnson, K. Samwer, A universal criterion for Plastic yielding of metallic glasses with a (T/Tg)2/3 temperature dependence. Physical Review Letters 95, 195501 (2005).
|
[1168] |
. J. C. Ye, J. Lu, C. T. Liu, Q. Wang, Y. Yang, Atomistic free-volume zones and inelastic deformation of metallic glasses. Nature materials 9, 619-623 (2010).
|
[1169] |
. Y. Shi, M. L. Falk, Atomic-scale simulations of strain localization in threedimensional model amorphous solids. Physical Review B—Condensed Matter and Materials Physics 73, 214201 (2006).
|
[1170] |
. Y. Shi, M. L. Falk, Stress-induced structural transformation and shear banding during simulated nanoindentation of a metallic glass. Acta materialia 55, 4317- 4324 (2007).
|
[1171] |
. G. Voronoi, New parametric applications concerning the theory of quadratic forms-Second announcement. J. Reine Angew. Math 134, 198-287 (1908).
|
[1172] |
. Y. Cheng, A. J. Cao, H. Sheng, E. Ma, Local order influences initiation of plastic flow in metallic glass: Effects of alloy composition and sample cooling history. Acta Materialia 56, 5263-5275 (2008).
|
[1173] |
. A. Cao, Y. Cheng, E. Ma, Structural processes that initiate shear localization in metallic glass. Acta Materialia 57, 5146-5155 (2009).
|
[1174] |
. M. Lee, C.-M. Lee, K.-R. Lee, E. Ma, J.-C. Lee, Networked interpenetrating connections of icosahedra: Effects on shear transformations in metallic glass. Acta Materialia 59, 159-170 (2011).
|
[1175] |
. B. B. Fan, M. Z. Li, Topology of icosahedral network responsible for yielding in CuZr metallic glasses. Computational Materials Science 233, 112682 (2024).
|
[1176] |
. J. Ding, Y. Q. Cheng, E. Ma, Correlating local structure with inhomogeneous elastic deformation in a metallic glass. Applied Physics Letters 101, (2012).
|
[1177] |
. J. Ding, S. Patinet, M. L. Falk, Y. Cheng, E. Ma, Soft spots and their structural signature in a metallic glass. Proceedings of the National Academy of Sciences 111, 14052-14056 (2014).
|
[1178] |
. M. Wakeda, Y. Shibutani, S. Ogata, J. Park, Relationship between local geometrical factors and mechanical properties for Cu-Zr amorphous alloys. Intermetallics 15, 139-144 (2007).
|
[1179] |
. X. Yang, R. Liu, M. Yang, W.-H. Wang, K. Chen, Structures of Local Rearrangements in Soft Colloidal Glasses. Physical Review Letters 116, (2016).
|
[1180] |
. M. L. Manning, A. J. Liu, Vibrational Modes Identify Soft Spots in a Sheared Disordered Packing. Physical Review Letters 107, (2011).
|
[1181] |
. M. Baggioli, I. Kriuchevskyi, T. W. Sirk, A. Zaccone, Plasticity in Amorphous Solids Is Mediated by Topological Defects in the Displacement Field. Physical Review Letters 127, (2021).
|
[1182] |
. X. Bian et al., Signature of local stress states in the deformation behavior of metallic glasses. NPG Asia Materials 12, (2020).
|
[1183] |
. R. Dasgupta, H. G. E. Hentschel, I. Procaccia, Microscopic Mechanism of Shear Bands in Amorphous Solids. Physical Review Letters 109, (2012).
|
[1184] |
. V. Hieronymus-Schmidt, H. Rösner, G. Wilde, A. Zaccone, Shear banding in metallic glasses described by alignments of Eshelby quadrupoles. Physical Review B 95, (2017).
|
[1185] |
. D. Şopu, A. Stukowski, M. Stoica, S. Scudino, Atomic-Level Processes of Shear Band Nucleation in Metallic Glasses. Physical Review Letters 119, (2017).
|
[1186] |
. Z. W. Wu, Y. Chen, W.-H. Wang, W. Kob, L. Xu, Topology of vibrational modes predicts plastic events in glasses. Nature Communications 14, (2023).
|
[1187] |
. M. Baggioli, Topological defects reveal the plasticity of glasses. Nature Communications 14, (2023).
|
[1188] |
. A. Bera et al., Soft spots of net negative topological charge directly cause the plasticity of 3D glasses. arXiv preprint arXiv:2401.15359, (2024).
|
[1189] |
. P. Desmarchelier, S. Fajardo, M. L. Falk, Topological characterization of rearrangements in amorphous solids. Physical Review E 109, (2024).
|
[1190] |
. V. Vaibhav et al., Experimental identification of topological defects in 2D colloidal glass. arXiv preprint arXiv:2405.06494, (2024).
|
[1191] |
. G. Biroli, Machine learning glasses. Nature Physics 16, 373-374 (2020).
|
[1192] |
. E. D. Cubuk et al., Identifying Structural Flow Defects in Disordered Solids Using Machine-Learning Methods. Physical Review Letters 114, (2015).
|
[1193] |
. D. Richard et al., Predicting plasticity in disordered solids from structural indicators. Physical Review Materials 4, (2020).
|
[1194] |
. J. Ding, Y. Q. Cheng, E. Ma, Quantitative measure of local solidity/liquidity in metallic glasses. Acta Materialia 61, 4474-4480 (2013).
|
[1195] |
. F. Ritort, P. Sollich, Glassy dynamics of kinetically constrained models. Advances in Physics 52, 219-342 (2003).
|
[1196] |
. A. Nicolas, E. E. Ferrero, K. Martens, J.-L. Barrat, Deformation and flow of amorphous solids: Insights from elastoplastic models. Reviews of Modern Physics 90, (2018).
|
[1197] |
. P. Sollich, F. Lequeux, P. Hébraud, M. E. Cates, Rheology of Soft Glassy Materials. Physical Review Letters 78, 2020-2023 (1997).
|
[1198] |
. H. W. Sheng, E. Ma, M. J. Kramer, Relating Dynamic Properties to Atomic Structure in Metallic Glasses. JOM 64, 856-881 (2012).
|
[1199] |
. B. B. Fan, Y. Huang, M. Z. Li, Cavity-mediated cooperative shear transformation in metallic glasses. Journal of Applied Physics 130, (2021).
|
[1200] |
. P. F. Guan, S. Lu, M. J. B. Spector, P. K. Valavala, M. L. Falk, Cavitation in Amorphous Solids. Physical Review Letters 110, (2013).
|
[1201] |
. S. Jiang, Y. Huang, M. Li, Structural evolution in deformation-induced rejuvenation in metallic glasses: A cavity perspective. Chinese Physics B 28, 046103 (2019).
|
[1202] |
. J. Pan, Y. X. Wang, Y. Li, Ductile fracture in notched bulk metallic glasses. Acta Materialia 136, 126-133 (2017).
|
[1203] |
. X. D. Wang et al., Atomic picture of elastic deformation in a metallic glass. Scientific Reports 5, (2015).
|
[1204] |
. W. Q. Zhu, Z. Li, H. Shu, H. Gao, X. Wei, Amorphous alloys surpass E/10 strength limit at extreme strain rates. Nature Communications 15, 1717 (2024).
|
[1205] |
. A. Merchant et al., Scaling deep learning for materials discovery. Nature 624, 80-85 (2023).
|
[1206] |
. P. Reiser et al., Graph neural networks for materials science and chemistry. Communications Materials 3, (2022).
|
[1207] |
. R. Narasimhan, P. Tandaiya, I. Singh, R. L. Narayan, U. Ramamurty, Fracture in metallic glasses: mechanics and mechanisms. Int. J. Fract. 191, 53-75 (2015).
|
[1208] |
. H. Jia et al., Fatigue and fracture behavior of bulk metallic glasses and their composites. Prog. Mater. Sci. 98, 168-248 (2018).
|
[1209] |
. G.-N. Yang, Y. Shao, K.-F. Yao, Understanding the Fracture Behaviors of Metallic Glasses—An Overview. Appl. Sci. 9, 4277 (2019).
|
[1210] |
. Z. F. Zhang, J. Eckert, L. Schultz, Fatigue and fracture behavior of bulk metallic glass. Metall. Mater. Trans. A 35, 3489-3498 (2004).
|
[1211] |
. Z. F. Zhang, G. He, J. Eckert, L. Schultz, Fracture mechanisms in bulk metallic glassy materials. Phys. Rev. Lett. 91, 045505 (2003).
|
[1212] |
. Y. Chen, M. Q. Jiang, Y. J. Wei, L. H. Dai, Failure criterion for metallic glasses. Phil. Mag. 91, 4536-4554 (2011).
|
[1213] |
. H. J. Leamy, T. T. Wang, H. S. Chen, Plastic flow and fracture of metallic glass. Metall. Mater. Trans. B 3, 699-708 (1972).
|
[1214] |
. Z. F. Zhang et al., Wavy cleavage fracture of bulk metallic glass. Appl. Phys. Lett. 89, 251917 (2006).
|
[1215] |
. G. Wang et al., Nanoscale Periodic Morphologies on the Fracture Surface of Brittle Metallic Glasses. Phys. Rev. Lett. 98, 235501 (2007).
|
[1216] |
. M. Stoica et al., Mechanical behavior of Fe65. 5Cr4Mo4Ga4P12C5B5. 5 bulk metallic glass. Intermetallics 13, 764-769 (2005).
|
[1217] |
. Z. F. Zhang, H. Zhang, B. L. Shen, A. Inoue, J. Eckert, Shear fracture and fragmentation mechanisms of bulk metallic glasses. Philos. Mag. Lett. 86, 643- 650 (2006).
|
[1218] |
. J. Yi, W. H. Wang, J. J. Lewandowski, Sample size and preparation effects on the tensile ductility of Pd-based metallic glass nanowires. Acta Mater. 87, 1-7 (2015).
|
[1219] |
. D. C. Hofmann et al., Development of tough, low-density titanium-based bulk metallic glass matrix composites with tensile ductility. Proc. Natl. Acad. Sci. U.S.A 105, 20136-20140 (2008).
|
[1220] |
. J. R. Greer, J. T. M. De Hosson, Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Prog. Mater. Sci. 56, 654-724 (2011).
|
[1221] |
. M. A. Meyers, K. K. Chawla, Mechanical behavior of materials. (Cambridge university press, New York, 2008).
|
[1222] |
. Z. F. Zhang, J. Eckert, Unified tensile fracture criterion. Phys. Rev. Lett. 94, 094301 (2005).
|
[1223] |
. R. T. Qu, J. Eckert, Z. F. Zhang, Tensile fracture criterion of metallic glass. J. Appl. Phys. 109, (2011).
|
[1224] |
. X. K. Xi et al., Fracture of brittle metallic glasses: Brittleness or plasticity. Phys. Rev. Lett. 94, 125510 (2005).
|
[1225] |
. Y. T. Wang, X. K. Xi, G. Wang, X. X. Xia, W. H. Wang, Understanding of nanoscale periodic stripes on fracture surface of metallic glasses. J. Appl. Phys. 106, 113528 (2009).
|
[1226] |
. L.-Q. Shen et al., Observation of cavitation governing fracture in glasses. Sci. Adv. 7, eabf7293 (2021).
|
[1227] |
. Z. F. Zhang, J. Eckert, L. Schultz, Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass. Acta Mater. 51, 1167- 1179 (2003).
|
[1228] |
. B. A. Sun, J. Tan, S. Pauly, U. Kühn, J. Eckert, Stable fracture of a malleable Zr-based bulk metallic glass. J. Appl. Phys. 112, 103533 (2012).
|
[1229] |
. X.-X. Xia, W. H. Wang, A. L. Greer, Plastic zone at crack tip: A nanolab for formation and study of metallic glassy nanostructures. J. Mater. Res. 24, 2986- 2992 (2009).
|
[1230] |
. J.-Y. Suh, R. D. Conner, C. P. Kim, M. D. Demetriou, W. L. Johnson, Correlation between fracture surface morphology and toughness in Zr-based bulk metallic glasses. J. Mater. Res. 25, 982-990 (2010).
|
[1231] |
. M. D. Demetriou et al., A damage-tolerant glass. Nature Materials 10, 123-128 (2011).
|
[1232] |
. B. Gludovatz, S. E. Naleway, R. O. Ritchie, J. J. Kruzic, Size-dependent fracture toughness of bulk metallic glasses. Acta Mater. 70, 198-207 (2014).
|
[1233] |
. J. T. M. De Hosson, Advances in transmission electron microscopy: In situ straining and in situ compression experiments on metallic glasses. Microsc. Res. Tech. 72, 250-260 (2009).
|
[1234] |
. C. Q. Chen, Y. T. Pei, J. T. M. De Hosson, Effects of size on the mechanical response of metallic glasses investigated through in situ TEM bending and compression experiments. Acta Mater. 58, 189-200 (2010).
|
[1235] |
. Y. Wang, J. Li, A. V. Hamza, T. W. Barbee Jr, Ductile crystalline-amorphous nanolaminates. Proc. Natl. Acad. Sci. U.S.A 104, 11155-11160 (2007).
|
[1236] |
. S. Balachandran et al., Elemental re-distribution inside shear bands revealed by correlative atom-probe tomography and electron microscopy in a deformed metallic glass. Scri. Mater. 168, 14-18 (2019).
|
[1237] |
. X. Mu et al., Unveiling the Local Atomic Arrangements in the Shear Band Regions of Metallic Glass. Adv. Mater. 33, 2007267 (2021).
|
[1238] |
. B. Huang et al., Density fluctuations with fractal order in metallic glasses detected by synchrotron X-ray nano-computed tomography. Acta Mater. 155, 69-79 (2018).
|
[1239] |
. C. Geng et al., Evolution of local densities during shear banding in Zr-based metallic glass micropillars. Acta Mater. 235, 118068 (2022).
|
[1240] |
. S. Kang et al., Direct Observation of Quadrupolar Strain Fields forming a Shear Band in Metallic Glasses. Adv. Mater. 35, 2212086 (2023).
|
[1241] |
. X. L. Bian et al., Manipulation of free volumes in a metallic glass through Xeion irradiation. Acta Mater. 106, 66-77 (2016).
|
[1242] |
. M. Q. Jiang, L. H. Dai, A new strategy to strength-toughen metals: Tailoring disorder. Theoretical and Applied Mechanics Letters 11, 100310 (2021).
|
[1243] |
. M. Q. Jiang, L. H. Dai, Mechanics of amorphous solids. Chinese Science Bulletin 67, 2578-2593 (2022).
|
[1244] |
. J. C. Dyre, Solid-that-Flows Picture of Glass-Forming Liquids. The Journal of Physical Chemistry Letters 15, 1603-1617 (2024).
|
[1245] |
. A. Inoue, B. L. Shen, H. Koshiba, H. Kato, A. R. Yavari, Cobalt-based bulk glassy alloy with ultrahigh strength and soft magnetic properties. Nature materials 2, 661-663 (2003).
|
[1246] |
. J. Schroers, W. L. Johnson, Ductile Bulk Metallic Glass. Physical Review Letters 93, (2004).
|
[1247] |
. L. Y. Chen et al., New class of plastic bulk metallic glass. Physical Review Letters 100, 075501 (2008).
|
[1248] |
. M. Q. Jiang, L. H. Dai, On the origin of shear banding instability in metallic glasses. J. Mech. Phys. Solids 57, 1267-1292 (2009).
|
[1249] |
. M. Q. Jiang, W. H. Wang, L. H. Dai, Prediction of shear-band thickness in metallic glasses. Scripta Materialia 60, 1004-1007 (2009).
|
[1250] |
. M. Q. Jiang et al., Cryogenic-temperature-induced transition from shear to dilatational failure in metallic glasses. Acta Materialia 77, 248-257 (2014).
|
[1251] |
. M. Q. Jiang, L. H. Dai, Shear-band toughness of bulk metallic glasses. Acta Materialia 59, 4525-4537 (2011).
|
[1252] |
. M. Q. Jiang, Z. Ling, J. X. Meng, L. H. Dai, Energy dissipation in fracture of bulk metallic glasses via inherent competition between local softening and quasi-cleavage. Philosophical Magazine 88, 407-426 (2008).
|
[1253] |
. M. Q. Jiang, L. H. Dai, The “ tension transformation zone” model of amorphous alloys. Chinese Science Bulletin 62, 2346-2357 (2017).
|
[1254] |
. X. Hu et al., Amorphous shear bands in crystalline materials as drivers of plasticity. Nature Materials 22, 1071-1077 (2023).
|
[1255] |
. R. D. Conner, R. B. Dandliker, V. Scruggs, W. L. Johnson, Dynamic deformation behavior of tungsten-fiber/metallic glass matrix composites. Int. J. Impact Eng. 24, 435-444 (2000).
|
[1256] |
. X. H. Jing, S. L. Cai, X. Q. Wu, L. H. Dai, M. Q. Jiang, Laser-induced microprojectile impact. Science China Physics, Mechanics & Astronomy 54, 254608 (2024).
|
[1257] |
. J. L. Dong et al., Impact resistance of single-layer metallic glass nanofilms to high-velocity micro-particle penetration. Extreme Mechanics Letters 44, 101258 (2021).
|
[1258] |
. X. H. Jing, S. L. Cai, X. Q. Wu, L. H. Dai, M. Q. Jiang, The rebound law of micro-particle on amorphous alloys under high impact velocities. Journal of Non-Crystalline Solids 647, 123274 (2025).
|
[1259] |
. X. Huang, Z. Ling, Z. D. Liu, H. S. Zhang, L. H. Dai, Amorphous alloy reinforced Whipple shield structure. Int. J. Impact Eng. 42, 1-10 (2012).
|
[1260] |
. D. C. Hofmann, L. Hamill, E. Christiansen, S. Nutt, Hypervelocity Impact Testing of a Metallic Glass-Stuffed Whipple Shield. Advanced Engineering Materials 17, 1313-1322 (2015).
|
[1261] |
. C. Yang et al., Splitting of fast relaxation in a metallic glass by laser shocks. Physical Review B 109, 024201 (2024).
|
[1262] |
. W. Zhu, J. Liu, S. Mao, X. Wei, A new continuum model for viscoplasticity in metallic glasses based on thermodynamics and its application to creep tests. J. Mech. Phys. Solids 146, 104216 (2021).
|
[1263] |
. M. Q. Jiang, G. Wilde, L. H. Dai, Origin of stress overshoot in amorphous solids. Mech Mater 81, 72-83 (2015).
|
[1264] |
. E. R. Homer, C. A. Schuh, Mesoscale modeling of amorphous metals by shear transformation zone dynamics. Acta Materialia 57, 2823-2833 (2009).
|
[1265] |
. L. Li, E. R. Homer, C. A. Schuh, Shear transformation zone dynamics model for metallic glasses incorporating free volume as a state variable. Acta Materialia 61, 3347-3359 (2013).
|
[1266] |
. A. Nicolas, F. Puosi, H. Mizuno, J.-L. Barrat, Elastic consequences of a single plastic event: Towards a realistic account of structural disorder and shear wave propagation in models of flowing amorphous solids. J. Mech. Phys. Solids 78, 333-351 (2015).
|
[1267] |
. X. M. Duan, L. Yu, S. L. Cai, L. H. Dai, M. Q. Jiang, Inertia effect of deformation in amorphous solids: A dynamic mesoscale model. J. Mech. Phys. Solids 193, 105917 (2024).
|
[1268] |
. W. Rao, Y. Chen, L. H. Dai, M. Q. Jiang, A constitutive model for amorphous solids considering intrinsic entangling of shear and dilatation, with application to studying shear-banding. J. Mech. Phys. Solids 196, 106002 (2025).
|
[1269] |
. X. M. Duan et al., Shock wave response of amorphous solids by mesoscale simulations. SCIENTIA SINICA Physica, Mechanica & Astronomica 55, 286122 (2025).
|
[1270] |
. J. P. Escobedo, Y. M. Gupta, Dynamic tensile response of Zr-based bulk amorphous alloys: Fracture morphologies and mechanisms. Journal of Applied Physics 107, 123502 (2010).
|
[1271] |
. X. Huang, Z. Ling, H. S. Zhang, J. Ma, L. H. Dai, How does spallation microdamage nucleate in bulk amorphous alloys under shock loading? Journal of Applied Physics 110, 103519 (2011).
|
[1272] |
. X. Huang, Z. Ling, L. H. Dai, Ductile-to-brittle transition in spallation of metallic glasses. Journal of Applied Physics 116, 143503 (2014).
|
[1273] |
. F. Jiang et al., Shear transformation zone volume determining ductile-brittle transition of bulk metallic glasses. Acta Materialia 59, 2057-2068 (2011).
|
[1274] |
. M. Q. Jiang, G. Wilde, F. Jiang, L. H. Dai, Understanding ductile-to-brittle transition of metallic glasses from shear transformation zone dilatation. Theoretical and Applied Mechanics Letters 5, 200-204 (2015).
|
[1275] |
. Y. Z. Lu et al., Dilatancy of shear transformations in a colloidal glass. Physical Review Applied 9, 014023 (2018).
|
[1276] |
. X. J. Wang et al., Elastic criterion for shear-banding instability in amorphous solids. Physical Review E 105, 045003 (2022).
|
[1277] |
. Y. Cheng et al., Scaling Law for Impact Resistance of Amorphous Alloys Connecting Atomistic Molecular Dynamics with Macroscale Experiments. ACS Applied Materials & Interfaces 15, 13449-13459 (2023).
|
[1278] |
. J. X. Meng, Z. Ling, M. Q. Jiang, H. S. Zhang, L. H. Dai, Dynamic fracture instability of tough bulk metallic glass. Applied Physics Letters 92, 171909 (2008).
|
[1279] |
. M. Q. Jiang, J. X. Meng, V. Keryvin, L. H. Dai, Crack branching instability and directional stability in dynamic fracture of a tough bulk metallic glass. Intermetallics 19, 1775-1779 (2011).
|
[1280] |
. M. Davidson et al., Investigating Amorphous Metal Composite Architectures as Spacecraft Shielding. Advanced Engineering Materials 15, 27-33 (2013).
|
[1281] |
. L. Hamill et al., Hypervelocity Impact Phenomenon in Bulk Metallic Glasses and Composites. Advanced Engineering Materials 16, 85-93 (2014).
|
[1282] |
. X. C. Tang, X. H. Yao, J. W. Wilkerson, A micromechanics-based framework to predict transitions between dimple and cup-cone fracture modes in shocked metallic glasses. International Journal of Plasticity 137, 102884 (2021).
|
[1283] |
. X. C. Tang, T. Nguyen, X. H. Yao, J. W. Wilkerson, A cavitation and dynamic void growth model for a general class of strain-softening amorphous materials. J. Mech. Phys. Solids 141, 104023 (2020).
|
[1284] |
. H. S. Chen, Thermodynamic considerations on the formation and stability of metallic glasses. Acta Metallurgica 22, 1505-1511 (1974).
|
[1285] |
. A. J. Drehman, A. L. Greer, D. Turnbull, Bulk formation of a metallic glass: Pd40Ni40P 20. Applied Physics Letters 41, 716-717 (1982).
|
[1286] |
. Y. Li, Q. Guo, J. A. Kalb, C. V. Thompson, Matching Glass-Forming Ability with the Density of the Amorphous Phase. Science 322, 1816-1819 (2008).
|
[1287] |
. H. Chen, Y. He, G. J. Shiflet, S. J. Poon, Deformation-induced nanocrystal formation in shear bands of amorphous alloys. Nature 367, 541-543 (1994).
|
[1288] |
. C. A. Schuh, T. C. Hufnagel, U. Ramamurty, Overview No.144-Mechanical behavior of amorphous alloys. Acta Materialia 55, 4067-4109 (2007).
|
[1289] |
. H. F. Li, Y. F. Zheng, Recent advances in bulk metallic glasses for biomedical applications. Acta Biomaterialia 36, 1-20 (2016).
|
[1290] |
. B. Zhang et al., Synthesis and properties of tungsten balls/Zr-base metallic glass composite. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 540, 207-211 (2012).
|
[1291] |
. B. Zhang et al., Anisotropic compressive deformation behaviors of tungsten fiber reinforced Zr-based metallic glass composites. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 566, 16-21 (2013).
|
[1292] |
. B. Zhang et al., EFFECT OF W FIBER DIAMETER ON THE COMPRESSIVE MECHANICAL PROPERTIES OF THE Zr-BASED METALLIC GLASS COMPOSITES. Acta Metall. Sin. 49, 1191-1200 (2013).
|
[1293] |
. B. Zhang et al., Anisotropic tensile properties of tungsten fiber reinforced Zr based metallic glass composites. Materials Science and Engineering aStructural Materials Properties Microstructure and Processing 619, 165-170 (2014).
|
[1294] |
. B. Zhang, H. M. Fu, H. F. Zhang, J. Mu, M. N. Wang, Synthesis and property of short tungsten fibre/Zr-based metallic glass composite. Mater. Sci. Technol. 35, 1347-1354 (2019).
|
[1295] |
. Z. K. Li et al., Atomic interaction mechanism for designing the interface of W/Zr-based bulk metallic glass composites. Scientific Reports 5, 6 (2015).
|
[1296] |
. Z. K. Li et al., The spreading kinetics and precursor film characteristics of Zrbased alloy melt on W substrate. Materials Letters 98, 98-101 (2013).
|
[1297] |
. D. C. Hofmann et al., Castable Bulk Metallic Glass Strain Wave Gears: Towards Decreasing the Cost of High-Performance Robotics. Scientific Reports 6, 11 (2016).
|
[1298] |
. D. C. Hofmann et al., Optimizing Bulk Metallic Glasses for Robust, Highly Wear-Resistant Gears. Advanced Engineering Materials 19, 10 (2017).
|
[1299] |
. S. Z. Kou, et al., Patent, CN 111922318 A. (2020).
|
[1300] |
. S. Z. Kou, et al., Patent, CN 111570547 A. (2020).
|
[1301] |
. S. Z. Kou, et al., Patent, CN 112605142 A. (2021).
|
[1302] |
. B. A. Sun, et al., Patent, CN 113353846 A. (2021).
|
[1303] |
. B. A. Sun, et al., Patent, CN 111906271 A. (2020).
|
[1304] |
. B. A. Sun, et al., Patent, CN 113969967 A. (2022).
|
[1305] |
. X. L. Fan, et al., Patent, CN 108942123 A. (2017).
|
[1306] |
. X. Qin, et al., Patent, CN 109692912 A. (2019).
|
[1307] |
. J. P. Xiong, Patent, CN 114164378 A. (2022).
|
[1308] |
. H. D. Li, Patent, CN 113352065 A. (2021).
|
[1309] |
. K. Gao et al., Recent development in the application of bulk metallic glasses. Journal of Materials Science & Technology 131, 115-121 (2022).
|
[1310] |
. e. a. Datta. A., Patent, US 04321090 A. (1980).
|
[1311] |
. Y. Ogawa, M. Naoe, Y. Yoshizawa, R. Hasegawa, Magnetic properties of high Bs Fe-based amorphous material. Journal of Magnetism and Magnetic Materials 304, e675-e677 (2006).
|
[1312] |
. A. Makino, T. Kubota, C. Chang, M. Makabe, A. Inoue, FeSiBP Bulk Metallic Glasses with Unusual Combination of High Magnetization and High GlassForming Ability. MATERIALS TRANSACTIONS 48, 3024-3027 (2007).
|
[1313] |
. A. Inoue, A. Takeuchi, Recent development and application products of bulk glassy alloys. Acta Materialia 59, 2243-2267 (2011).
|
[1314] |
. H. Matsumoto, A. Urata, Y. Yamada, A. Inoue, FePBNbCr soft-magnetic glassy alloys with low loss characteristics for inductor cores. Journal of Alloys and Compounds 504, S139-S141 (2010).
|
[1315] |
. H. Matsumoto, A. Urata, Y. Yamada, A. Inoue, Novel FePBNbCr glassy alloys "SENNTIX" with good soft-magnetic properties for high efficiency commercial inductor cores. Journal of Alloys and Compounds 509, S193-S196 (2011).
|
[1316] |
. K. Suzuki, N. Kataoka, A. Inoue, A. Makino, T. Masumoto, High Saturation Magnetization and Soft Magnetic Properties of bcc Fe-Zr-B Alloys with Ultrafine Grain Structure. Materials Transactions, JIM 31, 743-746 (1990).
|
[1317] |
. K. Suzuki, A. Makino, A. Inoue, T. Masumoto, Soft magnetic properties of nanocrystalline bcc Fe-Zr-B and Fe-M-B-Cu (M=transition metal) alloys with high saturation magnetization (invited). Journal of Applied Physics 70, 6232- 6237 (1991).
|
[1318] |
. M. A. Willard et al., Structure and magnetic properties of (Fe0.5Co0.5)88Zr7B4Cu1 nanocrystalline alloys. Journal of Applied Physics 84, 6773-6777 (1998).
|
[1319] |
. A. Makino, H. Men, T. Kubota, K. Yubuta, A. Inoue, FeSiBPCu Nanocrystalline Soft Magnetic Alloys with High Bs of 1.9 Tesla Produced by Crystallizing Hetero-Amorphous Phase. MATERIALS TRANSACTIONS 50, 204-209 (2009).
|
[1320] |
. A. Makino, H. Men, T. Kubota, K. Yubuta, A. Inoue, New Excellent Soft Magnetic FeSiBPCu Nanocrystallized Alloys With High Bs of 1.9 T From Nanohetero-Amorphous Phase. IEEE Transactions on Magnetics 45, 4302- 4305 (2009).
|
[1321] |
. A. Inoue et al., Development and applications of Fe- and Co-based bulk glassy alloys and their prospects. Journal of Alloys and Compounds 615, S2-S8 (2014).
|
[1322] |
. X. J. Jia et al., Direct synthesis of Fe-Si-B-C -Cu nanocrystalline alloys with superior soft magnetic properties and ductile by melt-spinning. Journal of Materials Science & Technology 108, 186-195 (2022).
|
[1323] |
. L. C. Wu et al., Improvement of soft magnetic properties of a Nanoperm-type Fe-Hf-B nanocrystalline alloy upon surface crystallization inhibition by Cu addition. Intermetallics 163, 6 (2023).
|
[1324] |
. L. C. Wu, Y. H. Li, L. Qi, W. Zhang, Effect of Y doping on surface crystallization and magnetic properties of a FeHfB nanocrystalline alloy. Journal of Magnetism and Magnetic Materials 549, 6 (2022).
|
[1325] |
. H. X. Li, J. E. Gao, S. L. Wang, S. Yi, Z. P. Lu, Formation, Crystallization Behavior, and Soft Magnetic Properties of FeCSiBP Bulk Metallic Glass Fabricated Using Industrial Raw Materials. Metallurgical and Materials Transactions A 43, 2615-2619 (2012).
|
[1326] |
. Z. Z. Li et al., FeSiBPNbCu alloys with high glass-forming ability and good soft magnetic properties. Intermetallics 54, 225-231 (2014).
|
[1327] |
. F. Kong, H. Men, T. Liu, B. Shen, Effect of P to B concentration ratio on soft magnetic properties in FeSiBPCu nanocrystalline alloys. Journal of Applied Physics 111, (2012).
|
[1328] |
. X. D. Fan, H. Men, A. B. Ma, B. L. Shen, Soft magnetic properties in Fe84−xB10C6Cux nanocrystalline alloys. Journal of Magnetism and Magnetic Materials 326, 22-27 (2013).
|
[1329] |
. C. Zhang, H. Zhang, M. Lv, Z. Hu, Decolorization of azo dye solution by Fe- Mo-Si-B amorphous alloy. Journal of Non-Crystalline Solids 356, 1703-1706 (2010).
|
[1330] |
. C. Q. Zhang, Z. W. Zhu, H. F. Zhang, Z. Q. Hu, Rapid reductive degradation of azo dyes by a unique structure of amorphous alloys. Chinese Science Bulletin 56, 3988-3992 (2011).
|
[1331] |
. C. Q. Zhang, Z. W. Zhu, H. F. Zhang, Z. Q. Hu, Rapid decolorization of Acid Orange II aqueous solution by amorphous zero-valent iron. J. Environ. Sci. 24, 1021-1026 (2012).
|
[1332] |
. C. Q. Zhang, Z. W. Zhu, H. F. Zhang, Z. Q. Hu, On the decolorization property of Fe-Mo-Si-B alloys with different structures. Journal of Non-Crystalline Solids 358, 61-64 (2012).
|
[1333] |
. C. Q. Zhang, Z. W. Zhu, H. F. Zhang, Effects of the addition of Co, Ni or Cr on the decolorization properties of Fe-Si-B amorphous alloys. J. Phys. Chem. Solids 110, 152-160 (2017).
|
[1334] |
. B. Lin, X. F. Bian, P. Wang, G. P. Luo, Application of Fe-based metallic glasses in wastewater treatment. Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 177, 92-95 (2012).
|
[1335] |
. S. H. Xie, P. Huang, J. J. Kruzic, X. R. Zeng, H. X. Qian, A highly efficient degradation mechanism of methyl orange using Fe-based metallic glass powders. Scientific Reports 6, 10 (2016).
|
[1336] |
. S. X. Liang, Z. Jia, W. C. Zhang, W. M. Wang, L. C. Zhang, Rapid malachite green degradation using Fe73.5Si13.5B9Cu1Nb3 metallic glass for activation of persulfate under UV-Vis light. Materials & Design 119, 244-253 (2017).
|
[1337] |
. P. P. Wang et al., Fast decolorization of azo dyes in both alkaline and acidic solutions by Al-based metallic glasses. Journal of Alloys and Compounds 701, 759-767 (2017).
|
[1338] |
. X. D. Qin et al., Ultrafast degradation of azo dyes catalyzed by cobalt-based metallic glass. Scientific Reports 5, 8 (2015).
|
[1339] |
. X. D. Qin et al., Co78Si8B14 metallic glass: A highly efficient and ultrasustainable Fenton-like catalyst in degrading wastewater under universal pH conditions. Journal of Materials Science & Technology 113, 105-116 (2022).
|
[1340] |
. Z. K. Li et al., Cu-based metallic glass with robust activity and sustainability for wastewater treatment. J. Mater. Chem. A 8, 10855-10864 (2020).
|
[1341] |
. P. H. Tsai et al., Sharpness improvement of surgical blade by means of ZrCuAlAgSi metallic glass and metallic glass thin film coating. Intermetallics 31, 127-131 (2012).
|
[1342] |
. N. Yodoshi, R. Yamada, A. Kawasaki, A. Makino, Micro viscous flow processing of Fe-based metallic glassy particles. Journal of Alloys and Compounds 615, S61-S66 (2014).
|
[1343] |
. M. Ishida et al., Fillability and Imprintability of High-strength Ni-based Bulk Metallic Glass Prepared by the Precision Die-casting Technique. MATERIALS TRANSACTIONS 45, 1239-1244 (2004).
|
[1344] |
. A. Inoue, B. L. Shen, A. Takeuchi, Developments and applications of bulk glassy alloys in late transition metal base system. Materials Transactions 47, 1275-1285 (2006).
|
[1345] |
. L. C. Liu, M. Hasan, G. Kumar, Metallic glass nanostructures: fabrication, properties, and applications. Nanoscale 6, 2027-2036 (2014).
|
[1346] |
. X. Liu et al., Theoretical and experimental study of metallic glass dieimprinting for manufacturing large-size micro/nano structures. Journal of Materials Processing Technology 307, 14 (2022).
|
[1347] |
. J. A. Fu, J. Ma, Nanoengineering of Metallic Glasses. Advanced Engineering Materials 25, 18 (2023).
|
[1348] |
. K. Takenaka, N. Togashi, N. Nishiyama, A. Inoue, Structure, mechanical properties and imprint-ability of Pd-Cu-Ni-P glassy alloy thin film prepared by a pulsed-laser deposition method. Journal of Non-Crystalline Solids 356, 1542-1545 (2010).
|
[1349] |
. P. Sharma, N. Kaushik, H. Kimura, Y. Saotome, A. Inoue, Nano-fabrication with metallic glass-an exotic material for nano-electromechanical systems. Nanotechnology 18, 6 (2007).
|
[1350] |
. N. J. Liu et al., Unleashing nanofabrication through thermomechanical nanomolding. Science Advances 7, 7 (2021).
|
[1351] |
. S. J. Pang, T. Zhang, K. Asami, A. Inoue, Bulk glassy Fe-Cr-Mo-C-B alloys with high corrosion resistance. Corrosion Science 44, 1847-1856 (2002).
|
[1352] |
. S. D. Zhang, J. Wu, W. B. Qi, J. Q. Wang, Effect of porosity defects on the long-term corrosion behaviour of Fe-based amorphous alloy coated mild steel. Corrosion Science 110, 57-70 (2016).
|
[1353] |
. J. H. Ren, T. R. Li, S. D. Zhang, M. Xu, J. Q. Wang, Effect of inorganic silicate sealing treatment on corrosion behaviour for HVAF sprayed Fe-based amorphous coatings. Surf. Eng. 39, 174-183 (2023).
|
[1354] |
. J. Farmer et al., in Materials Science and Technology Conference and Exhibition, MS and T'07-"Exploring Structure, Processing, and Applications Across Multiple Materials Systems". (2007), vol. 4, pp. 2285-2296.
|
[1355] |
. J. Farmer et al., Iron-Based Amorphous Metals: High-Performance CorrosionResistant Material Development. Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 40A, 1289-1305 (2009).
|
[1356] |
. D. Y. Li et al., Effect of amorphicity of HVOF sprayed Fe-based coatings on their corrosion performances and contacting osteoblast behavior. Surf. Coat. Technol. 310, 207-213 (2017).
|
[1357] |
. R. Q. Guo et al., Study of structure and corrosion resistance of Fe-based amorphous coatings prepared by HVAF and HVOF. Corrosion Science 53, 2351-2356 (2011).
|
[1358] |
. L. Huang et al., A Zr-based bulk metallic glass for future stent applications: Materials properties, finite element modeling, and in vitro human vascular cell response. Acta Biomaterialia 25, 356-368 (2015).
|
[1359] |
. H. Li, S. Pang, Y. Liu, P. K. Liaw, T. Zhang, In vitro investigation of Mg-Zn- Ca-Ag bulk metallic glasses for biomedical applications. Journal of NonCrystalline Solids 427, 134-138 (2015).
|
[1360] |
. M. Q. Pan et al., Observation of a robust catalyst support based on metallic glass for large current-density water electrolysis. J. Mater. Chem. A 12, 15334-15342 (2024).
|
[1361] |
. J. Wang et al., Nanoporous Metals Based on Metallic Glasses: Synthesis, Structure and Functional Applications. Acta Metall. Sin.-Engl. Lett. 36, 1573- 1602 (2023).
|
[1362] |
. L. D. Li et al., Properties, mechanisms and advantages of metallic glass for electrocatalysis and HER in water splitting: A review. Int. J. Hydrog. Energy 48, 27182-27200 (2023).
|
[1363] |
. Z. Liu, J. Schroers, General nanomoulding with bulk metallic glasses. Nanotechnology 26, 9 (2015).
|
[1364] |
. J. N. Fu, Z. Y. Huang, J. Yang, J. Ma, J. Shen, Nano-forming of the rare earth La-based metallic glass. Journal of Non-Crystalline Solids 558, 7 (2021).
|
[1365] |
. P. Gong et al., Lightweight Ti-based bulk metallic glasses with superior thermoplastic formability. Intermetallics 98, 54-59 (2018).
|
[1366] |
. J. C. Farmer et al., Corrosion resistance of thermally sprayed high-boron ironbased amorphous-metal coatings:: Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4. Journal of Materials Research 22, 2297-2311 (2007).
|
[1367] |
. J. C. Farmer, J. J. Haslam, S. D. Day, D. J. Branagan, M. B. Beardsley, Corrosion Characterization of Iron-Based High-Performance AmorphousMetal Thermal-Spray Coatings. American Society of Mechanical Engineers, (2005).
|
[1368] |
. J. Farmer et al., in 30th Symposium on Scientific Basis for Nuclear Waste Management. (Materials Research Soc, Boston, MA, 2006), vol. 985, pp. 255- +.
|
[1369] |
. J. Farmer et al., paper presented at the Conference: Presented at: 2006 MRS Fall Meeting, Boston, MA, United States, Nov 28-Dec 01, 2006, United States, 2006.
|
[1370] |
. O. A. Graeve et al., Spark plasma sintering of Fe-based structural amorphous metals (SAM) with Y2O3 nanoparticle additions. Materials Letters 62, 2988- 2991 (2008).
|
[1371] |
. R. Li et al., Flexible Honeycombed Nanoporous/Glassy Hybrid for Efficient Electrocatalytic Hydrogen Generation. Advanced Materials 31, 8 (2019).
|
[1372] |
. Y. Yan et al., Highly efficient and robust catalysts for the hydrogen evolution reaction by surface nano engineering of metallic glass. J. Mater. Chem. A 9, 5415-5424 (2021).
|
[1373] |
. A. Sahu, K. Mondal, R. G. Pala, Activated Porous Highly Enriched Platinum and Palladium Electrocatalysts from Dealloyed Noncrystalline Alloys for Enhanced Hydrogen Evolution. ChemElectroChem 7, 4405-4416 (2020).
|
[1374] |
. S. Sarkar, S. C. Peter, An overview on Pd-based electrocatalysts for the hydrogen evolution reaction. Inorganic Chemistry Frontiers 5, 2060-2080 (2018).
|
[1375] |
. X. Yang et al., An amorphous nanoporous PdCuNi-S hybrid electrocatalyst for highly efficient hydrogen production. Applied Catalysis B: Environmental 246, 156-165 (2019).
|
[1376] |
. S. S. Jiang, L. Zhu, Z. Z. Yang, Y. G. Wang, Morphological-modulated FeNibased amorphous alloys as efficient alkaline water splitting electrocatalysts. Electrochim. Acta 389, 9 (2021).
|
[1377] |
. Y. X. Li, H. Li, Y. F. Li, S. Q. Peng, Y. H. Hu, Fe-B alloy coupled with Fe clusters as an efficient cocatalyst for photocatalytic hydrogen evolution. Chem. Eng. J. 344, 506-513 (2018).
|
[1378] |
. Q. S. Zhang, W. Zhang, D. V. Louzguine-Luzgin, A. Inoue, in Materials Science Forum. (2010), vol. 654-656, pp. 1042-1045.
|
[1379] |
. Q. A. He, Y. Q. Cheng, E. Ma, J. A. Xu, Locating bulk metallic glasses with high fracture toughness Chemical effects and composition optimization. Acta Materialia 59, 202-215 (2011).
|
[1380] |
. X. H. Lin, W. L. Johnson, W. K. Rhim, Effect of Oxygen Impurity on Crystallization of an Undercooled Bulk Glass Forming Zr-Ti-Cu-Ni-Al Alloy. Materials Transactions, JIM 38, 473-477 (1997).
|
[1381] |
. B. S. Murty, D. H. Ping, K. Hono, A. Inoue, Influence of oxygen on the crystallization behavior of Zr65Cu27.5Al7.5 and Zr66.7Cu33.3 metallic glasses. Acta Materialia 48, 3985-3996 (2000).
|
[1382] |
. W. H. Zhou et al., The effect of oxygen on phase formation in an industrial Zr based bulk metallic glass. Intermetallics 129, 107055 (2021).
|
[1383] |
. A. Gebert, J. Eckert, L. Schultz, Effect of oxygen on phase formation and thermal stability of slowly cooled Zr65Al7.5Cu17.5Ni10 metallic glass. Acta Materialia 46, 5475-5482 (1998).
|
[1384] |
. B. S. Murty, D. H. Ping, K. Hono, A. Inoue, Direct evidence for oxygen stabilization of icosahedral phase during crystallization of Zr65Cu27.5Al7.5 metallic glass. Applied Physics Letters 76, 55-57 (2000).
|
[1385] |
. Z. P. Lu et al., Oxygen effects on plastic deformation of a Zr-based bulk metallic glass. Applied Physics Letters 92, (2008).
|
[1386] |
. C. T. Liu, M. F. Chisholm, M. K. Miller, Oxygen impurity and microalloying effect in a Zr-based bulk metallic glass alloy. Intermetallics 10, 1105-1112 (2002).
|
[1387] |
. J. Eckert, N. Mattern, M. Zinkevitch, M. Seidel, Crystallization Behavior and Phase Formation in Zr-Al-Cu-Ni Metallic Glass Containing Oxygen. Materials Transactions, JIM 39, 623-632 (1998).
|
[1388] |
. R. D. Conner, R. E. Maire, W. L. Johnson, Effect of oxygen concentration upon the ductility of amorphous Zr57Nb5Al10Cu15.4Ni12.6. Materials Science and Engineering: A 419, 148-152 (2006).
|
[1389] |
. R. P. Liu, M. Z. Ma, X. Y. Zhang, New Development of Research on Casting of Bulk Amorphous Alloys. Acta Metall. Sin. 57, 515-528 (2021).
|
[1390] |
. L. H. Liu et al., Near-Net Forming Complex Shaped Zr-Based Bulk Metallic Glasses by High Pressure Die Casting. Materials 11, 12 (2018).
|
[1391] |
. Y. Li et al., High-tenacity in-situ Ti/Zr-based bulk metallic glasses composites fabricated by industrial high-pressure die casting. Journal of Materials Science & Technology 170, 177-185 (2024).
|
[1392] |
. D. Ouyang et al., Influence of casting temperature on the castability and glassforming ability of Zr-based bulk metallic glasses. Journal of Non-Crystalline Solids 603, 6 (2023).
|
[1393] |
. L. H. Liu et al., Shear-accelerated crystallization of glass-forming metallic liquids in high-pressure die casting. Journal of Materials Science & Technology 117, 146-157 (2022).
|
[1394] |
. A. Grimberg et al., Solar Wind Neon from Genesis: Implications for the Lunar Noble Gas Record. Science 314, 1133-1135 (2006).
|
[1395] |
. E. R. Homer et al., New Methods for Developing and Manufacturing Compliant Mechanisms Utilizing Bulk Metallic Glass[Illustrati]. Advanced Engineering Materials 16, 850-856 (2014).
|
[1396] |
. M. A.G., M. P., N. A., B. D.J., Mechanical and thermal stability of Bulk Metallic Glass alloys identified as candidates for space mechanism applications. Materials & Design 224, (2022).
|
[1397] |
. A. Murphy, A. Norman, P. Meagher, D. Browne, Wear of bulk metallic glass alloys for space mechanism applications. Journal of Tribology 144, 091706 (2022).
|
[1398] |
. L. Chaoqun et al., Low-temperature thermoplastic welding of metallic glass ribbons for in-space manufacturing. Science China Materials 64, 979-986 (2020).
|
[1399] |
. Q. Zhang et al., Bioinspired interlayer adhesion strategy for additive manufacturing in space. Advanced Engineering Materials 25, 2201462 (2023).
|
[1400] |
. N. Christian et al., Additive manufacturing of metallic glass from powder in space. NPJ microgravity 9, 80-80 (2023).
|
[1401] |
. L. Ming et al., Stability of metallic glasses under simulated space conditions. Journal of Alloys and Compounds 902, (2022).
|
[1402] |
. S. C. Joshi, A. A. Sheikh, 3D printing in aerospace and its long-term sustainability. Virtual and Physical Prototyping 10, 175-185 (2015).
|
[1403] |
. L. Bobo et al., Electric pulse 3D printing of metallic glass ribbons. Materials Letters 316, (2022).
|
[1404] |
. I. A. Crawford, Lunar resources: A review. Progress in Physical Geography 39, 137-167 (2015).
|
[1405] |
. A. Masato et al., Characteristics of a Magnetic Bulk Thermostat for Granular Gas Investigations in Microgravity. Microgravity Science and Technology 33, (2021).
|
[1406] |
. A. I. Gubanov, in Quantum Electron Theory of Amorphous Conductors. (Springer US, 1965), pp. 247-257.
|
[1407] |
. C. Pei et al., Superlattice-shelled nanocrystalline core structural design for highly sensitive GMI sensors. Acta Materialia 255, 119088 (2023).
|
[1408] |
. H. Li et al., Design of Fe-based nanocrystalline alloys with superior magnetization and manufacturability. Materials Today 42, 49-56 (2021).
|
[1409] |
. R. Parsons, Z. Li, K. Suzuki, Nanocrystalline soft magnetic materials with a saturation magnetization greater than 2 T. Journal of Magnetism and Magnetic Materials 485, 180-186 (2019).
|
[1410] |
. F. Gao, Y. Zhang, Z. Wu, H. You, Y. Du, Universal strategies to multidimensional noble-metal-based catalysts for electrocatalysis. Coordination Chemistry Reviews 436, 213825 (2021).
|
[1411] |
. R. Jiang et al., Progress and Perspective of Metallic Glasses for Energy Conversion and Storage. Advanced Energy Materials 12, 2101092 (2022).
|
[1412] |
. W. E. Brower, M. S. Matyjaszczyk, T. L. Pettit, G. V. Smith, Metallic glasses as novel catalysts. Nature 301, 497-499 (1983).
|
[1413] |
. T. Fujita et al., Atomic origins of the high catalytic activity of nanoporous gold. Nat Mater 11, 775-780 (2012).
|
[1414] |
. P. Gong et al., Corrosion behavior of TiZrHfBeCu(Ni) high-entropy bulk metallic glasses in 3.5 wt. % NaCl. npj Materials Degradation 6, 77 (2022).
|
[1415] |
. Z. Jia et al., Attractive in situ self-reconstructed hierarchical gradient structure of metallic glass for high efficiency and remarkable stability in catalytic performance. Advanced Functional Materials 29, 1807857 (2019).
|
[1416] |
. S. J. Pang, T. Zhang, K. Asami, A. Inoue, Synthesis of Fe-Cr-Mo-C-B-P bulk metallic glasses with high corrosion resistance. Acta Materialia 50, 489-497 (2002).
|
[1417] |
. A. Sharma, V. Zadorozhnyy, Review of the Recent Development in Metallic Glass and Its Composites. Metals 11, 1933 (2021).
|
[1418] |
. S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488, 294-303 (2012).
|
[1419] |
. L. Quan, H. Jiang, G. Mei, Y. Sun, B. You, Bifunctional Electrocatalysts for Overall and Hybrid Water Splitting. Chemical Reviews 124, 3694-3812 (2024).
|
[1420] |
. M. Enyo, T. Yamazaki, K. Kai, K. Suzuki, Amorphous PdZr alloys for water electrolysis cathode materials. Electrochim. Acta 28, 1573-1579 (1983).
|
[1421] |
. Y. Ren, Y. Yang, M. Wei, Recent Advances on Heterogeneous Non-noble Metal Catalysts toward Selective Hydrogenation Reactions. ACS Catalysis 13, 8902-8924 (2023).
|
[1422] |
. Y. Pang et al., Self-supported amorphous nanoporous nickel-cobalt phosphide catalyst for hydrogen evolution reaction. Progress in Natural Science: Materials International 31, 201-206 (2021).
|
[1423] |
. Y.-C. Hu, C. Sun, C. Sun, Functional Applications of Metallic Glasses in Electrocatalysis. ChemCatChem 11, 2401-2414 (2019).
|
[1424] |
. F. Hu et al., Amorphous Metallic NiFeP: A Conductive Bulk Material Achieving High Activity for Oxygen Evolution Reaction in Both Alkaline and Acidic Media. Advanced Materials 29, (2017).
|
[1425] |
. Q. Liu, P.-F. Guan, First principle study on atomic structure of La65X35(X=Ni, Al) metallic glasses. Acta Physica Sinica 67, 178101-178101 (2018).
|
[1426] |
. Z. Jia et al., Nanoscale Heterogeneities of Non-Noble Iron-Based Metallic Glasses toward Efficient Water Oxidation at Industrial-Level Current Densities. ACS Applied Materials & Interfaces 14, 10288-10297 (2022).
|
[1427] |
. A. S. Aricò, P. Bruce, B. Scrosati, J.-M. Tarascon, W. van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices. Nature Materials 4, 366-377 (2005).
|
[1428] |
. W. Ni et al., An efficient nickel hydrogen oxidation catalyst for hydroxide exchange membrane fuel cells. Nature Materials 21, 804-810 (2022).
|
[1429] |
. Y. Zuo, W. Sheng, W. Tao, Z. Li, Direct methanol fuel cells system-A review of dual-role electrocatalysts for oxygen reduction and methanol oxidation. Journal of Materials Science & Technology 114, 29-41 (2022).
|
[1430] |
. B. Sarac et al., Effective electrocatalytic methanol oxidation of Pd-based metallic glass nanofilms. Nanoscale 12, 22586-22595 (2020).
|
[1431] |
. Z. Chen, Y. Yang, S. Kumar, G. Lu, First-Principles Prediction of Oxygen Reduction Activity on Pd-Cu-Si Metallic Glasses. The Journal of Physical Chemistry C 118, 28609-28615 (2014).
|
[1432] |
. X. Liang et al., Dissolvable templates to prepare Pt-based porous metallic glass for the oxygen reduction reaction. Nanoscale 15, 6802-6811 (2023).
|
[1433] |
. J. Cao, L. Wei, Q. Huang, L. Wang, S. Han, Reducing degradation of azo dye by zero-valent iron in aqueous solution. Chemosphere 38, 565-571 (1999).
|
[1434] |
. S. X. Liang et al., Compelling Rejuvenated Catalytic Performance in Metallic Glasses. Advanced Materials 0, 1802764 (2018).
|
[1435] |
. X. Peng et al., Unexpected enhanced catalytic performance via highly dense interfaces in ultra-fine amorphous-nanocrystalline biphasic structure. Applied Materials Today 29, 101689 (2022).
|
[1436] |
. P. Zou et al., High-throughput screening of superior hydrogen evolution reaction catalysts in Pd-Ni-Fe alloys. Journal of Alloys and Compounds 960, 170656 (2023).
|
[1437] |
. C. H. N. Decristofaro, Metglas brazing foil. Weld. J., 33-38 (1978).
|
[1438] |
. M. M. Schwartz, Brazing. (ASM International, Materials Park, Ohio, 2003).
|
[1439] |
. A. R. A. Shapiro, State of the art of titanium-based brazing filler metals. Weld. J. 82, 36-43 (2003).
|
[1440] |
. A. Rabinkin, Brazing with (NiCoCr)-B-Si amorphous brazing filler metals: alloys, processing, joint structure, properties, applications,. Sci. Technol. Weld. Joi. 9, 181-199 (2004).
|
[1441] |
. L. L. S. S.J. Pang, H.P. Xiong, C. Chen, Y. Liu, H.F. Li, T. Zhang, A multicomponent TiZr-based amorphous brazing filler metal for high-strength joining of titanium alloy. Scripta Mater. 117, 55-59 (2016).
|
[1442] |
. X. Q. L. L. Li, Z.F. Li, K. Hu, S.G. Qu, C. Yang, Comparison of TiAl-Based intermetallics joints brazed with amorphous and crystalline Ti-Zr-Cu-Ni-Co- Mo fillers. Adv. Eng. Mater. 18, 341-347 (2015).
|
[1443] |
. A. J. G. B. Binesh, Transient liquid phase bonding of IN738LC/MBF- 15/IN738LC: solidification behavior and mechanical properties. J. Mater. Sci. Technol. 32, 1137-1151 (2016).
|
[1444] |
. J. K. K.W. Dong, Y. Yang, Y. Peng, Q. Zhou, K.H. Wang, Achieving highstrength joining of TiAl- and Ni-based alloys at room temperature and 750° via utilizing a quinary FeCoNi-based amorphous filler. J. Mater. Res. Technol. 9, 1955-1965 (2019).
|
[1445] |
. Y. Y. L. J.B. Wang, F. Feng, Z. Chen, Y. Tan, S. Yang, X. Liu, J.B. Qiang, T.Z. Liu, M.Y. Wei, Y.M. Wang, Microstructure of the tungsten and reduced activation ferritic-martensitic steel joint brazed with an Fe-based amorphous alloy. Fusion. Eng. Des. 138, 164-169 (2019).
|
[1446] |
. J. G.-S. J.A. Verduzco, V.H. Verduzco, J. Solís, J. Lemus-Ruiz, Microstructure and electrochemical properties of the bonding zone of AISI 316L steel joined with a Fe-based amorphous foil. J. Mater. Process. Tech. 210, 1051-1060 (2010).
|
[1447] |
. E. W. A. Rabinkin, A. Ribaudo, Brazing stainless steel using a new MBF-series of Ni-Cr-B-Si amorphous brazing foils. Welding Research Supplement, S66- S75 (1998).
|
[1448] |
. J. Y. H.G. Dong, Y.Q. Xia, X.X. Xu, P. Li, C. Dong, J.Y. Chen, N. Liu, L. Zheng, Effect of Cr content in Ni-based amorphous filler on microstructure and shear strength of K4169 nickel-based alloy brazed joint. J. Mater. Process. Tech. 290, 116975 (2021).
|
[1449] |
. A. K. D. Kokabi, R. Gholamipour, M. Pouranvari, Microstructural Evaluation during dissimilar transient liquid phase bonding of TiAl/Ni-based superalloy. J. Alloy. Compd. 825, 153999 (2020)
|
[1450] |
. B. Binesh, Diffusion brazing of IN718/AISI 316L dissimilar joint: Microstructure evolution and mechanical properties. J. Manuf. Process. 57, 196-208 (2020).
|
[1451] |
. A. S. T. Onzawa, M.W. Ko, Brazing of titanium using low-melting-point Tibased filler metals. Weld. J. 69, S462-S467 (1990).
|
[1452] |
. M. Q. L. X.Y. Bai, S.J. Pang, H.P. Xiong, X.Y. Ren, H.S. Ren, T. Zhang, Novel Ti-Zr-Co-Cu-M (M = Sn, V, Al) amorphous/nanocrystalline brazing fillers for joining Ti-6Al-4V alloy. Mater. Charact. 196, 112607 (2023).
|
[1453] |
. S. J. P. L.L. Sun, Y. Liu, H.P. Xiong, T. Zhang, A Ti-Zr-Cu-Ni-Co-Fe-Al- Sn amorphous filler metal for improving the strength of Ti-6Al-4V alloy brazing joint. Prog. Nat. Sci.: Mater. Int. 27, 687-694 (2017).
|
[1454] |
. X. Q. G. Y. J. Jing, D.Y. Su, C. Zhao, J. Jiang, The effects of Zr level in Ti-ZrCu-Ni brazing fillers for brazing Ti-6Al-4V. J. Manuf. Process. 31, 124-130 (2018).
|
[1455] |
. L. L. X. Q. Li, K. Hu, S.G. Qu, Vacuum brazing of TiAl-based intermetallics with Ti-Zr-Cu-Ni-Co amorphous alloy as filler metal. Intermetallics 57, 7-16 (2015).
|
[1456] |
. H. P. X. H.S. Ren, B. Chen, S.J. Pang, B.Q. Chen, L. Ye, Microstructures and mechanical properties of vacuum brazed Ti3Al/TiAl joints using two Ti-based filler metals. J. Mater. Sci. Technol., 372-380 (2016).
|
[1457] |
. Q. M. L. L. Feng, W.M. Long, G.X. Jia, H.Y. Yang, Y.Y. Tang, Microstructures and mechanical properties of V-modified Ti-Zr-Cu-Ni filler metals. Materials 16 199 (2023).
|
[1458] |
. Z. D. C. H.H. Zhang, S.L. Zhu, S.W. Guo, X.J. Yang, A. Inoue, Microstructure and mechanical properties of TC4 joints brazed with Ti-Zr-Cu-Sn amorphous filler alloy. Rare Met. 40, 1881-1889 (2021).
|
[1459] |
. Y. S. R. Peng, H.Y. Li, X.Y. Bai, S.J. Pang, H.P. Xiong, T. Zhang, Ti-Zr-Cu- Co-Fe amorphous/nanocrystalline brazing filler metals for joining Ti 6Al 4V alloy. Weld. World 68, 2473-2483 (2024).
|
[1460] |
. H. S. R. X.Y. Ren, Y.L. Shang, H.P. Xiong, K. Zhang, J.H. Zheng, D. Liu, J.G. Lin, J. Jiang, Microstructure evolution and mechanical properties of Ti2AlNb/TiAl brazed joint using newly-developed Ti-Ni-Nb-Zr filler alloy. Prog. Nat. Sci-Mater. 30, 410-416 (2020).
|
[1461] |
. J. C. F. P. He, H. Zhou, Microstructure and strength of brazed joints of Ti3Albase alloy with TiZrNiCu filler metal. Mater. Sci. Eng. A 392, 81-86 (2005).
|
[1462] |
. Y. J. H. G. Wang, G.C. Wang, J. Shen, Z.H. Chen, Brazing of Ti2AlNb Based Alloy with Amorphous Ti-Cu-Zr-Ni Filler. J. Wuhan Univ. Technol. 30, 617- 621 (2015).
|
[1463] |
. H. P. X. Y.J. Jing, Y.L. Shang, X.Y. Ren, Interfacial microstructure and tensile strength of TiAl joint brazed with an improved Ti-Zr-Cu-Ni filler. Weld. World 65, 1-8 (2020).
|
[1464] |
. X. Q. L. L. Li, M. Hu, S.G. Qu, C. Yang, Z.F. Li, Effects of brazing temperature and testing temperature on the microstructure and shear strength of gamma-TiAl joints. Mater. Sci. Eng. A 634 91-98 (2015).
|
[1465] |
. J. D. H. Y.H. Liu, Y.P. Zhang, Z.X. Guo, Y. Yang, Effect of parameters on interface of the brazed ZrO2 ceramic and Ti-6Al-4V joint using Ti-based amorphous filler. Acta Metall. Sin. 2, 89-94 (2012).
|
[1466] |
. G. W. Y.P. Liu, W. Cao, H.T. Xu, Z.J. Huang, D.D. Zhu, C.W. Tan, Brazing ZrB2-SiC ceramics to Ti6Al4V alloy with TiCu-based amorphous filler. J. Manuf. Process. 30, 516-522 (2017).
|
[1467] |
. Z. G. J. J.S. Zou, Q.Z. Zhao, Z. Chen, Brazing of Si3N4 with amorphous Ti40Zr25Ni15Cu20 filler. Mater. Sci. Eng. A 507, 155-160 (2009).
|
[1468] |
. Y. S. H. C.H. Park, Y.K. Kim, K.J. Jiang, J.Y. Lee, C.B. Choi, K.S. Sim, Thermal stability and brazing characteristics of Zr-Be binary amorphous filler metals for zirconium alloy. J. Nucl. Mater. 254, 34-41 (1998).
|
[1469] |
. C. H. P. Y.S. Han, K.J. Jang, C.H. Bae, C.B. Choi, J.Y. Lee, Thermal stability and brazing characteristics of Zr0.7−xMxBe0.3 (M=Ti or Nb) ternary amorphous filler metals. J. Nucl. Mater. 270, 334-341 (1999).
|
[1470] |
. J. G. L. M.K. Lee, Mechanical and corrosion properties of Ti-6Al-4V alloy joints brazed with a low-melting-point 62.7Zr-11.0Ti-13.2Cu-9.8Ni-3.3Be amorphous filler metal. Mater. Charact. 81, 19-27 (2013).
|
[1471] |
. H. S. E. Ganjeh, M.E. Bajgholi, H. Khorsand, M. Ghaffari, Increasing Ti-6Al- 4V brazed joint strength equal to the base metal by Ti and Zr amorphous filler alloys. Mater. Charact. 71, 31-40 (2012).
|
[1472] |
. S. S. L. S.K. Lee, Y.C. Shin, H.J. Choi, T.B. Kim, J.B. Kim, D.K. Choi, C.D. Cho, T.K. Jung, Brazing characteristics and bonding strength of pure titanium joints brazed with low-melting temperature Zi-17Ti-22Ni filler metal. J. Nanosci. Nanotechno. 19, 1592-1596 (2019).
|
[1473] |
. H. Y. L. X.Y. Bai, W.L. Xiao, S.J. Pang, Y. Meng, W. Guo, H.P. Xiong, T. Zhang, A novel Zr-based Zr47Ti29Ni21V3 amorphous brazing filler metal for high toughness and strength joining of Ti6Al4V alloy. Intermetallics 165, 108155 (2024).
|
[1474] |
. J. D. H. Y.H. Liu, P. Shen, Z.X. Guo, H.J. Liu, Effects of fabrication parameters on interface of zirconia and Ti-6Al-4V joints using Zr55Cu30Al10Ni5 amorphous filler. J. Mater. Eng. Perform. 22, 2602-2609 (2013).
|
[1475] |
. G. J. L. J. G. Lee, J.J. Park, M.K. Lee, Corrosion behavior in high-temperature pressurized water of Zircaloy-4 joints brazed with Zr-Cu-based amorphous filler alloys. J. Nucl. Mater. 488, 204-209 (2017).
|
[1476] |
. H. B. Y. Y.J. Jing, Y.L. Shang, H.P. Xiong, The design of a new Ti-Zr-Cu-NiAg brazing filler metal for brazing of titanium alloys. Weld. World 65, 2231- 2237 (2021).
|
[1477] |
. M. K. L. J.G. Lee, Microstructural and mechanical characteristics of zirconium alloy joints brazed by a Zr-Cu-Al-based glassy alloy. Mater. Design 65, 265- 271 (2015).
|
[1478] |
. Y. Q. Z. L. Lei, Q.Y. Zhao, C. Wu, S.X. Huang, W.J. Jia, W.D. Zeng, Impact toughness and deformation modes of Ti-6Al-4V alloy with different microstructures. Mater. Sci. Eng. A 801, 140411 (2021).
|
[1479] |
. J. Gu, F. Duan, S. Liu, W. Cha, J. Lu, Phase Engineering of Nanostructural Metallic Materials: Classification, Structures, and Applications. Chemical Reviews 124, 1247-1287 (2024).
|
[1480] |
. T. Guo, P. Hu, L. Li, Z. Wang, L. Guo, Amorphous materials emerging as prospective electrodes for electrochemical energy storage and conversion. Chem 9, 1080-1093 (2023).
|
[1481] |
. G. Kumar, A. Desai, J. Schroers, Bulk Metallic Glass: The Smaller the Better. Advanced Materials 23, 461-476 (2011).
|
[1482] |
. V. Berube, G. Radtke, M. Dresselhaus, G. Chen, Size effects on the hydrogen storage properties of nanostructured metal hydrides: A review. Int J Energy Res 31, 637-663 (2007).
|
[1483] |
. J. W. Zhang et al., Amorphous Electrode: From Synthesis to Electrochemical Energy Storage. ENERGY & ENVIRONMENTAL MATERIALS 6, e12573 (2023).
|
[1484] |
. C. Qin et al., Flexible integrated metallic glass-based sandwich electrodes for high-performance wearable all-solid-state supercapacitors. Applied Materials Today 19, 100539 (2020).
|
[1485] |
. H. Shao, L. He, H. Lin, H.-W. Li, Progress and Trends in Magnesium-Based Materials for Energy-Storage Research: A Review. Energy Technology 6, 445- 458 (2018).
|
[1486] |
. L. J. Huang, H. J. Lin, H. Wang, L. Z. Ouyang, M. Zhu, Amorphous alloys for hydrogen storage. Journal of Alloys and Compounds 941, 168945 (2023).
|
[1487] |
. H.-J. Lin et al., Towards easily tunable hydrogen storage via a hydrogeninduced glass-to-glass transition in Mg-based metallic glasses. Acta Materialia 120, 68-74 (2016).
|
[1488] |
. H.-J. Lin et al., Hydrogenation properties of five-component Mg60Ce10Ni20Cu5X5 (X= Co, Zn) metallic glasses. Intermetallics 108, 94-99 (2019).
|
[1489] |
. C. Xu et al., Superior hydrogenation properties in a Mg65Ce10Ni20Cu5 nanoglass processed by melt-spinning followed by high-pressure torsion. Scripta Materialia 152, 137-140 (2018).
|
[1490] |
. B. Han, S. Yu, H. Wang, Y. Lu, H.-J. Lin, Nanosize effect on the hydrogen storage properties of Mg-based amorphous alloy. Scripta Materialia 216, 114736 (2022).
|
[1491] |
. F. Safizadeh, E. Ghali, G. Houlachi, Electrocatalysis developments for hydrogen evolution reaction in alkaline solutions-A Review. Int. J. Hydrog. Energy 40, 256-274 (2015).
|
[1492] |
. Y. Zheng, Y. Jiao, A. Vasileff, S.-Z. Qiao, The Hydrogen Evolution Reaction in Alkaline Solution: From Theory, Single Crystal Models, to Practical Electrocatalysts. Angewandte Chemie International Edition 57, 7568-7579 (2018).
|
[1493] |
. D. Strmcnik, P. P. Lopes, B. Genorio, V. R. Stamenkovic, N. M. Markovic, Design principles for hydrogen evolution reaction catalyst materials. Nano Energy 29, 29-36 (2016).
|
[1494] |
. Y. Li et al., MoS2 Nanoparticles Grown on Graphene: An Advanced Catalyst for the Hydrogen Evolution Reaction. Journal of the American Chemical Society 133, 7296-7299 (2011).
|
[1495] |
. C. N. R. Rao, M. Chhetri, Borocarbonitrides as Metal-Free Catalysts for the Hydrogen Evolution Reaction. Advanced Materials 31, 1803668 (2019).
|
[1496] |
. S. Ju et al., A robust self-stabilized electrode based on Al-based metallic glasses for a highly efficient hydrogen evolution reaction. J. Mater. Chem. A 8, 3246- 3251 (2020).
|
[1497] |
. X. Y. Jian et al., Amorphous Cu-W Alloys as Stable and Efficient Electrocatalysts for Hydrogen Evolution. ACS Catalysis 14, 2816-2827 (2024).
|
[1498] |
. F. Chu, K. Wu, Y. Meng, K. Edalati, H.-J. Lin, Effect of high-pressure torsion on the hydrogen evolution performances of a melt-spun amorphous Fe73.5Si13.5B9Cu1Nb3 alloy. Int. J. Hydrog. Energy 46, 25029-25038 (2021).
|
[1499] |
. M. J. De Giz, G. Tremiliosi-Filho, E. R. Gonzalez, S. Srinivasan, A. J. Appleby, The hydrogen evolution reaction on amorphous nickel and cobalt alloys. Int. J. Hydrog. Energy 20, 423-427 (1995).
|
[1500] |
. L. C. Zhang, S. X. Liang, Fe-based Metallic Glasses in Functional Catalytic Applications. Chemistry-An Asian Journal 13, 3575-3592 (2018).
|
[1501] |
. K. Wu et al., Novel Fe-based nanoglass as efficient noble-metal-free electrocatalyst for alkaline hydrogen evolution reaction. Scripta Materialia 188, 135-139 (2020).
|
[1502] |
. C. I. Müller et al., Electrochemical investigations on amorphous Fe-base alloys for alkaline water electrolysis. Int. J. Hydrog. Energy 39, 8926-8937 (2014).
|
[1503] |
. M. Stolpe, J. Kruzic, R. Busch, Evolution of shear bands, free volume and hardness during cold rolling of a Zr-based bulk metallic glass. Acta materialia 64, 231-240 (2014).
|
[1504] |
. F. Chu et al., Severe plastic deformed Pd-based metallic glass for superior hydrogen evolution in both acidic and alkaline media. Scripta Materialia 204, 114145 (2021).
|
[1505] |
. T. R. Cook et al., Solar energy supply and storage for the legacy and nonlegacy worlds. Chemical reviews 110, 6474-6502 (2010).
|
[1506] |
. J. Suntivich, K. J. May, H. A. Gasteiger, J. B. Goodenough, Y. Shao-Horn, A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334, 1383-1385 (2011).
|
[1507] |
. S. Anantharaj, S. Noda, Amorphous catalysts and electrochemical water splitting: an untold story of harmony. Small 16, 1905779 (2020).
|
[1508] |
. A. Bergmann et al., Reversible amorphization and the catalytically active state of crystalline Co 3 O 4 during oxygen evolution. Nature communications 6, 8625 (2015).
|
[1509] |
. K. Edalati, Z. Horita, A review on high-pressure torsion (HPT) from 1935 to1988. Materials Science and Engineering: A 652, 325-352 (2016).
|
[1510] |
. J. Zhang et al., Single-atom Au/NiFe layered double hydroxide electrocatalyst: probing the origin of activity for oxygen evolution reaction. Journal of the American Chemical Society 140, 3876-3879 (2018).
|
[1511] |
. J. X. Feng, S. H. Ye, H. Xu, Y. X. Tong, G. R. Li, Design and synthesis of FeOOH/CeO2 heterolayered nanotube electrocatalysts for the oxygen evolution reaction. Advanced Materials 28, 4698-4703 (2016).
|
[1512] |
. Y. Li et al., Fe Vacancies Induced Surface FeO6 in Nanoarchitectures of N- Doped Graphene Protected β-FeOOH: Effective Active Sites for pH-Universal Electrocatalytic Oxygen Reduction. Advanced Functional Materials 28, 1803330 (2018).
|
[1513] |
. D. Friebel et al., Identification of highly active Fe sites in (Ni, Fe) OOH for electrocatalytic water splitting. Journal of the American Chemical Society 137, 1305-1313 (2015).
|
[1514] |
. M. W. Louie, A. T. Bell, An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. Journal of the American Chemical Society 135, 12329-12337 (2013).
|
[1515] |
. J. Hu et al., Understanding the Phase-Induced Electrocatalytic Oxygen Evolution Reaction Activity on FeOOH Nanostructures. ACS Catalysis 9, 10705-10711 (2019).
|
[1516] |
. K. Wu et al., Cathodic corrosion activated Fe-based nanoglass as a highly active and stable oxygen evolution catalyst for water splitting. J. Mater. Chem. A 9, 12152-12160 (2021).
|
[1517] |
. M. Carmo et al., Bulk Metallic Glass Nanowire Architecture for Electrochemical Applications. Acs Nano 5, 2979-2983 (2011).
|
[1518] |
. J. G. Kim, D. Gu, K.-H. Cho, C.-Y. Im, S. J. Kim, Exploiting Zirconium-Based Metallic Glass Thin Films for Anode-Free Lithium-Ion Batteries and Lithium Metal Batteries With Ultra-Long Cycling Life. Small 19, 2301207 (2023).
|
[1519] |
. G. M. Whitesides, A. P. Wong, The intersection of biology and materials science. MRS bulletin 31, 19-27 (2006).
|
[1520] |
. C. Correa, A. Gil-Santos, J. A. Porro, M. Díaz, J. L. Ocaña, Eigenstrain simulation of residual stresses induced by laser shock processing in a Ti6Al4V hip replacement. Materials & Design 79, 106-114 (2015).
|
[1521] |
. A. Revathi, A. D. Borrás, A. I. Muñoz, C. Richard, G. Manivasagam, Degradation mechanisms and future challenges of titanium and its alloys for dental implant applications in oral environment. Materials Science and Engineering: C 76, 1354-1368 (2017).
|
[1522] |
. C.-T. Wu et al., Machine learning recommends affordable new Ti alloy with bone-like modulus. Materials Today 34, 41-50 (2020).
|
[1523] |
. A. Imani, E. Asselin, Fluoride induced corrosion of Ti-45Nb in sulfuric acid solutions. Corrosion Science 181, (2021).
|
[1524] |
. N. G. Krishna, R. P. George, J. Philip, Anomalous enhancement of corrosion resistance and antibacterial property of commercially pure Titanium (CP-Ti) with nanoscale rutile titania film. Corrosion Science 172, 108678 (2020).
|
[1525] |
. M. Geetha, A. K. Singh, R. Asokamani, A. K. Gogia, Ti based biomaterials, the ultimate choice for orthopaedic implants-A review. Progress in Materials Science 54, 397-425 (2009).
|
[1526] |
. R. Huiskes, H. Weinans, B. Van Rietbergen, The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials. Clinical Orthopaedics and Related Research® 274, 124-134 (1992).
|
[1527] |
. L. L. Hench, The story of Bioglass®. Journal of Materials Science: Materials in Medicine 17, 967-978 (2006).
|
[1528] |
. Y. Liu et al., Ti-Cu-Zr-Fe-Sn-Si-Sc bulk metallic glasses with good mechanical properties for biomedical applications. Journal of Alloys and Compounds 679, 341-349 (2016).
|
[1529] |
. J. L. Gu et al., Centimeter-sized Ti-rich bulk metallic glasses with superior specific strength and corrosion resistance. Journal of Non-Crystalline Solids 512, 206-210 (2019).
|
[1530] |
. J. J. Oak, A. Inoue, Attempt to develop Ti-based amorphous alloys for biomaterials. Materials Science and Engineering: A 449-451, 220-224 (2007).
|
[1531] |
. G. Xie, F. Qin, S. Zhu, Recent Progress in Ti-Based Metallic Glasses for Application as Biomaterials. Materials Transactions 54, 1314-1323 (2013).
|
[1532] |
. M. Calin et al., Designing biocompatible Ti-based metallic glasses for implant applications. Materials Science & Engineering C-Materials for Biological Applications 33, 875-883 (2013).
|
[1533] |
. P. Du, T. Xiang, X. X. Yang, G. Q. Xie, Optimization of bioactivity and antibacterial properties of porous Ti-based bulk metallic glass through chemical treatment. Ceramics International 49, 13960-13971 (2023).
|
[1534] |
. K. Zuo et al., Enhancing the bioactivity and ductility of bulk metallic glass by introducing Fe to construct semi-degradable biomaterial. Journal of Materials Research and Technology-Jmr&T 28, 4162-4176 (2024).
|
[1535] |
. P. Du, B. Li, J. Chen, K. Li, G. Xie, Novel Ti-based bulk metallic glass free of toxic and noble elements for bio-implant applications. Journal of Alloys and Compounds 934, 167996 (2023).
|
[1536] |
. P. S. Chen et al., Development and Fabrication of Biocompatible Ti-Based Bulk Metallic Glass Matrix Composites for Additive Manufacturing. Materials (Basel) 16, 5935 (2023).
|
[1537] |
. K. Tiwari et al., Surface modification of Ti40Cu40Zr11Fe3Sn3Ag3 amorphous alloy for enhanced biocompatibility in implant applications. Journal of Materials Research and Technology 30, 2333-2346 (2024).
|
[1538] |
. H. Ida et al., Biosafety, stability, and osteogenic activity of novel implants made of Zr70Ni16Cu6Al8 bulk metallic glass for biomedical application. Orthodontic Waves 78, 179-180 (2020).
|
[1539] |
. K.-M. Han, H. Jiang, Y.-M. Wang, J.-B. Qiang, Zr-Ti-Al-Fe-Cu bulk metallic glasses for biomedical device application. Rare Metals 40, 1239-1246 (2021).
|
[1540] |
. B.-S. Lou, Y.-C. Yang, J.-W. Lee, L.-T. Chen, Biocompatibility and mechanical property evaluation of Zr-Ti-Fe based ternary thin film metallic glasses. Surf. Coat. Technol. 320, 512-519 (2017).
|
[1541] |
. K. Han, J. Qiang, Y. Wang, P. Haussler, Zr-Al-Co-Cu bulk metallic glasses for biomedical devices applications. Journal of Alloys and Compounds 729, 144- 149 (2017).
|
[1542] |
. A. Jabed et al., Property optimization of Zr-Ti-X (X = Ag, Al) metallic glass via combinatorial development aimed at prospective biomedical application. Surf. Coat. Technol. 372, 278-287 (2019).
|
[1543] |
. S. Sasaki et al., Mechanical properties and biocompatibility of a novel miniscrew made of Zr(70)Ni(16)Cu(6)Al(8) bulk metallic glass for orthodontic anchorage. Sci Rep 13, 3038 (2023).
|
[1544] |
. L. Larsson et al., Biocompatibility of a Zr-Based Metallic Glass Enabled by Additive Manufacturing. Acs Applied Bio Materials 5, 5741-5753 (2022).
|
[1545] |
. Y. Prabhu et al., Compositional design and in vitro investigation on novel Zr- Co-Cu-Ti metallic glass for biomedical applications. Intermetallics 150, 107692 (2022).
|
[1546] |
. I. Qamruddin, M. K. Alam, M. Fida, A. G. Khan, Effect of a single dose of lowlevel laser therapy on spontaneous and chewing pain caused by elastomeric separators. American Journal of Orthodontics and Dentofacial Orthopedics 149, 62-66 (2016).
|
[1547] |
. Liquidmetal, Alloys in Minimally Invasive Medical Devices, in: Liquidmetal (Ed.).
|
[1548] |
. M. Jafary-Zadeh et al., A Critical Review on Metallic Glasses as Structural Materials for Cardiovascular Stent Applications. J Funct Biomater 9, 19 (2018).
|
[1549] |
. M. M. Kai, X. Zhang, Ze Liu, Bulk metallic glass micro-force sensor. Transducer and Microsystem Technologies 40, 67-70 (2021).
|
[1550] |
. Z. Hu, C. S. Meduri, R. S. J. Ingrole, H. S. Gill, G. Kumar, Solid and hollow metallic glass microneedles for transdermal drug-delivery. Applied Physics Letters 116, 203703 (2020).
|
[1551] |
. M. Jung et al., in 1st IEEE International Conference on Flexible and Printable Sensors and Systems (IEEE FLEPS). (Glasgow, SCOTLAND, 2019).
|
[1552] |
. Q. Halim, N. A. N. Mohamed, M. R. T. Rejab, W. N. W. A. Naim, Q. Ma, Metallic glass properties, processing method and development perspective: a review. International Journal of Advanced Manufacturing Technology 112, 1231-1258 (2021).
|
[1553] |
. C. Yang et al., Micro thermoplastic forming of a Pd-based metallic glass: theory and applications. Journal of Iron and Steel Research International 24, 378-384 (2017).
|
[1554] |
. J.-F. Li et al., Metallic Mimosa pudica: A 3D biomimetic buckling structure made of metallic glasses. Science advances 8, eabm7658 (2022).
|
[1555] |
. J. J. He et al., The precision replication of a microchannel mould by hotembossing a Zr-based bulk metallic glass. Intermetallics 21, 50-55 (2012).
|
[1556] |
. Z. Li, Z. Huang, F. Sun, X. Li, J. Ma, Forming of metallic glasses: mechanisms and processes. Materials Today Advances 7, 100077 (2020).
|
[1557] |
. J. Padmanabhan et al., Engineering cellular response using nanopatterned bulk metallic glass. Acs Nano 8, 4366-4375 (2014).
|
[1558] |
. E. R. Kinser et al., Nanopatterned Bulk Metallic Glass Biosensors. ACS Sensors 2, 1779-1787 (2017).
|
[1559] |
. S. J. B. Bin, K. S. Fong, B. W. Chua, M. Gupta, Mg-based bulk metallic glasses: A review of recent developments. Journal of Magnesium and Alloys 10, 899- 914 (2022).
|
[1560] |
. M. S. Dambatta, S. Izman, B. Yahaya, J. Y. Lim, D. Kurniawan, Mg-based bulk metallic glasses for biodegradable implant materials: A review on glass forming ability, mechanical properties, and biocompatibility. Journal of Non-Crystalline Solids 426, 110-115 (2015).
|
[1561] |
. Y. K. Xu, H. Ma, J. Xu, E. Ma, Mg-based bulk metallic glass composites with plasticity and gigapascal strength. Acta Materialia 53, 1857-1866 (2005).
|
[1562] |
. J. P. Chu et al., Thin film metallic glasses: Unique properties and potential applications. Thin Solid Films 520, 5097-5122 (2012).
|
[1563] |
. C. Jin et al., Biodegradable Mg-Zn-Ca-Based Metallic Glasses. Materials (Basel) 15, 2172 (2022).
|
[1564] |
. K. Li et al., New biodegradable Mg-Zn-Ca bulk metallic glass composite with large plasticity reinforced by SnZn alloy. Materials Science and Engineering: A 873, 145045 (2023).
|
[1565] |
. K. Imai, X. Zhou, X. Liu, Application of Zr and Ti-Based Bulk Metallic Glasses for Orthopaedic and Dental Device Materials. Metals 10, 203 (2020).
|
[1566] |
. S. Liu, Q. Cao, D. Zhang, J. Z. Jiang, Metallic Glassy Thin Films: Perspective on Mechanical, Magnetic, Biomedical, and Optical Properties. Advanced Engineering Materials 21, 190046 (2019).
|
[1567] |
. S. Korkmaz, İ. A. Kariper, Glass formation, production and superior properties of Zr-based thin film metallic glasses (TFMGs): A status review. Journal of Non-Crystalline Solids 527, 119753 (2020).
|
[1568] |
. B. Subramanian, S. Yugeswaran, A. Kobayashi, M. Jayachandran, Fabrication of amorphous Zr48Cu36Al8Ag8 thin films by ion beam sputtering and their corrosion behavior in SBF for bio implants. Journal of Alloys and Compounds 572, 163-169 (2013).
|
[1569] |
. C. R. Onyeagba et al., Polymorphous nanostructured metallic glass coatings for corrosion protection of medical grade Ti substrate. Intermetallics 165, 108167 (2024).
|
[1570] |
. W. Diyatmika, C.-C. Yu, Y. Tanatsugu, M. Yasuzawa, J. P. Chu, Fibrinogen and albumin adsorption profiles on Ni-free Zr-based thin film metallic glass. Thin Solid Films 688, 137382 (2019).
|
[1571] |
. P.-H. Kuo, S.-Y. Tsai, J.-G. Duh, Bio-compatible Zirconium-based thin film metallic glasses with nitrogen reinforced by micro-alloying technique. Materials Chemistry and Physics 272, 124965 (2021).
|
[1572] |
. J.-H. Chu et al., Antimicrobial characteristics in Cu-containing Zr-based thin film metallic glass. Surface and Coatings Technology 259, 87-93 (2014).
|
[1573] |
. H.-W. Chen et al., Antimicrobial properties of Zr-Cu-Al-Ag thin film metallic glass. Thin Solid Films 561, 98-101 (2014).
|
[1574] |
. B. Subramanian, S. Maruthamuthu, S. T. Rajan, Biocompatibility evaluation of sputtered zirconium-based thin film metallic glass-coated steels. Int J Nanomedicine 10 Suppl 1, 17-29 (2015).
|
[1575] |
. J. P. Chu et al., Fabrication and characterizations of thin film metallic glasses: Antibacterial property and durability study for medical application. Thin Solid Films 561, 102-107 (2014).
|
[1576] |
. H. J. Xian et al., Flexible strain sensors with high performance based on metallic glass thin film. Applied Physics Letters 111, 121906 (2017).
|
[1577] |
. B. Subramanian, In vitro corrosion and biocompatibility screening of sputtered Ti40Cu36Pd14Zr10 thin film metallic glasses on steels. Materials Science and Engineering: C 47, 48-56 (2015).
|
[1578] |
. A. Etiemble et al., Innovative Zr-Cu-Ag thin film metallic glass deposed by magnetron PVD sputtering for antibacterial applications. Journal of Alloys and Compounds 707, 155-161 (2017).
|
[1579] |
. J. F. Tang et al., Microstructure and Antimicrobial Properties of Zr-Cu-Ti ThinFilm Metallic Glass Deposited Using High-Power Impulse Magnetron Sputtering. Materials (Basel) 15, ma150461 (2022).
|
[1580] |
. Y. Y. Chu et al., Promising antimicrobial capability of thin film metallic glasses. Materials Science and Engineering: C 36, 221-225 (2014).
|
[1581] |
. G. I. Nkou Bouala et al., Silver influence on the antibacterial activity of multifunctional Zr-Cu based thin film metallic glasses. Surface and Coatings Technology 343, 108-114 (2018).
|
[1582] |
. P.-T. Chiang et al., Surface antimicrobial effects of Zr61Al7. 5Ni10Cu17. 5Si4 thin film metallic glasses on Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumannii and Candida albicans. Fooyin Journal of Health Sciences 2, 12-20 (2010).
|
[1583] |
. J. Lee, M.-L. Liou, J.-G. Duh, The development of a Zr-Cu-Al-Ag-N thin film metallic glass coating in pursuit of improved mechanical, corrosion, and antimicrobial property for bio-medical application. Surface and Coatings Technology 310, 214-222 (2017).
|
[1584] |
. S. Comby-Dassonneville et al., ZrCuAg Thin-Film Metallic Glasses: Toward Biostatic Durable Advanced Surfaces. ACS Applied Materials & Interfaces 13, 17062-17074 (2021).
|
[1585] |
. C. H. Chang et al., Beneficial effects of thin film metallic glass coating in reducing adhesion of platelet and cancer cells: Clinical testing. Surface and Coatings Technology 344, 312-321 (2018).
|
[1586] |
. R. Divyasri, P. Ragupathy, G. Saravanan Kaliaraj, B. Subramanian, Sputtered zirconium based metallic glassy thin films onto electrospun PCL nanofibrous scaffolds for enriching bioactivity. Materials Chemistry and Physics 322, 129566 (2024).
|
[1587] |
. P. Singh et al., Fabrication and characterization of metallic glass nanotube array as in application of wound dressing. Journal of Alloys and Compounds 886, 161275 (2021).
|
[1588] |
. S. Thanka Rajan, M. Karthika, A. Bendavid, B. Subramanian, Apatite layer growth on glassy Zr48Cu36Al8Ag8 sputtered titanium for potential biomedical applications Applied Surface Science 369, 501-509 (2016).
|
[1589] |
. M. Z. Ibrahim et al., Developing a new laser cladded FeCrMoCB metallic glass layer on nickel-free stainless-steel as a potential superior wear-resistant coating for joint replacement implants. Surface and Coatings Technology 392, 125755 (2020).
|
[1590] |
. K. S. Abisegapriyan, A. Rajeshwari, S. Kundu, B. Subramanian, Magnesium glassy alloy laminated nanofibrous polymer as biodegradable scaffolds. Journal of Non-Crystalline Solids 502, 210-217 (2018).
|
[1591] |
. S. T. Rajan et al., Zirconium-based metallic glass and zirconia coatings to inhibit bone formation on titanium. Biomed Mater 15, 065019 (2020).
|
[1592] |
. J. P. Chu et al., Coating Cutting Blades with Thin-Film Metallic Glass to Enhance Sharpness. Sci Rep 9, 15558 (2019).
|
[1593] |
. J. P. Chu, N. Bönninghoff, C.-C. Yu, Y.-K. Liu, G.-H. Chiang, Coating needles with metallic glass to overcome fracture toughness and trauma: Analysis on porcine tissue and polyurethane rubber. Thin Solid Films 688, 137320 (2019).
|
[1594] |
. P. H. Tsai et al., Effect of coating thickness on the cutting sharpness and durability of Zr-based metallic glass thin film coated surgical blades. Thin Solid Films 618, 36-41 (2016).
|
[1595] |
. J. S.-C. Jang et al., Enhanced cutting durability of surgical blade by coating with Fe-based metallic glass thin film. Intermetallics 65, 56-60 (2015).
|
[1596] |
. J. P. Chu, W. C. Liao, P. Yiu, M. T. Chiou, K. H. Su, Metallic glass coating for improved needle tattooing performance in reducing trauma: analysis on porcine and pig skins. Sci Rep 10, 20318 (2020).
|
[1597] |
. J. P. Chu, C. C. Yu, Y. Tanatsugu, M. Yasuzawa, Y. L. Shen, Non-stick syringe needles: Beneficial effects of thin film metallic glass coating. Sci Rep 6, 31847 (2016).
|
[1598] |
. M. Y. Bai, Y. C. Chang, J. P. Chu, Preclinical studies of non-stick thin film metallic glass-coated syringe needles. Sci Rep 10, 20313 (2020).
|
[1599] |
. C.-W. Chi, Y.-L. Deng, J.-W. Lee, C.-P. Lin, Fracture resistance of dental nickel-titanium rotary instruments with novel surface treatment: Thin film metallic glass coating. Journal of the Formosan Medical Association 116, 373- 379 (2017).
|
[1600] |
. S. Lee et al., Integration of Transparent Supercapacitors and Electrodes Using Nanostructured Metallic Glass Films for Wirelessly Rechargeable, Skin Heat Patches. Nano Letters 20, 4872-4881 (2020).
|
[1601] |
. N. Van Toan, T. T. K. Tuoi, Y. C. Tsai, Y. C. Lin, T. Ono, Micro-Fabricated Presure Sensor Using 50 nm-Thick of Pd-Based Metallic Glass Freestanding Membrane. Sci Rep 10, 10108 (2020).
|
[1602] |
. R. Kargupta et al., Coatings and surface modifications imparting antimicrobial activity to orthopedic implants. WIREs Nanomedicine and Nanobiotechnology 6, 475-495 (2014).
|
[1603] |
. M. Cihova et al., Palladium-Based Metallic Glass with High Thrombogenic Resistance for Blood-Contacting Medical Devices. Advanced Functional Materials 32, 2108256 (2021).
|
[1604] |
. C. L. Qin, J. J. Oak, N. Ohtsu, K. Asami, A. Inoue, XPS study on the surface films of a newly designed Ni-free Ti-based bulk metallic glass. Acta Materialia 55, 2057-2063 (2007).
|
[1605] |
. X. Rao et al., Preparation and mechanical properties of a new Zr-Al-Ti-Cu- Ni-Be bulk metallic glass. Materials Letters 50, 279-283 (2001).
|
[1606] |
. K. Flores, R. Dauskardt, Mean stress effects on flow localization and failure in a bulk metallic glass. Acta Materialia 49, 2527-2537 (2001).
|
[1607] |
. K. M. Flores, W. L. Johnson, R. H. Dauskardt, Fracture and fatigue behavior of a Zr-Ti-Nb ductile phase reinforced bulk metallic glass matrix composite. Scripta Materialia 49, 1181-1187 (2003).
|
[1608] |
. E. Ma, Controlling plastic instability. Nature materials 2, 7-8 (2003).
|
[1609] |
. M. Lee, D. Bae, D. Kim, D. Sordelet, Synthesis of Ni-based bulk metallic glass matrix composites containing ductile brass phase by warm extrusion of gas atomized powders. Journal of materials research 18, 2101-2108 (2003).
|
[1610] |
. A. H. Brothers, D. C. Dunand, Syntactic bulk metallic glass foam. Applied Physics Letters 84, 1108-1110 (2004).
|
[1611] |
. A. H. Brothers, D. C. Dunand, Ductile Bulk Metallic Glass Foams. Advanced Materials 17, 484-486 (2005).
|
[1612] |
. F. Cemin et al., Superior in vitro biocompatibility in NbTaTiVZr(O) highentropy metallic glass coatings for biomedical applications. Applied Surface Science 596, 153615 (2022).
|
[1613] |
. IEA, The Future of Cooling-Opportunities for energy-efficient air conditioning. (IEA, Paris, 2018), (2018).
|
[1614] |
. IEA, The Future of Cooling in China-Delivering on action plans for sustainable air conditioning IEA. (IEA, Paris, 2019), (2019).
|
[1615] |
. Enerdata, Global Energy Trends-2023 Edition: a troubled, yet promising year for energy transition? , (2023).
|
[1616] |
. A. Kitanovski et al., Magnetocaloric Energy Conversion from Theory to Applications. (Springer Cham, 2015).
|
[1617] |
. J. Y. Law, L. M. Moreno-Ramírez, Á. Díaz-García, V. Franco, Current perspective in magnetocaloric materials research. J. Appl. Phys. 133, 040903 (2023).
|
[1618] |
. V. Franco et al., Magnetocaloric effect: From materials research to refrigeration devices. Prog. Mater. Sci. 93, 112-232 (2018).
|
[1619] |
. A. Kitanovski, Energy Applications of Magnetocaloric Materials. Adv. Energy. Mater. 10, 1903741 (2020).
|
[1620] |
. F. Q. Zhang, X. F. Miao, N. van Dijk, E. Brück, Y. Ren, Advanced magnetocaloric materials for energy conversion: recent progress, opportunities, and perspective. Adv. Energy. Mater. 14, 2400369 (2024).
|
[1621] |
. T. Gottschall et al., Making a cool choice: the materials library of magnetic refrigeration. Adv. Energy. Mater. 9, 1901322 (2019).
|
[1622] |
. F. Scheibel et al., Hysteresis design of magnetocaloric materials-from basic mechanisms to applications. Energy. Technol. 6, 1397-1428 (2018).
|
[1623] |
. A. Smith et al., Materials challenges for high performance magnetocaloric refrigeration devices. Adv. Energy. Mater. 2, 1288-1318 (2012).
|
[1624] |
. J. Ćwik et al., Experimental and theoretical analysis of magnetocaloric behavior of Dy1-xErxNi2 intermetallics (x=0.25, 0.5, 0.75)and their composites for lowtemperature refrigerators performing an Ericsson cycle. Phys. Rev. B. 103, 214429 (2021).
|
[1625] |
. W. H. Zhu et al., Large refrigerant capacity induced by table-like magnetocaloric effect in high-entropy alloys TbDyHoEr. Adv. Eng. Mater. 25, 2201770 (2023).
|
[1626] |
. V. K. Pecharsky, J. K. A. Gschneidner, Giant magnetocaloric effect in Gd5(Si2Ge2). Phys. Rev. Lett. 78, 4494-4497 (1997).
|
[1627] |
. V. Franco, A. Conde, Magnetic refrigerants with continuous phase transitions: Amorphous and nanostructured materials. Script. Mater. 67, 594-599 (2012).
|
[1628] |
. Z. B. Zhang, J. C. Yuan, Z. Y. Jing, Y. H. Cheng, X. B. Liang, Research progress and development trend of amorphous and nanocrystalline composite coatings: a review. JOM. 74, 4597-4611 (2022).
|
[1629] |
. H. Y. Jiang et al., Structures and functional properties of amorphous alloys. Small. Struct. 2, 2000057 (2021).
|
[1630] |
. H. X. Shen et al., Enhanced refrigerant capacity in Gd-Al-Co microwires with a biphase nanocrystalline/amorphous structure. Appl. Phys. Lett. 108, 092403 (2016).
|
[1631] |
. J. Du et al., Large magnetocaloric effect and enhanced magnetic refrigeration in ternary Gd-based bulk metallic glasses. J. Appl. Phys. 103, 023918 (2008).
|
[1632] |
. J. Chang, X. Hui, Z. Y. Xu, Z. P. Lu, G. L. Chen, Ni-Gd-Al metallic glasses with large magnetocaloric effect. Intermetallics. 18, 1132-1136 (2010).
|
[1633] |
. L. W. Hu et al., Large magnetocaloric effect in low-cobalt-content Gd-Co-Al metallic glasses. Sci. China. Mater. 66, 2467-2474 (2023).
|
[1634] |
. Q. Luo, J. X. Cui, Z. G. Zhang, M. H. Han, B. L. Shen, Tuning nanoscale heterogeneity by non-affine thermal strain to modulate defect activation and maximize magnetocaloric effect of metallic glass. Mater. Des. 225, 111500 (2023).
|
[1635] |
. X. Wang et al., Large magnetic entropy change and adiabatic temperature rise of a ternary Gd34Ni33Al33 metallic glass. J. Rare Earth. 39, 998-1002 (2021).
|
[1636] |
. P. Yu, C. Wu, Y. T. Cui, L. Xia, Excellent magneto-caloric effect of a low cost Gd34Ni22Co11Al33 metallic glass. Mater. Lett. 173, 239-241 (2016).
|
[1637] |
. L. Xia, K. C. Chan, M. B. Tang, Y. D. Dong, Achieving a large adiabatic temperature rise of Gd55Co25Al20 bulk metallic glass by minor Zn addition. J. Mater. Sci. 50, 1333-1337 (2015).
|
[1638] |
. L. Xia, Q. Guan, D. Ding, M. B. Tang, Y. D. Dong, Magneto-caloric response of the Gd60Co25Al15 metallic glasses. Appl. Phys. Lett. 105, 192402 (2014).
|
[1639] |
. L. Xia, M. B. Tang, K. C. Chan, Y. D. Dong, Large magnetic entropy change and adiabatic temperature rise of a Gd55Al20Co20Ni5 bulk metallic glass. J. Appl. Phys. 115, 223904 (2014).
|
[1640] |
. B. Z. Tang et al., Compositional dependence of magnetic and magnetocaloric properties of the Gd-Ni binary amorphous alloys. J. Non-Cryst. Solids. 522, 119589 (2019).
|
[1641] |
. H. Fu, M. Zou, Magnetic and magnetocaloric properties of ternary Gd-Co-Al bulk metallic glasses. J. Alloy. Compd. 509, 4613-4616 (2011).
|
[1642] |
. G. J. Kumar et al., Broad table-like magnetocaloric effect in GdFeCo thin-films for room temperature Ericsson-cycle magnetic refrigeration. J. Appl. Phys. 135, 123904 (2024).
|
[1643] |
. G. L. Liu, D. Q. Zhao, H. Y. Bai, W. H. Wang, M. X. Pan, Room temperature table-like magnetocaloric effect in amorphous Gd50Co45Fe5 ribbon. J. Phys. D. Appl. Phys. 49, 055004 (2016).
|
[1644] |
. C. Wu, D. Ding, L. Xia, K. C. Chan, Achieving tailorable magneto-caloric effect in the Gd-Co binary amorphous alloys. AIP. Adv. 6, 035302 (2016).
|
[1645] |
. Z. W. Wang, P. Yu, Y. T. Cui, L. Xia, Near room temperature magneto-caloric effect of a Gd48Co52 amorphous alloy. J. Alloy. Compd. 658, 598-602 (2016).
|
[1646] |
. C. Wu, D. Ding, L. Xia, Effect of Al addition on the glass-forming ability and magnetic properties of a Gd-Co binary amorphous alloy. Chin. Phys. Lett. 33, 016102 (2016).
|
[1647] |
. B. Z. Tang, P. Yu, D. Ding, C. Wu, L. Xia, Improved magneto-caloric effect of the Gd50Co50 metallic glass by minor Si addition. J. Magn. Magn. Mater. 424, 275-278 (2017).
|
[1648] |
. L. Y. Ma, L. H. Gan, K. C. Chan, D. Ding, L. Xia, Achieving a table-like magnetic entropy change across the ice point of water with tailorable temperature range in Gd-Co-based amorphous hybrids. J. Alloy. Compd. 723, 197-200 (2017).
|
[1649] |
. P. Yu et al., Achieving better magneto-caloric effect near room temperature in amorphous Gd50Co50 alloy by minor Zn addition. J. Non-Cryst. Solids. 434, 36- 40 (2016).
|
[1650] |
. P. Yu, L. S. Chen, L. Xia, Phase separation and its effect on the magnetic entropy change profile in an amorphous Gd48Co50Nb2 alloy. J. Non-Cryst. Solids. 493, 82-85 (2018).
|
[1651] |
. B. Z. Tang, D. Q. Guo, D. Ding, L. Xia, K. C. Chan, Large adiabatic temperature rise above the water ice point of a minor Fe substituted Gd50Co50 amorphous alloy. J. Non-Cryst. Solids. 464, 30-33 (2017).
|
[1652] |
. B. Z. Tang, X. P. Liu, D. M. Li, P. Yu, L. Xia, Effect of Ni substitution on the formability and magnetic properties of Gd50Co50 amorphous alloy. Chin. Phys. B. 29, 056401 (2020).
|
[1653] |
. B. Z. Tang, H. X. Xie, D. M. Li, L. Xia, P. Yu, Microstructure and its effect on magnetic and magnetocaloric properties of the Co50Gd50-xFex glassy ribbons. J. Non-Cryst. Solids. 533, 119935 (2020).
|
[1654] |
. X. Wang et al., Co50Gd48-xFe2Nix amorphous alloys with high adiabatic temperature rise near the hot end of a domestic magnetic refrigerator. J. NonCryst. Solids. 544, 120146 (2020).
|
[1655] |
. X. Wang et al., Magnetic and magneto-caloric properties of the amorphous Fe92- xZr8Bx ribbons. Materials. 13, 5334 (2020).
|
[1656] |
. P. Yu, J. Z. Zhang, L. Xia, Effect of boron on the magneto-caloric effect in Fe91- xZr9Bx (x=3, 4, 5) amorphous alloys. J. Mater. Sci. 52, 13948-13955 (2017).
|
[1657] |
. Y. Y. Wang, X. F. Bi, The role of Zr and B in room temperature magnetic entropy change of FeZrB amorphous alloys. Appl. Phys. Lett. 95, 262501 (2009).
|
[1658] |
. D. Mishra et al., Enhanced soft magnetic properties and magnetocaloric effect in B substituted amorphous Fe-Zr alloy ribbons. Mat. Sci. Eng. B. 175, 253-260 (2010).
|
[1659] |
. L. H. Gan, L. Y. Ma, B. Z. Tang, D. Ding, L. Xia, Effect of Co substitution on the glass forming ability and magnetocaloric effect of Fe88Zr8B4 amorphous alloys. Sci. China. Phys. Mech. Astron. 60, 076121 (2017).
|
[1660] |
. L. S. Chen, J. Z. Zhang, L. Wen, P. Yu, L. Xia, Outstanding magnetocaloric effect of Fe88-xZr8B4Smx (x=0, 1, 2, 3) amorphous alloys. Sci. China. Phys. Mech. Astron. 61, 056121 (2018).
|
[1661] |
. Y. K. Fang et al., Magnetocaloric effect in Fe-Zr-B-M (M = Mn, Cr, and Co) amorphous systems. J. Appl. Phys. 105, 07A910 (2009).
|
[1662] |
. J. X. Peng et al., Effect of heavy rare-earth (Dy, Tb, Gd) addition on the glassforming ability and magneto-caloric properties of Fe89Zr7B4 amorphous alloy. J. Alloy. Compd. 925, 166707 (2022).
|
[1663] |
. X. N. Zheng et al., Achieving higher magnetic entropy change peak at lower temperature by minor Ti substitution for Zr in the Fe88Zr8B4 metallic glass. Mod. Phys. Lett. B. 37, 2350032 (2023).
|
[1664] |
. P. J. Wang et al., Improvement of Curie temperature and magnetic entropy change of a Fe88Zr8B4 metallic glass by minor Nd substitution. J. Non-Cryst. Solids. 611, 122347 (2023).
|
[1665] |
. Q. Wang et al., Excellent magnetocaloric performance of a Fe88Zr4Pr4B4 amorphous alloy and its amorphous hybrids. Intermetallics 161, 107982 (2023).
|
[1666] |
. Z. R. Zhang et al., Mechanism for improved curie temperature and magnetic entropy change in Sm-doped Fe88Zr8B4 amorphous alloys. Materials. 16, 7274 (2023).
|
[1667] |
. Q. Wang, D. Ding, B. Xia, W. H. Li, L. Xia, Outstanding magnetocaloric performances near 326 K of a vitrified Fe88Zr4Pr3B4Nd1 ribbon. J. Non-Cryst. Solids. 637, 123055 (2024).
|
[1668] |
. L. Z. Zhu et al., Effect of minor Ce substitution for Pr on the glass formability and magnetocaloric effect of a Fe88Zr4Pr4B4 metallic glass. Metals. 13, 1531 (2023).
|
[1669] |
. B. Z. Tang, M. N. Song, L. W. Huang, D. Ding, L. Xia, Large magnetic entropy change and adiabatic temperature rise of Fe85B12La3 amorphous alloy. Physica. B. 583, 412014 (2020).
|
[1670] |
. S. H. Zheng et al., Excellent magnetocaloric performance of the Fe87Ce13-xBx (x= 5, 6, 7) metallic glasses and their composite. Materials. 16, 4393 (2023).
|
[1671] |
. X. Zhou et al., Effect of minor Co substitution for Fe on the formability and magnetic and magnetocaloric properties of the amorphous Fe88Ce7B5 alloy. Metals. 12, 589 (2022).
|
[1672] |
. Q. Wang et al., Formation and magnetocaloric properties of the amorphous Fe88La7-xCexB5 (x= 0, 1, 3, 5, 7) ribbons. J. Phys. Chem. Solids. 169, 110854 (2022).
|
[1673] |
. C. H. Wang et al., Achieve good magneto-caloric response near the ambient temperature in a Fe86La7B5Ce2 amorphous ribbon. J. Magn. Magn. Mater. 547, 168954 (2022).
|
[1674] |
. C. Y. Yue et al., Observation of outstanding magnetocaloric effect near room temperature in a Fe88Ce5Pr2B5 amorphous alloy. Intermetallics. 153, 107804 (2023).
|
[1675] |
. Q. Wang et al., Excellent magnetocaloric effect near 282 K of a Fe87Ce6Pr4B3 metallic glass ribbon. J. Non-Cryst. Solids. 625, 122748 (2024).
|
[1676] |
. Q. Wang et al., A novel Fe87Pr11B2 amorphous alloy with outstanding magnetocaloric properties near 325 K. Intermetallics. 172, 108394 (2024).
|
[1677] |
. Q. Wang, D. Ding, B. Tang, P. Yu, L. Xia, Magnetic and magnetocaloric properties of ternary Fe87M10B3 (M = Zr, Pr) metallic glasses. J. Rare Earth, , (2024).
|
[1678] |
. S. Z. S. Al Ghafri et al., Hydrogen liquefaction: a review of the fundamental physics, engineering practice and future opportunities. Energy. Environ. Sci. 15, 2690-2731 (2022).
|
[1679] |
. T. T. Zhang et al., Hydrogen liquefaction and storage: Recent progress and perspectives. Renew. Sust. Energ. Rev. 176, 113204 (2023).
|
[1680] |
. K. Kamiya et al., Active magnetic regenerative refrigeration using superconducting solenoid for hydrogen liquefaction. Appl. Phys. Express. 15, 053001 (2022).
|
[1681] |
. C. Romero-Muñiz, J. Y. Law, J. Revuelta-Losada, L. M. Moreno-Ramírez, V. Franco, Magnetocaloric materials for hydrogen liquefaction. The Innovation Materials 1, 100045 (2023).
|
[1682] |
. W. Liu et al., Designing magnetocaloric materials for hydrogen liquefaction with light rare-earth Laves phases. J. Phys. Energy. 5, 034001 (2023).
|
[1683] |
. S. Kumar et al., Exploring magnetocaloric materials for sustainable refrigeration near hydrogen gas liquefaction temperature. Adv. Funct. Mater., 2402513 (2024).
|
[1684] |
. P. B. d. Castro et al., Machine-learning-guided discovery of the gigantic magnetocaloric effect in HoB2 near the hydrogen liquefaction temperature. NPG. Asia. Mater. 12, 35 (2020).
|
[1685] |
. X. Tang et al., Magnetic refrigeration material operating at a full temperature range required for hydrogen liquefaction. Nat. Commun. 13, 1817 (2022).
|
[1686] |
. N. Terada, H. Mamiya, High-efficiency magnetic refrigeration using holmium. Nat. Commun. 12, 1212 (2021).
|
[1687] |
. L. Tian et al., Wide temperature span and giant refrigeration capacity magnetic refrigeration materials for hydrogen liquefaction. Appl. Phys. Lett. 124, 102408 (2024).
|
[1688] |
. X. Q. Zheng et al., Large magnetocaloric effect of HoxEr1-xNi (0≤x≤ 1) compounds. J. Appl. Phys. 120, 163907 (2016).
|
[1689] |
. Q. Y. Dong, J. Chen, J. Shen, J. R. Sun, B. G. Shen, Magnetic properties and magnetocaloric effects in R3Ni2 (R = Ho and Er) compounds. Appl. Phys. Lett. 99, 132504 (2011).
|
[1690] |
. S. X. Yang et al., Tunable magnetic properties and magnetocaloric effect of TmGa by Ho substitution. Phys. Rev. B. 102, 174441 (2020).
|
[1691] |
. H. Zhang et al., Review on the materials and devices for magnetic refrigeration in the temperature range of nitrogen and hydrogen liquefaction. Physica. B. 558, 65-73 (2019).
|
[1692] |
. J. Q. Feng et al., Giant refrigerant capacity in Gd-based amorphous/nanocrsytalline composite fibers. Mater. Today. Phys. 21, 100528 (2021).
|
[1693] |
. J. S. Liu et al., Effect of current annealing treatment on magnetic properties of Gd-Al-Co-Fe metallic microfibers. J. Alloy. Compd. 855, 157231 (2021).
|
[1694] |
. Y. Zhang et al., Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1-93 (2014).
|
[1695] |
. L. Xue et al., Utilization of high entropy in rare earth-based magnetocaloric metallic glasses. J. Mater. Res. Technol. 18, 5301-5311 (2022).
|
[1696] |
. H. B. C. Yin et al., Design of Fe-containing GdTbCoAl high-entropy-metallicglass composite microwires with tunable Curie temperatures and enhanced cooling efficiency. Mater. Des. 206, 109824 (2021).
|
[1697] |
. J. T. Huo et al., High-entropy bulk metallic glasses as promising magnetic refrigerants. J. Appl. Phys. 117, 073902 (2015).
|
[1698] |
. L. Xue, L. L. Shao, Q. Luo, B. L. Shen, Gd25RE25Co25Al25 (RE = Tb, Dy and Ho) high-entropy glassy alloys with distinct spin-glass behavior and good magnetocaloric effect. J. Alloy. Compd. 790, 633-639 (2019).
|
[1699] |
. L. W. Li, C. Xu, Y. Yuan, S. Q. Zhou, Large refrigerant capacity induced by table-like magnetocaloric effect in amorphous Er0.2Gd0.2Ho0.2Co0.2Cu0.2 ribbons. Mater. Res. Lett. 6, 413-418 (2018).
|
[1700] |
. Y. K. Zhang, B. B. Wu, D. Guo, J. Wang, Z. M. Ren, Magnetic properties and promising cryogenic magneto-caloric performances of Gd20Ho20Tm20Cu20Ni20 amorphous ribbons. Chin. Phys. B. 30, 017501 (2021).
|
[1701] |
. Z. Q. Dong, Z. J. Wang, S. H. Yin, Magnetic properties and large cryogenic magneto-caloric effect of Er0.2Tm0.2Ho0.2Cu0.2Co0.2 amorphous ribbon. Intermetallics. 124, 106879 (2020).
|
[1702] |
. Y. K. Zhang, J. Zhu, S. Li, J. Wang, Z. M. Ren, Achievement of giant cryogenic refrigerant capacity in quinary rare-earths based high-entropy amorphous alloy. J. Mater. Sci. Technol. 102, 66-71 (2022).
|
[1] | Meng Liu, Shoucong Ning, Dongdong Xiao, Yongzheng Zhang, Jiuhui Han, Chao Li, Anmin Nie, Xiang Zhang, Ao Zhang, Xiangrui Feng, Yujin Zhang, Weihua Wang, Zhen Lu, Haiyang Bai. Amorphous/Crystalline Heterostructured Nanoporous High-Entropy Metallic Glasses for Efficient Water Splitting[J]. Materials Futures. DOI: 10.1088/2752-5724/add415 |
[2] | Weihua Wang. A new room temperature viscoelastic inorganic glass[J]. Materials Futures, 2023, 2(4): 047502. DOI: 10.1088/2752-5724/acf7d9 |
[3] | Qiang Luo, Weiran Cui, Huaping Zhang, Liangliang Li, Liliang Shao, Mingjuan Cai, Zhengguo Zhang, Lin Xue, Jun Shen, Yu Gong, Xiaodong Li, Maozi Li, Baolong Shen. Polyamorphism mediated by nanoscale incipient concentration wave uncovering hidden amorphous intermediate state with ultrahigh modulus in nanostructured metallic glass[J]. Materials Futures, 2023, 2(2): 025001. DOI: 10.1088/2752-5724/acbdb4 |
[4] | Qing Wang, Ying-Hui Shang, Yong Yang. Quenched-in liquid in glass[J]. Materials Futures, 2023, 2(1): 017501. DOI: 10.1088/2752-5724/acb8cf |
[5] | Chunxi Tian, Kun Qin, Liumin Suo. Concentrated electrolytes for rechargeable lithium metal batteries[J]. Materials Futures, 2023, 2(1): 012101. DOI: 10.1088/2752-5724/acac68 |
[6] | Yanqing Zhu, Min Hu, Mi Xu, Bo Zhang, Fuzhi Huang, Yi-Bing Cheng, Jianfeng Lu. Bilayer metal halide perovskite for efficient and stable solar cells and modules[J]. Materials Futures, 2022, 1(4): 042102. DOI: 10.1088/2752-5724/ac9248 |
[7] | Weiming Yang, Jiawei Li, Hongyang Li, Haishun Liu, Jinyong Mo, Si Lan, Maozhi Li, Xun-Li Wang, Jürgen Eckert, Juntao Huo. Inheritance factor on the physical properties in metallic glasses[J]. Materials Futures, 2022, 1(3): 035601. DOI: 10.1088/2752-5724/ac7fad |
[8] | Ao Li, Xiao Chen, Lijian Song, Guoxin Chen, Wei Xu, Juntao Huo, Meng Gao, Ming Li, Lei Zhang, Bingnan Yao, Min Ji, Yan Zhang, Shaofan Zhao, Wei Yao, Yanhui Liu, Jun-Qiang Wang, Haiyang Bai, Zhigang Zou, Mengfei Yang, Weihua Wang. Taking advantage of glass: capturing and retaining the helium gas on the moon[J]. Materials Futures, 2022, 1(3): 035101. DOI: 10.1088/2752-5724/ac74af |
[9] | J Y Zhang, Z Q Zhou, Z B Zhang, M H Park, Q Yu, Z Li, J Ma, A D Wang, H G Huang, M Song, B S Guo, Q Wang, Y Yang. Recent development of chemically complex metallic glasses: from accelerated compositional design, additive manufacturing to novel applications[J]. Materials Futures, 2022, 1(1): 012001. DOI: 10.1088/2752-5724/ac4558 |
[10] | Xiaoling Zang, Yuqian Jiang, Yuqiao Chai, Fengwang Li, Junhui Ji, Mianqi Xue. Tunable metallic-like transport in polypyrrole[J]. Materials Futures, 2022, 1(1): 011001. DOI: 10.1088/2752-5724/ac44ab |